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ABSTRACT

Novel Spin-orbit Coupling in Cold Atoms

by

Chuanzhou Zhu

In cold atom, the coupling between ”spin” (atomic internal hyperfine states) and

”orbit” (atomic center-of-mass motion) can be induced by Raman transition, where

different hyperfine states are coupled by a pair of Raman lasers. In recent years,

this synthetic spin-orbit coupling has received tremendous attention, as it leads to a

variety of novel quantum phenomena in precisely controllable cold atom systems.

In this thesis, we first present a comprehensive analysis of one-, two- and many-

particle physics of harmonically trapped atoms with spin-orbit coupling, followed by

the study of ”novel spin-orbit coupling” in two different systems: (1) cold atom spinor

mixtures and (2) cold atoms in an optical cavity. In the first system, we consider a

spinor mixture consisting of two species of cold atoms, where the spin-orbit coupling

can be transmitted from one species to the other, and we discuss novel topological

properties and the supersolid stripe phase in this mixture. In the second system, we

consider the coupling among three parts: the cavity photon field, the atomic internal

hyperfine states, and the atomic external center-of-mass motion, and we discuss how

this coupling affects familiar quantum optical phenomena, such as Rabi oscillation and

Dicke superradiance phase transition. Our novel systems contribute new and practical

platforms for the research field of synthetic spin-orbit coupling in cold atoms.
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Chapter 1

Introduction and Outline

1.1 Introduction

Spin-orbit (SO) coupling in quantum physics is defined as the coupling between a

particle’s spin and its momentum. The intrinsic SO coupling of an electron is resulted

from the relativistic Dirac equation, and it gives rise to the atomic fine structure. In

condensed matters, SO coupling of electron is a key for the quantum spin Hall effect [1]

and topological insulators [2]. Although SO coupling is ubiquitous in a variety of

physical systems, the SO coupling in cold atoms had not been experimentally realized

until 10 years ago.

The SO coupling in cold atoms was first experimentally realized in 2010 by Dr.

Spielman’s group in University of Maryland, through coupling different atomic spin

(hyperfine) states by a pair of Raman lasers in a 87Rb atomic Bose-Einstein con-

densate [3]. After this initial experiment, SO coupling has been realized in both

Bose-Einstein condensates and ultracold Fermi gases in several groups, and a variety

of novel physical phenomena have been experimentally observed and theoretically

predicted.

In SO coupled Bose-Einstein condensate (BEC) of 87Rb, Dr. Spielman’s group

measured two degenerate energy minima and observed a mixed phase, where the

condensate wave function can be a superposition of the two degenerate state [3].

This mixed phase was soon theoretically identified as the so-called ”supersoild stripe
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phase”, where the condensate density profile was predicted to show striped modula-

tions in real space [4]. Recently, Dr. Ketterle’s group in MIT observed the predicted

density modulation of this stripe phase using Bragg reflection [5], and Dr. Engels’s

group in Washington State University realized a long-lived striped BEC through

employing a weak optical lattice to induce momentum-space hopping between two

spin-orbit band minima [6]. In addition, Dr. Pan’s group in University of Science

and Technology of China realized two-dimensional SO coupling for BEC, based on a

optical Raman lattice scheme [7], and measured finite-temperature phase diagram [8].

The SO coupled ultracold Fermi gas was realized in 2012 in Dr. Zhang’s group

in Shanxi University with 40K [9] and Dr. Zwierlein’s group in MIT with 6Li [10],

and obeserved through momentum-resolved radio-frequency spectroscopy and spin-

injection spectroscopy, respectively. In each of these experiments, an asymmetric,

spinful, and gapped energy-momentum dispersion was measured and regarded as

a hallmark of SO coupling for fermions. Recently, Dr. Lev’s group in Stanford

University experimentally created a long-lived SO coupled Fermi gas through using

the most magnetic fermionic element 161Dy, and measured SO-coupling modified Rabi

oscillation [11]. In addition, Dr. Ye’s group in University of Colorado Boulder made

an optical lattice clock based on SO-coupled 87Sr fermions [12].

The theory of SO coupling in cold atoms are nicely summarized in two review

articles in refs. [13] and [14]. For SO coupled bosons, the phase diagram with the

spatially modulated stripe phase is theoretically presented in ref. [4], through a sim-

ple variational theory in the mean-field approximation. For SO coupled fermions,

the topological bands, topological superfluids, and Majorana edge states are theoret-

ically predicted in ref. [15], based on Bogoliubov-de-Gennes formalism. The above

theoretical articles, together with basic models in quantum optics textbooks [16] (i.e.
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Jaynes-Cummings and Tavis-Cummings Models), form all the theoretical basis of this

thesis.

One of the important reasons why SO coupling in cold atoms has received tremen-

dous attention is that it provides a precisely controllable and clean platform to sim-

ulate the SO-coupling induced topological phenomena in condensed matter systems,

which has been predicted in numerous theories but are difficult to observe in con-

densed matter experiments. The system of SO coupled cold atoms not only has

unprecedented controllability of dimensionality, geometry, interaction strength, and

statistics, etc., but also has minimal thermal noise from external environment. In

addition, compare to the long-range Coulomb interactions in condensed matters, the

controllable short-range Van Der Waals interactions in cold atoms greatly reduce

the noise from particle-particle interactions and is beneficial for the observations of

essential physical properties.

In this thesis, we go beyond this basic ”simulation purpose” and the previous

theories in this research field. We explore the novel SO coupling in unique cold-atom

mixtures and optical cavities, and hence our novel SO coupling is completely new

and without any counter parts in condensed matter physics. Our novel spin-orbit

coupling effects are induced by spin-exchange interactions in cold-atom mixtures and

assisted by quantized photons in optical cavities.

1.2 Outline

In this Chapter, we first provide a brief introduction to the research field of spin-orbit

coupling in cold atoms in Sec. 1.1, followed by an outline of the thesis in this Section.

In Chapter 2, we consider harmonically trapped atoms subjected to the spin-orbit

coupling induced by Raman transition. In this Chapter, we first present the wave
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function and the degeneracy of the single-particle ground state, followed by a study

of two weakly interacting bosons or fermions. For the two-particle ground state, we

focus on the effects of the interaction on the degeneracy, the spin density profiles, and

the density-density correlation functions. Furthermore, we show how the two-boson

ground state helps us understand the many-body properties of the spin-orbit coupled

Bose-Einstein condensate.

In Chapter 3, we discuss many-body properties of a dual-species mixture of spin-

1/2 cold atoms, which can be either Bose-Fermi or Bose-Bose mixture. In such a

mixture, we assume that only the first species of the atoms is subjected to the spin-

orbit coupling induced by Raman laser beams, whereas the second species is not

coupled to the Raman beams. We propose an efficient way to transmit the spin-orbit

coupling from the first to the second species, and hence a promising way of obtaining

spin-orbit coupled atoms without Raman-induced heating. In a Bose-Fermi mixture

discussed in Sec. 3.1, we show that the long-sought topological Fermi superfluids

and topological bands can be realized, and that the presence of fermions not only

provides a new way to create the supersolid stripe phase of the bosons, but more

strikingly it can also greatly increase the spatial period of the bosonic density stripes,

and hence makes this phase directly observable in the experiment. In a Bose-Bose

mixture discussed in Sec. 3.2, we present a very rich phase diagram, with many of

the phases not present in a single-species condensate.

In Chapter 4, we consider cold atoms inside a ring optical cavity that supports

a single plane-wave mode. The quantized cavity photon field, together with an ex-

ternal classical laser field, drives a two-photon Raman transition between two in-

ternal pseudo-spin (hyperfine) states of the atom. This scheme gives rise to the

coupling among three degrees of freedom, which include the cavity photon field, the
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atomic internal pseudo-spin state, and the atomic external center-of-mass motion.

We name such a coupling as ”cavity-assisted spin-orbit coupling”. In Sec. 4.1, we

show how this spin-orbit coupling modifies the static and dynamic properties of the

Jaynes-Cummings model, and the Dicke superradiance phase transition of the Tavis-

Cummings Model. In Sec. 4.2, we consider the dissipative processes of the ring optical

cavity, investigate the properties of this system by adopting a mean-field and a full

quantum approach, and show that the interplay between the atomic dynamics and

the cavity field gives rise to intriguing nonlinear phenomena.

Here, we would like to explicitly state that the author’s journal publications during

his PhD period are reprinted in this thesis, where Chapter 2 is reprinted from Ref. [17],

Chapter 3 is reprinted from Refs. [18,19], and Chapter 4 is reprinted from Refs. [20,21],

except some minor add-ons, modifications and reorganizations.
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Chapter 2

Harmonically Trapped Atoms with Spin-Orbit
Coupling

For one-dimensional (1D) spin-orbit coupled systems in uniform space, the single-

particle ground state [13] can be easily obtained, and the ground states of two-

body [22, 23] and many-body [4] systems with zero-range contact interactions have

been analytically calculated by scattering theory and by mean field approaches, re-

spectively. Compared with investigating these systems in uniform space, it is more

relevant and realistic to consider the systems in a harmonic trap, as a trapping po-

tential is always present in cold atom experiment. This chapter introduces a system-

atic investigation of the harmonically trapped single-particle and two-particle ground

states in 1D spin-orbit coupled systems, and discuss how they are related to the

many-body physics.

In this chapter, we aim to present such a study. We systematically investigate

the ground states of a single particle, two bosons, and two fermions confined in a

1D harmonic trap with Raman-induced spin-orbit coupling. For the single-particle

ground state, which is presented in Sec. 2.1, we obtain the wave functions through

imaginary time evolution and demonstrate how the Raman coupling strength and the

trap frequency affect the degeneracy. In Sec. 2.2 we consider two weakly interacting

bosons. The degeneracy, entanglement, density-density correlation functions, and

spin density profiles of the ground state are studied by varying the spin-dependent

contact interaction, Raman coupling strength, and two-photon detuning. Our results
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demonstrate that the spin-dependent interaction breaks the ground state degeneracy

of this system, and also imprints a stripe pattern in the density-density correlation.

In Sec. 2.2, we also discuss the connection between the behaviours of two-boson

and many-boson ground states. In Sec. 2.4, we propose an experimental scheme to

measure the energy gap between the ground state and the first excited state of the

system through a resonance excitation process [24, 25]. To investigate the effect of

quantum statistics, we then consider a system of two fermions in Sec. 2.3 and show

how they differ from the system of two bosons.

Here, it needs to be explicitly stated that this Chapter is reprinted from Ref. [17],

except some minor add-ons, modifications and reorganizations.

2.1 Single-particle Ground State

In this section, we consider a single spin-1/2 atom confined in a 1D harmonic trap

with frequency ω, subjected to the Raman-induced spin-orbit coupling, with two-

photon recoil momentum qr, Raman coupling strength Ω, and two-photon detuning

δ. The Hamiltonian then takes the form

h =
p̂2

2m
+

1

2
mω2x2 +

qrp̂

m
σz +

Ω

2
σx +

δ

2
σz , (2.1)

where σx and σz denote the x and z components of Pauli matrices, m is the atomic

mass, p̂ = −i!∂/∂x is the momentum operator, and x is the position. The two spin

states are defined as σz| ↑⟩ = | ↑⟩ and σz| ↓⟩ = −| ↓⟩, respectively. We mainly

consider the case with δ = 0, and the influence of finite δ will be briefly discussed.

We first briefly review the case when there is no trap [13], i.e., ω = 0. For this

case, the system possesses translational symmetry and thus the momentum p is a

good quantum number. Figure 2.1 plots the single-particle energy dispersion for
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δ = 0, which is analytically give by

ϵp =
p2

2m
±
√

q2rp
2

m2
+

Ω2

4
. (2.2)

For Ω < 4Er (where Er ≡ q2r/(2m) is the recoil energy), as shown in Fig. 2.1, ϵp

displays two degenerate minima at p = ±k ≡ ±qr

√
1− (Ω/4Er)

2, corresponding to

two orthogonal degenerate ground states

⟨xσ| g1⟩ = eikx [cos θk − sin θk]
T , (2.3)

⟨xσ| g2⟩ = e−ikx [sin θk − cos θk]
T , (2.4)

where σ =↑ (↓) marks the spin up (down) state, and tan θk =
2
Ω

(
qrk
m +

√
q2rk

2

m2 + Ω2

4

)
.

For Ω > 4Er, as shown in Fig. 2.1, the single particle dispersion has only a single

minimum at p = 0 and the non-degenerate ground state takes the form

⟨xσ| g⟩ =
[
1/
√
2 − 1/

√
2
]T

. (2.5)

The presence of a harmonic trap breaks the translational symmetry of the system,

and we have to resort to numerical calculations to study the properties of the ground

state. Using the finite difference method to discretize p̂ and x, we obtain eigenen-

ergies through the diagonalization of the single-particle Hamiltonian (2.1), and the

ground-state wave function by imaginary time evolution. At δ = 0, Hamiltonian

(2.1) possesses the following symmetry: If |ψ⟩ is an eigenstate of h, |ψ′⟩ = σxK|ψ⟩,

where K represents complex conjugate operator, is also an eigenstate with the same

eigenenergy. However, unlike the time reversal symmetry of a spin-1/2 system which

results in Kramer degeneracy, the current symmetry does not guarantee degenerate

eigenstates. For a non-degenerate state |ψ⟩, the above symmetry property necessar-

ily requires |ψ′⟩ = σxK|ψ⟩ to differ from |ψ⟩ by at most an overall phase factor. In

Fig. 2.2(a) we exhibit the low-lying energy spectrum for a trapped system with three
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Figure 2.1 : Single-particle energy-momentum dispersions for different values of Ω in
the homogeneous case with no trap, where the red and blue lines correspond to the
dispersions with lower and higher energies, respectively.

different values of Raman coupling strength Ω. Each red (blue) dot represents the

energy of a two-fold degenerate (non-degenerate) eigenstate. At Ω = 0, we have two

uncoupled spin states, and all the single-particle states must be trivially two-fold de-

generate. As Ω increases, degeneracies of the high-energy states start to be lifted first.

Eventually, at a critical coupling strength Ωc, the degeneracy of the ground state is

also lifted and all the single particle eigenstates become non-degenerate. The energy

difference ∆ϵ between the two lowest-lying states is shown in Fig. 2.2, as a function

of Ω for various trap frequencies ω. For a fixed value of the trap frequency ω, with

increasing Ω, ∆ϵ changes from zero to finite when Ω exceeds Ωc, signaling that the

ground state changes from being two-fold degenerate to non-degenerate. The critical

value Ωc at which the ground state degeneracy is lifted is a decreasing function of the

trap frequency ω, and in the limit ω → 0, Ωc = 4Er and we recover the result for the

homogeneous system.

The degeneracy breaking of single-particle eigenstates at large Ω can be intuitively
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b

index index index

(a2)(a1) (a3)

Figure 2.2 : (a1)-(a3) The first 16 single-particle eigenenergies with trap frequency ω =
2ω0 for several different values of Raman coupling strength Ω/(!ω0) = 40, 130, 200.
Red dots correspond to two-fold degenerate eigenstates and blue dots correspond
to non-degenerate eigenstates. (b) Energy gap ∆ϵ between the two lowest energy
eigenstates as a function of Ω for different values of trap frequency. We consider
δ = 0 in this figure. Throughout this Chapter, we choose ω0 = 2π× 100Hz to be the
unit for frequency and take m to be the mass of the 87Rb atom. As typical values in
experiments, we choose the recoil momentum qr = 10

√
m!ω0, and the trap frequency

ω in the range of 0.1 ∼ 10ω0.
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understood as follows. The Raman coupling term, Ωσx/2, in the Hamiltonian (2.1)

behaves like an effective Zeeman field in the x-direction. At large Ω, this effective

Zeeman field is so strong that it polarizes the spin-1/2 particle by aligning its spin

along the x-axis, and the particle essentially becomes a scalar particle as its spin

degrees of freedom is frozen. It is a well known fact that, for a scalar particle, there

is no degenerate bound state in 1D [26].

The two-component spinor wave function of a single particle can be written as[
φ↑ (x) φ↓ (x)

]T
, where φσ(x) = |φσ(x)| eiθσ(x) is in general complex with phase

angle θσ(x). In Fig. 2.3, we exhibit the ground state wave function for ω = 2ω0

(which corresponds to the red solid line in Fig. 2.2(b)) and two different values of Ω.

When Ω = 130!ω0, the ground states are two-fold degenerate, and the two degen-

erate states are transformed to each other by the symmetry operation σxK. The spin

density profiles for the two degenerate ground states are depicted in Fig. 2.3(a) and

(c), with the corresponding phase angles plotted in Fig. 2.3(b) and (d), respectively.

These plots suggest that we can approximately write down the ground state wave

functions as

⟨xσ| g1⟩ = eikx
[
φ1 (x) −φ2 (x)

]T
, (2.6)

⟨xσ| g2⟩ = e−ikx

[
φ2 (x) −φ1 (x)

]T
, (2.7)

where φ1(2) (x) is real and
[
φ1(2) (x)

]2
is represented by the red solid (blue dashed)

line in Fig. 2.3(a), and k is the slope of the phase angles in Fig. 2.3(b). The density

profiles of both |g1⟩ and |g2⟩ depicted in Fig. 2.3(a) and (c) are smooth in real space.

These two states can be regarded as the analogies of the degenerate ground states for

the uniform system, see Eqs. (2.3) and (2.4). However, due to the degeneracy, any

linear superposition of |g1⟩ and |g2⟩ represents a ground state of the system. Such
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Figure 2.3 : Single-particle ground state wave functions with ω = 2ω0, qr = 10
√
m!ω0,

and δ = 0. Red solid line and blue dashed line correspond to the spin-up component
and the spin-down component, respectively. For two degenerate ground states at
Ω = 130!ω0, (a)(c) are the real space probability profiles, and (b)(d) are the phase
angles. For the non-degenerate ground state at Ω = 200!ω0, (e) is the real space

probability profile, and (f) is the phase angle. We define aho =
√

!
mω0

.
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superposition state will exhibit a stripe pattern in its real space probability profile.

When Ω = 200!ω0, the ground state is non-degenerate. This state is depicted in

Fig. 2.3(e) and (f). The symmetry property under the operation σxK guarantees that,

for a non-degenerate state, we must have |φ↑(x)| = |φ↓(x)| and θ↑(x) + θ↓(x) =const.

As can be seen from Fig. 2.3(e) and (f), these conditions are indeed satisfied by the

non-degenerate ground state. Furthermore, the phase angles are almost uniform. As

a result, this ground state can be approximately represented by

⟨xσ| g⟩ = φ0(x)
[
1/
√
2 − 1/

√
2
]T

, (2.8)

where φ0 (x) is a real function and [φ0 (x)]
2 /2 is plotted in Fig. 2.3(e). This state

is obviously the analogy of the non-degenerate ground state for the uniform system

represented by Eq. (2.5).

Now we briefly discuss the case with finite δ. In this case, the single-particle state

is always non-degenerate, possessing a non-vanishing magnetization ⟨σz⟩. In addition,

the real-space wave packet of the ground state is always smooth.

2.2 Two-boson Ground State

The two-body physics of trapped particles with spin-orbit coupling has some non-

trivial features. The research by D. Blume’s group has investigated how the real-

space spin structure [27] and the eigenenergy spectrum [28] depend on qr, Ω, and the

interaction strength (In those works, the interaction has SU(2) symmetry, i.e., the in-

teraction between different spins are characterized by the same interaction strength).

Here we investigate the system from a different perspective and focus on different

parameter regimes. We study degeneracies, density-density correlations, and density

profiles of the ground states, investigate connections between single-particle, two-
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particle, and many-particle ground states, and consider the parameters from current

87Rb experiments with a spin-dependent interaction.

In this section, we consider two weakly interacting spin-orbit coupled bosons in a

harmonic trap. To this end, we use the single-particle eigenstates discussed in the pre-

vious section to construct a set of two-body symmetric basis vectors for expanding the

two-boson Hamiltonian. We label the single-particle eigenstates |i⟩ with correspond-

ing eigenenergies ϵi. Then states |ii⟩b ≡ |i⟩1 |i⟩2, and |ij⟩b ≡ 1√
2
(|i⟩1 |j⟩2 + |j⟩1 |i⟩2)

for i > j form the symmetric two-particle basis. Here 1, 2 are particle indices and

we take a cut-off for i, j in numerical calculation. Then the matrix elements of the

two-particle Hamiltonian

H = h1 + h2 + V̂ , (2.9)

with h1 and h2 being the single particle Hamiltonians and V̂ the two-body contact

interaction potential, can be written as

⟨ij| (h1 + h2) |kl⟩b = (ϵi + ϵj) δikδjl , (2.10)

and

⟨ij| V̂ |kl⟩b =
∑

σ1σ2

gσ1σ2

∫
dx f ij

σ1σ2
(x) [fkl

σ1σ2
(x)]∗ , (2.11)

with f ij
σ1σ2

(x) =b ⟨ij| xσ1⟩1 |xσ2⟩2. Away from the confinement induced resonance, the

quasi-1D interaction strength gσ1σ2 is related to the 3D interaction strength g3Dσ1σ2

as gσ1σ2 =
mω⊥
2π! g3Dσ1σ2 , where ω⊥ is the strong transverse trap frequency [29]. In our

calculation, we consider a spin symmetric interaction g3D↑↑ = g3D↓↓ = 7.79× 10−12Hz

cm3, which is from current experiments in 87Rb [13]. Accordingly, we take the quasi-

1D interaction strength g↑↑ = g↓↓ ≡ g with g = 0.16!ω0aho where aho =
√

!/ (mω0).

In the scope of this Chapter, this interaction is relatively weak compared with center-

of-mass motion energy and the spin-orbit-coupling energy, and hence the ground state
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of two interacting particles will not deviate much from the ground state in the non-

interacting case. To characterize the properties of the ground state, we investigate

the density-density correlation function which is defined as

Cb
σ1σ2

(x1, x2) ≡ ⟨Ψg| n̂σ1 (x1) n̂σ2 (x2) |Ψg⟩

= 2 |1 ⟨x1σ1|2 ⟨x2σ2| Ψg⟩|2 , (2.12)

and the density profile which is defined as

nb
σ (x) ≡ ⟨Ψg| n̂σ (x) |Ψg⟩ , (2.13)

where n̂σ (x) is the density operator of spin σ and |Ψg⟩ represents the two-boson

ground state in this section.

2.2.1 Two-boson Phase Diagram at g↑↓ = 0.6g

We obtain the low-lying eigenstates of the two-boson system by diagonalizing H after

it has been expanded onto the symmetric two-particle basis states |ij⟩b. Here we still

consider the case with δ = 0. From the previous study of many-boson physics, we

know that the stripe phase only appears with small δ, so this regime contains the

most abundant many-boson physics. In the examples presented below, we choose the

trap frequency to be ω = 2ω0. We have checked that a different choice of ω does

not lead to new quantum phases. In Fig. 2.4(a), we plot the energies of the three

lowest eigenstates for several different values of Ω with g↑↓ = 0.6g. In Fig. 2.4(b), we

plot ∆Eb, the energy difference between the two lowest energy states, as a function

of Ω with several different values of g↑↓. For now let us focus on the the case with

g↑↓ = 0.6g which is represented by the black solid line in Fig. 2.4(b). Depending

on whether ∆Eb vanishes or not, the ground state then exhibits the following three

phases as Ω varies:
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Figure 2.4 : (a) Energies of the lowest three two-boson eigenstates for g↑↓/g = 0.6.
Here solid and empty circles correspond to non-degenerate and degenerate states,
respectively. (b) Energy difference between the two lowest energy states for the
case of two weakly interacting bosons, as a function of Ω, for g↑↓/g = 1, 0.9, 0.6,

0.2, -0.4. (c) Ω(1)
c and Ω(2)

c as functions of g↑↓. The other parameters are: δ = 0,
qr = 10

√
m!ω0, ω = 2ω0, g = 0.16!ω0aho. The 1D interaction strength g is calculated

from 3D interaction parameter g3D = 7.79× 10−12Hz cm3 with a transverse trapping
frequency ω⊥ = 100ω0.
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(a1)

(a2)

(a3)

(b1)

(b2)

(b3)

(c1)

(c2)

(c3)

Figure 2.5 : (a1)-(c1) Density-density correlation functions of two-boson ground
states. (a2)-(c2) Spin density profiles of two-boson ground states. (a3)-(c3) Mean-
field ground state density profiles for a condensate of 1000 bosons. The figures are
plotted for the cases with Ω/(!ω0) = 100, 130, 200, and g↑↓ = 0.6g, δ = 0. At
Ω = 130!ω0, the ground states are two-fold degenerate and the figures are for one of
the degenerate states.
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Phase I — When Ω < Ω(1)
c ≈ 115!ω0, ∆Eb is finite, so the two-boson ground

state is non-degenerate. In this regime, the single-particle ground state is two-fold

degenerate and we label the two single-particle ground states as |g1⟩ and |g2⟩ (see

discussion in Sec. 2.1). The ground state of the two boson system can then be

approximately represented as

∣∣ΨI
g

〉
≈ |g1g2⟩b ≡

1√
2
(|g1⟩1|g2⟩2 + |g2⟩1|g1⟩2) . (2.14)

Hence the two bosons each occupies one of the single-particle ground states. Due

to the bosonic statistics, the two bosons are highly entangled. In Fig. 2.5(a1) and

(a2), we plot the density-density correlation Cb
σ1σ2

(0, x) and the spin density profiles

nb
σ(x), respectively. The two-boson ground state features a smooth density profile

identical for the two spin components. However, the entanglement manifests itself

in the oscillations (or stripes) in Cb
σ1σ2

(0, x). Given the two-boson ground state

in Eq. (2.14) and the single-particle ground states in Eqs. (2.6) and (2.7), we can

explicitly write down the density-density correlation functions and the spin density

profiles as

Cb
↑↑(x1, x2) = Cb

↓↓(x1, x2) ≈ A1 +B cos [2k (x1 − x2)] ;

Cb
↑↓(x1, x2) = Cb

↓↑(x1, x2) ≈ A2 +B cos [2k (x1 − x2)] ,

nb
↑(x) = nb

↓(x) ≈ φ2
1(x) + φ2

2(x) , (2.15)

with

A1 ≡ φ2
1 (x1)φ

2
2 (x2) + φ2

1 (x2)φ
2
2 (x1) ; (2.16)

A2 ≡ φ2
1 (x1)φ

2
1 (x2) + φ2

2 (x1)φ
2
2 (x2) ;

B ≡ 2φ1 (x1)φ2 (x2)φ1 (x2)φ2 (x1) .
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being smooth functions of x1 and x2. The stripes in the density-density correlation

arise from the sinusoidal terms in Eq. (2.15). We note in Fig. 2.4(a1) that in this

phase, the first excited two-boson state is doubly degenerate. The two degenerate

states roughly correspond to |g1g1⟩b and |g2g2⟩b.

In order to connect the two-body physics to the many-body physics, we plot in

Fig. 2.5(a3) the mean-field condensate density profile. The condensate wave function

is obtained by minimizing the mean-field energy functional

EMF =

∫
dx

⎡

⎢⎣N
(
Φ∗

↑ Φ
∗
↓
)
h

⎛

⎜⎝
Φ↑

Φ↓

⎞

⎟⎠ (2.17)

+
N2g

2
(|Φ↑|4 + |Φ↓|4) +N2g↑↓ |Φ↑|2 |Φ↓|2

]
,

where Φ↑ and Φ↓ are the condensate wave functions of the two spin components,

and N is the total number of atoms, which we take to be 1000 in this calculation.

Fig. 2.5(a3) shows that the condensate is in the so-called stripe phase where the

density profile exhibits a stripe pattern. This stripe pattern can therefore be re-

garded as a manifestation of the stripes in the two-body correlation function shown

in Fig. 2.5(a1), even though the two-body density profiles are smooth. Similar con-

nection between the mean-field many-body calculation and the quantum few-body

result is also found elsewhere [30, 31]. See Sec. 2.2.2 for a more detailed discussion.

Finally, let us consider the effect of finite two-photon detuning δ. A finite δ breaks

the degeneracy of the single-particle ground state. Hence one may expect that for a

large |δ|, the ground state of the two weakly interacting bosons corresponds to an un-

entangled state with both bosons occupying the non-degenerate single-particle ground

state. For this unentangled ground state, Cb
σ1σ2

(x1, x2) becomes smooth. However,

for a sufficiently small |δ|, the two-boson ground state still roughly takes the form
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entangled

unentangled

(a) (b)

Figure 2.6 : (a) Von Neumann entanglement entropy of the two-boson ground state,
as a function of δ. The figure is plotted for the case with g↑↓ = 0.6g and Ω = 50!ω0.
(b) The boundary of entangled and non-entangled ground states with g↑↓ = 0.6g, as a
function of δ and Ω. In the ”entangled” region , ground states are strongly entangled
and thus exhibit stripes in density-density correlations. In the ”unentangled” region,
ground states are not entangled and show smooth density-density correlations. Other
parameters: qr = 10

√
m!ω0, ω = 2ω0, g = 0.16!ω0.

of Eq. (2.14), with |g1⟩, |g2⟩ representing the ground and first excited single-particle

states, and thus Cb
σ1σ2

(x1, x2) still exhibits stripes. To demonstrate the variation of

the entanglement, we plot in Fig. 2.6(a) the entanglement entropy S of the two-boson

ground state, where S = −Tr[ρ1 ln ρ1] with ρ1 = Tr2[|Ψg⟩⟨Ψg|] being the reduced

density matrix for particle 1. The state represented by (2.14) is maximally entangled

with S = ln 2. Using the numerically obtained ground states with finite |δ|, we find

that S is very close to ln 2 for |δ| < 0.03!ω0, and beyond this range, S quickly drops to

0, indicating an unentangled ground state. The range of δ within which the ground

state is entangled is shown in Fig. 2.6(b) as a function of Ω. As Ω tends to Ω(1)
c ,

this range approaches zero. In Fig. 2.6(b), The ”entangled” (”unentangled”) region

manifests itself in oscillating (smooth) density-density correlations.

Phase II — When Ω(1)
c < Ω < Ω(2)

c , ∆Eb = 0 indicates that the ground states have
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two-fold degeneracy. Here Ω(2)
c ≈ 160!ω0 is very close to the critical Raman coupling

strength Ωc at which the single-particle ground state changes from degenerate to non-

degenerate. Our result shows that the two degenerate two-boson ground states can

be approximately represented as

∣∣ΨII
g1

〉
≈ |g1g1⟩b ≡ |g1⟩1 |g1⟩2 , (2.18)

∣∣ΨII
g2

〉
≈ |g2g2⟩b ≡ |g2⟩1 |g2⟩2 .

Hence the two bosons occupy the same single-particle ground state. In Fig. 2.5(b1)

and (b2), we plot Cb
σ1σ2

(0, x) and nb
σ (x) for

∣∣ΨII
g1

〉
, respectively, whose explicit ex-

pressions in terms of the single-particle ground states are approximately given by:

Cb
↑↑(x1, x2) ≈ 2φ2

1(x1)φ
2
1(x2) ; (2.19)

Cb
↓↓(x1, x2) ≈ 2φ2

2(x1)φ
2
2(x2) ;

Cb
↑↓(x1, x2) ≈ 2φ2

1(x1)φ
2
2(x2) ;

Cb
↓↑(x1, x2) ≈ 2φ2

1(x2)φ
2
2(x1) ,

nb
↑(x) = 2φ2

1(x) ;

nb
↓(x) = 2φ2

2(x) .

In this regime, both the density-density correlation functions and the spin density

profiles are smooth functions of the position. In addition, the total magnetization

M ≡
∫
dx [n↑ (x)− n↓ (x)] ̸= 0 in this phase. The corresponding mean-field conden-

sate density profiles are plotted in Fig. 2.5(b3). Here the condensate is in the so-called

plane-wave phase and the density profiles for the two spin components are smooth.

The condensate in this phase also exhibits finite magnetization.

Note that the two degenerate states |ΨII
g1⟩ and |ΨII

g2⟩ represented in Eq. (2.18) are

unentangled states. However, due to the degeneracy, any superposition state of |ΨII
g1⟩
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and |ΨII
g2⟩ is still a ground state of the two-body system, and such a superposition state

is entangled. However, this entanglement is not robust against a finite two-photon

detuning δ: any finite δ will force both atoms to occupy the same non-degenerate

single-particle ground state, and hence destroy the entanglement and result in the

smooth Cb
σ1σ2

(x1, x2). This represents an essential difference for the ground state

entanglement property between Phase I and II.

In Phase II, we note that the first excited state is non-degenerate as shown in

Fig. 2.4(a2) and roughly corresponds to |g1g2⟩b. Hence the ground state of Phase I

corresponds to the first excited state of Phase II, and vice versa. These two phases

result from the competition between the following two factors: (1) The quantum

statistical property of bosons favors identical bosons to occupy the same single-particle

state; and (2) the smaller inter-species interaction (g↑↓ < g) favors the bosons to

occupy different spin states, and the smaller Raman coupling strength Ω induces

more difference between the spins of |g1⟩ and |g2⟩. We present in Sec. 2.2.3 a detailed

and quantitative discussion on this.

Phase III — When Ω > Ω(2)
c , the gap reopens as ∆Eb becomes finite again. In this

regime, the single-particle ground state |g⟩, whose wave function is given in Eq. (2.8),

is also non-degenerate. The two-boson ground state can then be approximately rep-

resented by
∣∣ΨIII

g

〉
≈ |gg⟩b ≡ |g⟩1 |g⟩2 , (2.20)

which features a smooth Cb
↑↑ (0, x) ≈ Cb

↑↓ (0, x) and identical nb
↑(x) = nb

↓(x), as shown
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in Fig. 2.5(c1) and (c2). The explicit expressions are approximately given by:

Cb
↑↑(x1, x2) = Cb

↓↓(x1, x2) ≈ 1
2φ

2
0(x1)φ2

0(x2) ; (2.21)

Cb
↑↓(x1, x2) = Cb

↓↑(x1, x2) ≈ 1
2φ

2
0(x1)φ2

0(x2) ;

nb
↑(x) = nb

↓(x) ≈ φ2
0(x) .

The corresponding mean-field condensate density profiles are plotted in Fig. 2.5(c3).

As in the two-body case, the condensate is smooth and features identical density

profiles for the two spin components.

In this Phase, all the two-boson eigenstates are non-degenerate, as well as all

the single-particle eigenstates. The weak interaction only causes small shifts of the

eigenenergies, but does not affect the degeneracies.

2.2.2 Two-boson versus Many-boson Results

One of the goals of our work is to bridge the two-body and the many-body physics.

Most of the many-body properties of weakly interacting condensate can be well un-

derstood under the mean-field framework. In the mean-field approach, the underlying

assumption is that all the atoms occupy the same single-particle state and quantum

entanglement between atoms is neglected. The two-body ground states in Phase II

and III studied in Sec. 2.2 are consistent with this assumption, and the connection

between the two-body and many-body physics can be easily seen from the right two

columns of Fig. 2.5. By contrast, Phase I requires some special attention.

In Phase I of the two-boson system, the single-particle ground states are two-fold

degenerate and are denoted as |g1⟩ and |g2⟩, and the two-boson ground state is given

in Eq. (2.14), which we rewrite here:

∣∣ΨI
g

〉
≈ |g1g2⟩b ≡

1√
2
(|g1⟩1|g2⟩2 + |g2⟩1|g1⟩2) . (2.22)
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State
∣∣ΨI

g

〉
is a maximally entangled state, hence is expected to be very different

from the mean-field ground state. In fact, in this regime, in the language of second

quantization the mean-field many-body ground state can be roughly represented as

|ΨMF(θ)⟩ =
1√

2NN !

(
e−iθ/2a†1 + eiθ/2a†2

)N
|0⟩ , (2.23)

where N ≫ 1 is the number of particles, |0⟩ is the vacuum state with no atoms,

and a†i is the creation operator that create an atom in single-particle state |gi⟩. This

mean-field state corresponds to the situation where all atoms occupy the same single-

particle state (e−iθ/2|g1⟩+ eiθ/2|g2⟩)/
√
2 which is a coherent superposition of the two

single-particle ground state, with θ being an arbitrary phase. This state possesses

no quantum entanglement between different particles, but do give rise to the density

stripe as shown in Fig. 2.5(a3).

We can draw an analogy from a different system: a system of many scalar bosons

in a double-well potential, in which the operators a†i correspond to creation operator

that creates a particle in the ith well (i = 1, 2). This system is analyzed in detail

in Ref. [30]. The mean-field analysis yields a state similar to Eq. (2.23), but the

quantum calculation produces a different result to the mean field.

The mean-field state |ΨMF(θ)⟩ in Eq. (2.23) has, on average, N/2 atoms in both

|g1⟩ and |g2⟩. However, the occupation number for each of these states possess large

fluctuations. It is probably beyond anyone’s capability to write down the full quantum

many-body wavefunction for this system. However, we can still make some qualitative

remarks with insights drawn from Ref. [30]. In quantum treatment, large number

fluctuations, as included in the mean-field state |ΨMF(θ)⟩, are in general not favored

by interaction, which tends to drive the state into the Fock state:

|ΨF⟩ =
1

(N/2)!
(a†1)

N/2(a†2)
N/2 |0⟩ , (2.24)
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which is just the N -body analog of the two-body ground state |ΨI
g⟩. Furthermore,

the Fock state |ΨF⟩ may be roughly regarded as a superposition of mean-field states

averaged over the phase θ, i.e.,

|ΨF⟩ ≈ C

∫ 2π

0

dθ |ΨMF(θ)⟩

where C is a normalization constant. Conversely, the mean-field state may be regarded

as a broken-symmetry state with a random but fixed θ.

Therefore, we can establish the following connection between the two-body results

and the mean-field many-body results for Phase I. The two-body ground state does

not exhibit strips in the density profiles, as can be seen in Fig. 2.5(a2), but does

contain quantum entanglement between the particles and exhibit oscillations in the

correlation function, as shown in Fig. 2.5(a1). As the number of atoms increases and

the mean-field limit is approached, quantum entanglement becomes more and more

fragile, and is completely neglected in the mean-field treatment. The mean-field

assumption is also consistent with the picture of spontaneous symmetry breaking,

where a random but specific θ is selected and all the atoms are considered to be

condensed into the linear superposition state of |g1⟩ and |g2⟩ with a phase difference θ.

Such a state leads to the stripe pattern in the density profile, as shown in Fig. 2.5(a3).

We can therefore state the following: For the system under current study, through

spontaneous symmetry breaking, the oscillations in two-body correlation function

become manifest in the stripes of mean-field density profiles.

We remark that this connection between few-body correlation function and mean-

field density profile is not unique to our system. For example, Kanamoto et al.

studied a system of attractive scalar bosons confined along a ring [31]. When the

attractive interaction strength exceeds a critical value, the mean-field calculation

shows that the density profile of the BEC becomes inhomogeneous and take the form
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of a bright soliton. However, the quantum calculation for a few-body system always

gives a homogeneous density profile, but the second-order correlation function exhibit

inhomogeneity.

2.2.3 Two-boson Ground State in Phase I and Phase II

In both Phase I and II of the two-boson system, the single-particle ground states are

two-fold degenerate and are denoted as |g1⟩ and |g2⟩. In the case of two interacting

bosons, the following two situations represent potential candidates for the ground

state:

1. Both atoms occupy the same single-particle ground state. Hence the two-

boson state is given by |g1g1⟩b or |g2g2⟩b, which are the states represented by

Eqs. (2.18). From symmetry, we know that these two states are always ener-

getically degenerate, hence we only consider |g1g1⟩b in the following.

2. The two atoms occupy different single-particle ground state. Hence the two-

boson state is given by |g1g2⟩b, which is the state represented by Eq. (2.14).

The question of concern is which state, |g1g1⟩b or |g1g2⟩b, possesses the lower energy.

It is obvious that we only need to compare the interaction energy associated with

these two states, which we denote as EI,II
int with

EI
int ≡ b⟨g1g2|V̂ |g1g2⟩b ,

EII
int ≡ b⟨g1g1|V̂ |g1g1⟩b .

With Eqs. (2.6), (2.7), and (3.12), it is straightforward to show that

EI
int = (4g + 2g↑↓)D + g↑↓F ,

EII
int = 2g↑↓D + gF ,



27

where

D =

∫
dxφ2

1 (x)φ
2
2 (x) , (2.25)

F =

∫
dx
[
φ4
1 (x) + φ4

2 (x)
]
,

from which we have

EI
int − EII

int = gF

[
g↑↓
g

− f(Ω)

]
, (2.26)

where f(Ω) = 1− 4D/F and, according to our numerics, is a decreasing function of

Ω and satisfies the condition 0 < f(Ω) < 1.

If the interaction is spin-independent, i.e., g↑↓ = g, Eq. (2.26) shows that EI
int >

EII
int, the two-boson system is in Phase II and the two atoms occupy the same single-

particle state. This is the manifestation of the bosonic statistics, which favors repul-

sive bosons to occupy the same state.

For spin-dependent interaction, the situation is more complicated. If g↑↓ > g,

EI
int > EII

int still holds, and the interaction also favors two atoms occupying the same

state. Hence the interaction effect and the statistical property strengthens each other,

and the system remains in Phase II. If g↑↓ < g, the interaction favors two atoms

occupying different states, and hence competes with the statistical effect. For a given

Ω, when g↑↓ < gf(Ω), the interaction wins the competition and the system enters

Phase I. The above analysis also agrees with Fig. 2.4(b) by showing that for a given

g↑↓ < g, the system enters Phase I when Ω < f−1(g↑↓/g).

One may still ask the question: In Phase II, can the two atoms occupy the same

single-particle state which is a linear superposition of |g1⟩ and |g2⟩? For example,

how about the state |ΨMF(θ)⟩ as in Eq. (2.23) with N = 2, which represents the state

where both atoms occupy the single-particle state (e−iθ/2|g1⟩ + eiθ/2|g2⟩)/
√
2. The

answer is that such a state is not favored in Phase II. This can also be understood
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from the interaction energy. State |ΨMF(θ)⟩ can be regarded as a linear superposition

of |g1g1⟩b, |g2g2⟩b, and |g1g2⟩b. The first two are the degenerate two-boson ground

state in Phase II, while the last one is the corresponding first excited state. Hence

|ΨMF(θ)⟩ cannot represent the ground state.

2.2.4 Effects of g↑↓ on Two-boson Phase Diagram

The above discussion demonstrates that, with g↑↓ = 0.6g, the ground state exhibits

three phases separated by two critical Raman coupling strengths Ω(1)
c and Ω(2)

c . Now

let us discuss how the two-body phase diagram is changed when the inter-species

interaction strength g↑↓ is varied, while the intra-species interaction strength is fixed

at value g.

In Fig. 2.4(b), we also plot the energy difference between the two lowest energy

states for several other values of g↑↓. The dependence of Ω(1)
c and Ω(2)

c on g↑↓ are

plotted in Fig. 2.4(c). From these plots, we see that Ω(1)
c vanishes for g↑↓ ≥ g.

In other words, when the inter-species interaction strength exceeds the intra-species

interaction strength, Phase I, and hence the stripe phase in the mean-field many-body

regime, no longer exists. We have checked that this property is independent of the

trap frequency ω.

As g↑↓ decreases from g, Ω(1)
c increases from zero and approaches Ω(2)

c , while Ω(2)
c

remains almost unchanged. Correspondingly, the parameter space where Phase II

exists shrinks. At a critical value of g↑↓, the two critical Raman coupling strengths

merge, and for g↑↓ smaller than this value, the two-body ground state is no longer

degenerate for any values of Ω, and ∆Eb is always positive (see the curve in Fig. 2.4(a)

with g↑↓ = −0.4g).
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Figure 2.7 : Two critical Raman coupling strengths Ω(1)
c and Ω(2)

c , (a) as a function
of recoil energy Er with a fixed trap frequency ω = 2ω0, and (b) as a function of
trap frequency ω with a fixed recoil energy Er = 50!ω0. The other parameters are:
g↑↓ = 0.9g, g = 0.16!ω0aho, δ = 0.

2.2.5 Effects of Er and ω on Two-boson Phase Diagram

In the above discussion, we have taken the trap frequency ω = 2ω0 and the recoil

energy Er ≡ q2r/2m = 50!ω0, by referring to parameters from current experiments

in 87Rb [3]. Since both Er and ω can be tuned in cold atom experiments, here we

discuss how the changes of Er and ω affect the two critical Raman coupling strengths

Ω(1)
c and Ω(2)

c for g↑↓ = 0.9g shown in Fig. 2.4(b).

Figure 2.7(a) plots the dependence of Ω(1)
c and Ω(2)

c on Er at the fixed trap fre-

quency ω = 2ω0. As Er decreases from 50!ω0, both Ω(1)
c and Ω(2)

c decrease and the

regime of Phase II exists shrinks. At a critical value of Er around 10!ω0, the two

critical Raman coupling strengths merge, and for Er smaller than this critical value,

Phase II disappears.

Figure 2.7(b) depicts Ω(1)
c and Ω(2)

c as functions of ω at the fixed recoil energy

Er = 50!ω0. Here we see that Ω
(1)
c is not very sensitive to ω, while Ω(2)

c is a decreasing
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function of ω. At a critical value of ω, Ω(1)
c and Ω(2)

c merge and Phase II disappears.

That the dependence of Ω(2)
c on Er and ω should be expected, because the critical

Ω for the single-particle degenerate transition, which is approximately equal to Ω(2)
c ,

has a similar dependence on these two parameters as shown in Fig. 2.2(b).

2.3 Two-fermion Ground State

The physics of the two-fermion ground state is quite different from that of two bosons,

because of the antisymmetric nature and the Pauli exclusion principle for the quantum

states of identical fermions. The Hamiltonian, density-density correlation functions,

and spin density profiles of the two-fermion system are given by Eqs. (2.9), (2.12), and

(2.13), respectively, where |Ψg⟩ denotes the two-fermion ground state. As we are only

considering s-wave contact interaction, there is no intra-species interaction between

two fermions. To investigate the properties of this system, we expand the Hamiltonian

onto the antisymmetric two-particle basis states |ij⟩f ≡ 1√
2
(|i⟩1|j⟩2 − |j⟩1|i⟩2), and

then follow a similar procedure as above for the two-boson case.

Through exact diagonalization of the Hamiltonian in Eq. (2.9) with δ = 0, we

obtain ∆Ef , the energy difference between the two lowest-lying states, and plot it in

Fig. 2.8 as a function of Ω for several different values of g↑↓. As Ω increases from zero,

∆Ef first decreases and reaches a minimum near Ωc (the critical value of the Raman

coupling strength at which the single-particle ground state degeneracy is lifted), and

then starts to increase again. The essential difference with the two-boson case is

that here ∆Ef is always positive and never becomes zero. Furthermore, since we are

concerned with the weak interaction regime, the interaction strength g↑↓ does not

have a significant effect on the system.

In Fig. 2.9, we display the properties of the two-fermion ground states for two
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Raman coupling strengths, one smaller and the other larger than Ωc:

Ω < Ωc — For this case, the single-particle ground states, |g1⟩ and |g2⟩, are two-

fold degenerate, and the two-fermion ground state can be approximately represented

as

|Ψg⟩ ≈ |g1g2⟩f =
1√
2
(|g1⟩1|g2⟩2 − |g2⟩1|g1⟩2) , (2.27)

from which the correlation functions and density profiles can be straightforwardly

calculated as

Cf
↑↑(x1, x2) = Cf

↓↓(x1, x2) ≈ A1 − B cos [2k (x1 − x2)] ;

Cf
↑↓(x1, x2) = Cf

↓↑(x1, x2) ≈ A2 − B cos [2k (x1 − x2)] ;

nf
↑(x) = nf

↓(x) ≈ φ2
1(x) + φ2

2(x) , (2.28)

with A1, A2, and B given in Eq. (2.16). The numerical results are displayed in

Fig. 2.9(a) and (c). For this case, the density-density correlation function Cf
σ1σ2

(x1, x2)

is characterized by oscillations (or stripes) which arise from the sinusoidal terms in

Eq. (2.28).

Ω > Ωc — For this case, the single-particle ground state |g⟩ is non-degenerate.

The two-fermion ground state can be approximately represented as

|Ψg⟩ ≈ |ge⟩f =
1√
2
(|g⟩1|e⟩2 − |e⟩1|g⟩2) , (2.29)

where |e⟩ denotes the non-degenerate single-particle first excited state. The density-

density correlation functions and spin density profiles are displayed in Fig. 2.9(b)

and (d), respectively. In contrast to the single-peak structure in the previous case,

here the spin density profile exhibits a double-peak structure because the real space

probability profile of |e⟩ features double peaks.

We remark that a system of two atoms is not unrealistic. Current technology

has made it possible to trap deterministic few atoms, which allows us not only to
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systematically investigate the connection between few- and many-body physics, but

also to study unique features of few-body systems. In a series of experiments carried

out in S. Jochim’s group [32], a few-body system of fermions, with atom number

precisely controlled between 1 and 10, is realized in an optical dipole trap with a

fidelity of 90%. If we apply the spin-orbit coupling in this kind of experiments, the

ground states studied in our work should be readily obtained and their properties

such as density profiles and correlations can be measured.

2.4 Measuring the Interaction induced Energy Gap

In Sec. 2.2, we have demonstrated that, for the two-boson case with δ = 0, the energy

gap ∆Eb in Phase I with Ω < Ω(1)
c is induced by the spin-dependent interaction. For

fixed values of Ω and g in this regime, g↑↓ and ∆Eb have a one-on-one mapping

relation, and hence one can obtain the value of g↑↓ through measuring ∆Eb.

In this section, we propose an experimental scheme to measure ∆Eb for the

two-boson case. In the Ω < Ω(1)
c regime, we consider |Ψg⟩ as an initial state per-

turbed by a harmonic trap with a periodically modulated trapping frequency ω(t) =

ω [1− α sin (ωvt)], where ω is the original trap frequency, ωv is the modulation fre-

quency, and α ≪ 1. The time evolution of the two-boson state |Ψ (t)⟩ is then deter-

mined by the Schrödinger equation

i! ∂
∂t

|Ψ (t)⟩ = Hv (t) |Ψ (t)⟩ , (2.30)

with the time-dependent Hamiltonian

Hv (t) = hv
1 (t) + hv

2 (t) + V̂ , (2.31)

where hv
i (t) take the form of Eq. (2.1) with ω replaced by ω(t). We study the time

evolution of the system by solving Eq. (2.30) using the Crank-Nicolson method.
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Figure 2.10 : Excitation of the two-boson ground state in a harmonic trap with
periodically modulated trapping frequency ω [1− α sin (ωvt)]. We fix g↑↓ = 0.6g,
Ω = 80!ω0, ω = 2ω0, α = 0.05, and choose the two-boson ground state as the initial
state. (a) Probability Pe (t) on the first excited state for the on-(off-)resonance case
with ωv = ∆Eb (0.8∆Eb), as a function of time t. (b) Pe as a function of ωv when
ω0t = 15000. (c1)-(c3) Time evolution of the total density profile nb (x) for the
on-resonance case with ωv = ∆Eb.
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The measurement of ∆Eb can be conducted by making use of the resonant ex-

citation of the system. We investigate how periodic perturbations with various ωv

influence the probability Pe (t) for the ground state to be excited to the first excited

state. In the following discussion, we consider g↑↓ = 0.6g and Ω = 80!ω0, and hence

define ∆Eb ≡ ∆Eb (Ω = 80!ω0). For an on-resonance modulation with ωv = ∆Eb, we

see in Fig. 2.10(a) a significant growth of Pe, whereas for an off-resonance modulation

with ωv = 0.8∆Eb, Pe never exceeds 0.5%. We plot in Fig. 2.10(b) the excitation

probability Pe as a function of the modulation frequency ωv at ω0t = 15000, where a

typical resonance peak is clearly seen.

In order to visualize the above resonant excitation process, we examine the time

evolution of the total density profile which is defined as nb (x) ≡ nb
↑ (x) + nb

↓ (x). For

the on-resonance case with ωv = ∆Eb, nb (x) develops a stripe pattern as a function

of t, as shown in Figs. 2.10(c1)-(c3). The presence of this stripe pattern is because

|Ψ (t)⟩b becomes a superposition of the ground state |Ψg⟩ and the first excited state

during the time evolution. However, for off-resonant modulation, the system is almost

unaffected by the periodic perturbation, and the stripe pattern is not present in nb (x).
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Chapter 3

Spin-exchange-induced Spin-orbit Coupling in
Cold-atom Spinor Mixtures

In the previous chapters, we have shown that spin-orbit (SO) coupled Bose-Einstein

condensates (BEC) can host a stripe phase featuring spatially modulated density

profiles [4,17,33–37], which can be regarded as a supersolid [38]; whereas SO coupled

attractive Fermi gas can become a topological superfluid, supporting Majorana edge

states [39–50].

However, the spatial period of the stripe phase is on the order of the optical

wavelength, making its direct observation extremely challenging, although indirect

evidences for the stripe phase have been reported in two seminal experiments [5,

51]. Another serious experimental problem for realizing SO coupling in quantum

gas concerns the heating due to the Raman beams. The Raman-induced heating is

particularly severe for atomic species with small fine-structure splitting [52]. Wei

and Mueller carefully analyzed the heating problems for all alkali-metal atoms [52].

According to their analysis, 40K and 6Li — the two most commonly used fermionic

species in cold atom experiments — suffer greatly from such heating. This could

explain why an SO coupled fermionic superfluid, despite its tremendous theoretical

interest, has yet to be realized in experiment.

Another research frontier in cold atoms is superfluid mixtures, a topic that has

been studied in the context of superfluid 3He-4He mixtures in condensed-matter

physics for many decades. In cold atoms, a Bose-Bose spinor mixture has been realized
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in a recent experiment, and the associated effects of spin-exchange interaction were

observed [53] and theoretically analyzed [19]. In addition, several groups have created

Bose-Fermi superfluid mixtures with scalar condensates [54–57].

The primary aim of this chapter is to demonstrate that the cold-atom mixture

with spin-exchange interactions provides a unique platform to overcome the heating

issue due to the Raman lasers, during the realization of the SO coupling. We consider

a mixture of two species of spin-1/2 cold atoms, where only the first specie is subjected

to the spin-orbit coupling induced by Raman beams. The second specie is not coupled

by the Raman beams and hence immune from the Raman-induced heating. Our

calculation shows that the second specie can acquire an effective spin-orbit coupling

through the spin-exchange interaction between the two species. Therefore, we propose

a promising way of obtaining spin-orbit coupled cold atoms without Raman-induced

heating.

Besides achieving this primary aim, we also investigate other new and practical

physics in the cold-atom spinor mixtures with spin-exchange interactions. In a Bose-

Fermi mixture, we strikingly find that the presence of fermions can greatly increase

the spatial period of the bosonic density stripes, and hence makes this phase directly

observable in experiment. We also propose the realizations of topological Fermi su-

perfluids and topological bands in this Bose-Fermi mixture. In a Bose-Bose mixture,

we present a very rich phase diagram, with many of the phases not present in an

SO-coupled single-species condensate.

Here, it needs to be explicitly stated that Sec. 3.1 is reprinted from Ref. [18] and

Sec. 3.2 is reprinted from Ref. [19], except some minor add-ons, modifications and

reorganizations.
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3.1 Bose-Fermi Mixture with Spin-exchange-induced Exotic

Superfluids

In the section, we consider a mixture of bosonic and fermionic superfluids, each of

which is a spin-1/2 system. In addition to the density-density interactions, there

exists an inter-species spin-exchange interaction. We assume that the condensate is

subjected to the Raman-induced SO coupling, whereas the Fermi gas is not coupled

by the Raman beams and hence is immune from the Raman-induced heating. The key

observation of this section is that, through the spin-exchange interaction, the Fermi

gas experiences a significant effective SO coupling. The interplay between the bosons

and fermions leads to a variety of interesting quantum states, including a stripe phase

in Bose condensate with the spatial period much larger than the optical wavelength,

and topological Fermi superfluids and topological bands for fermions.

3.1.1 Hamiltonian

The total Hamiltonian of the system takes the form (we take ! = 1)

H =

∫
dx
(
Ψ†

BhBΨB +Ψ†
FhFΨF

)
+ GB + GF + GBF , (3.1)

where ΨB (x) = [ψB↑ (x) ,ψB↓ (x)]
T represents the mean-field wave function of the

BEC, and ΨF (x) = [ψF↑ (x) ,ψF↓ (x)]
T denotes the field operator of the Fermi gas.

Both species have two internal spin states, which are labelled as ↑ and ↓. The single-

particle Hamiltonians hB and hF are given by

hB =
(k − krσz

B)
2

2mB
+

ΩB

2
σx
B +

δB
2
σz
B, (3.2)

hF =
(k − krσz

F )
2

2mF
+
δF
2
σz
F , (3.3)
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with ΩB the Raman coupling strength, kr the Raman recoil momentum, and σx
B,F

and σz
B,F the Pauli matrices. We set the two-photon detuning δB = δF = 0 in our

discussion. For simplicity, we assume a quasi-one dimensional system with strong

transverse confinement. The key result that the fermions experience an effective SO

coupling is insensitive to the dimensionality.

The last three terms in Eq. (3.1) describe three types of two-body interactions,

where the Bose-Bose interactions read as

GB =

∫
dx
[
gB
(
ρ2B↑ + ρ2B↓

)
+ 2gB↑↓ρB↑ρB↓

]
, (3.4)

with ρBσ = |ψBσ (x)|2 the spin-σ density of the BEC, the Fermi-Fermi interaction

takes the form

GF = gF
∫

dxψ†
F↑ψ

†
F↓ψF↓ψF↑, (3.5)

and the Bose-Fermi interactions are given by

GBF =

∫
dx
[
γρBρ̂F + β

(
ψ∗
B↓ψB↑ψ

†
F↑ψF↓ + h.c.

)]
, (3.6)

where ρB = ρB↑ + ρB↓ is the density of bosons, and ρ̂F = ψ†
F↑ψF↑ + ψ†

F↓ψF↓ is the

density operator for fermions. Here we have assumed that the inter-species density-

density interactions are spin-independent, with a single interaction strength γ, to

avoid the proliferation of parameters. The last term in Eq. (3.6) describes the inter-

species spin-exchange interaction characterized by the strength β. We take L to be

the length of the system with periodic boundary condition. The number of bosons

and fermions are NB,F , with the corresponding average densities nB,F = NB,F/L,

respectively.
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3.1.2 Non-interacting Fermions

Let us first consider the case with non-interacting fermions, i.e., gF = 0. Previous

studies of SO coupled BEC have shown that, in the absence of the fermions, the

mean-field wave function of the condensate ΨB can be accurately described by the

following ansatz:

ΨB√
nB

=

⎡

⎢⎣C1

⎛

⎜⎝
cos θ

− sin θ

⎞

⎟⎠ eikBx + C2

⎛

⎜⎝
sin θ

− cos θ

⎞

⎟⎠ e−ikBx

⎤

⎥⎦ , (3.7)

where kB, θ, C1 and C2 are variational parameters. We can restrict kB ≥ 0 and

θ ∈ [0, π] without loss of generality, and restrict C1 and C2 to be real positive numbers,

with normalization condition C2
1+C2

2 = 1, as the relative phase between them will not

affect the total energy. Based on the values of the parameters, three phases of the SO

coupled BEC can be identified: the stripe phase (ST) with B ≡ C1C2 ̸= 0 and kB ̸= 0

where the condensate density profile shows the stripe pattern; the plane-wave phase

(PW) with B = 0 and kB ̸= 0 where the BEC condenses into a plane-wave state with

finite spin polarization; and the zero-momentum phase (ZM) with B = 0 and kB = 0

where the BEC features a smooth density profile with zero spin polarization. Given

the variational ansatz (3.7), the BEC energy functional EB (kB, θ, B), corresponding

to
∫
dxΨ∗

BhBΨB + GB, is given by

EB (kB, θ, B)

NB
=
k2
B + k2

r − 2krkB cos (2θ)

2mB
− ΩB

2
sin (2θ)

− F (B) cos2 (2θ) +G1

(
1 + 2B2

)
, (3.8)

where we have defined F (B) = (2G1 + 4G2)B2 −G2 and G1,2 = nB

(
gB ± gB↑↓

)
/2.

The interplay between the condensate and the fermions is reflected in the GBF term

in Eq. (3.6). We include its effect in an effective fermionic single-particle Hamiltonian
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Figure 3.1 : (a) Phase diagram of the BEC characterizing the stripe (ST), plane-
wave (PW), and zero-momentum (ZM) phases in the ΩB-β plane with γ = 0, where
the Fermi-Fermi interaction gF = 0, the density of bosons nB = 10nF , and the
background color displays the value of kB/kr. (b) The boson density profiles for the
black dot in (a). (c) and (d) are, respectively, the boson and fermion density profiles
for the yellow star in (a). The fermion number is set as NF = 2000. The mass ratio
is taken to be mB/mF = 4. We define the Fermi momentum kF = πnF/2 where
nF = NF/L is the total fermion density, and β0 = E0/kF where E0 = k2

F/(2mF ).
The Raman recoil momentum is taken to be kr = 5kF/4. The condensate interaction
strengths are taken to be gB = 6.48 ∗ 10−3kr/ (2mB) and gB↑↓ = 2gB. In (b)-(d), we

set kr =
√
2π/(804.1nm) to convert the length unit to µm.
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heff
F defined as

∫
dxΨ†

Fh
eff
F ΨF =

∫
dxΨ†

FhFΨF + GBF . (3.9)

Since Eq. (3.7) is quite general, we assume that the condensate wave function in the

presence fermions can still be faithfully represented by Eq. (3.7). It follows that

heff
F (kB, θ, B) =

(k − krσz
F )

2

2mF
+ nB

⎛

⎜⎝
γV −βM

−βM∗ γV

⎞

⎟⎠ , (3.10)

where

M ≡ sin (2θ)

2
+B sin2 θe−2ikBx +B cos2 θe2ikBx; (3.11)

V ≡ 2B sin (2θ) cos (2kBx) + 1. (3.12)

The form of heff
F in Eq. (3.10) clearly shows that there is an effective SO coupling

in the Fermi gas, which emerges from its interaction with the condensate. Since the

two species influence each other, the SO coupling in both components possesses a

dynamic nature. Dynamic synthetic gauge field has recently received much attention

[11,58–60]. The spinor mixture system thus provides another platform where dynamic

SO coupling emerges naturally.

Diagonalizing heff
F gives a set of fermionic single-particle states. Then the total

energy of fermions EF (kB, θ, B) is obtained by summing up the lowest NF eigenen-

ergies of heff
F . The ground state of the mixture is then obtained by minimizing the

total energy functional EB (kB, θ, B) + EF (kB, θ, B) with respect to the variational

parameters. In our result, the final values of θ and kB roughly keep the relation

cos(2θ) ≈ kB/kr.

This procedure allows us to present the phase diagram of condensate in the ΩB-β

parameter space as shown in Fig. 3.1(a), where we take nB = 10nF and NF = 2000.

To isolate the effect of the inter-species interactions, we take the density-density
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interaction strength β = 0. In the absence of fermions, the condensate only possesses

two phases, PW and ZM, for gB↑↓ > gB. The transition between them occurs around

ΩB = 4k2
r/(2mB). A notable feature of Fig 3.1(a) is that the region with large

β is dominated by the ST phase. This feature is clearly induced by the fermions.

Specifically, the spin-exchange interaction induces an attractive interaction between

the two spin components of the condensate, leading to a reduced effective gB↑↓, which

favors the ST phase. The background color in Fig. 3.1(a) displays the value of kB. In

the ST phase, the condensate density profile is given by

ρB (x) = nB [1 + sin (2θ) cos (2kBx)] , (3.13)

with a density modulation whose spatial period is determined by 1/kB. One can see

that, for a given β, kB decreases as ΩB increases. Figure 3.1(b) and (c) show two

condensate density profiles corresponding to the black dot and yellow solid star in (a),

respectively. For realistic parameters, the ST phase can possess a spatial period of

several microns and a large modulation depth. Such a state can be readily observed

using in situ imaging with today’s technology. The density profile for the Fermi gas,

corresponding to the yellow solid star, is shown in (d). The two density profiles in

(c) and (d) exhibit in-phase modulations.

Let us now turn to a more in-depth discussion of the properties of fermions in the

mixture. When the condensate is in the PW or the ZM phase, we have B = 0, and

the effective single-particle Hamiltonian for fermions heff
F in Eq. (3.10) is reduced to

(after neglecting a term proportional to the constant nB)

heff
F,PW =

(k − krσz
F )

2

2mF
+

Ωeff
F

2
σx
F , (3.14)

which has the same form as the Hamiltonian of an SO coupled Fermi gas, only that

here the SO coupling is not due directly to the Raman lasers, but to the inter-species
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Figure 3.2 : The lowest four energy bands of the non-interacting fermions with gF = 0,
when the condensate is in the ST phase. Here β = 0.6β0 in all plots. In (a), ΩB = 0
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γ = 0.4γ0 (d). The Zak phase for each band is indicated in (b) and (d). The color
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F ⟩. The other parameters are the
same as those in Fig. 3.1.

spin-exchange interaction with an effective Raman coupling strength given by

Ωeff
F = −βnB sin (2θ) . (3.15)

When the condensate is in the ST phase, we have B = 1/2, both V and M in

Eq. (3.10) exhibit spatial modulations, originated from the density modulation of

the condensate. The V -term, arising from the inter-species density-density interac-

tion, serves as a lattice potential for the fermions, while the M -term, from the spin-

exchange interaction, can be regarded as a periodic Raman coupling for the two spin

components of the fermions. This situation is analogous to the optical Raman lattice

proposed by Liu et al. [46,61], and realized in recent experiments [39]. In the Raman

lattice setup, the atom experiences an optical lattice potential and a periodic Raman

coupling, both originated from the same laser beams. It is shown that the system

parameters can be adjusted and induce topological phase transitions. Drawing from

this analogy, we also expect topological phases in our system. Figure 3.2 displays the
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lowest four energy bands Es of the effective fermionic single-particle Hamiltonian heff
F

in Eq. (3.10), when the condensate is in the ST phase. In all the plots in Fig. 3.2,

we fix the value of β. Figure 3.2(a) is a reference plot where ΩB = 0, hence there is

no SO coupling in the system. Here different bands cross each other. The remaining

three plots correspond to the same finite value of ΩB, with varying γ. In these cases,

gaps open up at band crossing points in (a). The color of each band represents the

spin polarization P = ⟨σz
F ⟩, which can be seen to be momentum-dependent — a

manifestation of the SO coupling. The values of Zj, indicated in (b) and (d), are the

Zak phase for each band, defined as [62]

eiZj =
d∏

a=−d

w∗
j (ka) · wj (ka+1) , (3.16)

where wj (ka) is the eigenstate of band j and discretized momentum ka, restricted in

the first Brillouin zone in the range ka ∈ [−kB, kB), with the additional constraint

wj (kd+1) = wj (k−d) to form a loop in the calculation of the Zak phase. At a critical

value of γ shown in Fig. 3.2(c), the lowest two bands crosses each other. When the

band reopens at a larger value of γ, the Zak phase of some of the bands changes

its value. Thus the closing and the reopening of the band gap signals a topological

transition. Note that Zak phase in topological Bloch bands has been measured in

recent cold atom experiments [63].

3.1.3 Interacting Fermions

Now let us turn to the situation where the fermions are self-interacting with an

attractive s-wave interaction strength gF = −6kF/ (πmF ) in Eq. (3.5), which can

lead to superfluid pairing. Including Fermi-Fermi interaction greatly complicates the

physics in the ST phase. To keep things relatively simple, we take a large boson
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density nB = 500nF , such that in the parameter space we will explore, the bosons

are nearly unaffected by the fermions and remain in either the PW or the ZM phase.

Under this situation, the effective fermionic single-particle Hamiltonian is given by

heff
F,PW in Eq. (3.14). We thus have a system of attractive Fermi gas subjected to

SO coupling with an effective Raman coupling strength Ωeff
F defined in Eq. (3.15).

The corresponding fermionic system has been studied before [44] and is known to

support topological superfluid phase. This can be intuitively understood as follows.

The SO coupling mixes spin singlet and triplet pairings. The Raman term, which

can be regarded as an effective Zeeman field, tends to weaken the singlet pairing. For

sufficiently large Ωeff
F , the singlet pairing is suppressed, and the Fermi gas becomes a

topological superfluid with effective p-wave pairing. This picture is indeed confirmed

by our calculation.

Our calculation proceeds as follows. The bosonic contribution to the total energy

functional EB (kB, θ, B) still takes the form of Eq. (3.8), only that the parameter B

vanishes for the PW and the ZM phase. For the fermionic part, the thermodynamic

grand potential can be written as

PF (µ, θ) =

∫
dxΨ†

F

(
heff
F,PW − µ

)
ΨF + GF , (3.17)

where µ is the chemical potential, and heff
F,PW and GF are defined by Eqs. (3.14)

and (3.5), respectively. Note that heff
F,PW is a function of the variational parameter θ.

In our treatment of the fermionic part, we follow the standard mean-field approach

introduced for the single-species interacting fermions as reported in, e.g., Refs [44,49].

In the mean-field approximation, the Fermi-Fermi interaction term becomes

GF = −∆
[
ψ†
F↑ (x)ψ

†
F↓ (x) + h.c.

]
−∆2/gF , (3.18)
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where the superfluid order parameter is defined as

∆ = −gF ⟨ψF↓ (x)ψF↑ (x)⟩ .

In momentum space, the grand potential can be re-written as

PF (µ, θ,∆) =
1

2

∑

k

C†
kMkCk +

∑

k

ξk −
L∆2

gF
, (3.19)

where C†
k =

[
c†k↑ c†k↓ c−k↑ c−k↓

]
and

Mk =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

ξk + λk Ωeff
F /2 0 −∆

Ωeff
F /2 ξk − λk ∆ 0

0 ∆ −ξk + λk −Ωeff
F /2

−∆ 0 −Ωeff
F /2 −ξk − λk

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, (3.20)

with ξk = k2/ (2mF ) − µ and λ = −kr/mF . Diagonalizing the matrix Mk, we can

further transform the grand potential to the following form:

PF (µ, θ,∆) =
1

2

∑

k

(Ek1α
†
k1αk1 + Ek2α

†
k2αk2 (3.21)

+ Ek3αk3α
†
k3 + Ek4αk4α

†
k4) +

∑

k

ξk −
L∆2

gF
,

where αk1, αk2, αk3, and αk4 are quasi-particle elementary excitation operators with

the symmetry Ek4 = −E−k1 and Ek3 = −E−k2. The two positive excitation branches

are given by

Ek1,2 =

(
ξ2k + ηk +∆2 ±

√
4ηkξ2k +

(
Ωeff

F

)2
∆2

) 1
2

, (3.22)

with ηk = (krk/mF )
2 +

(
Ωeff

F

)2
/4. The ground state of the fermions is considered to

be the quasi-particle vacuum, with the corresponding ground-state grand potential

given by

PF (µ, θ,∆) = −1

2

∑

k

(Ek1 + Ek2) +
∑

k

ξk −
L∆2

gF
, (3.23)
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where the anti-commutation relations of αk1, αk2, αk3, and αk4 have been considered.

Note that PF (µ, θ,∆) is a functional of three undetermined variational parameters

µ, θ, and ∆.

The ground state of the whole mixture is obtained through the minimization of

EB (kB, θ, 0) + PF (µ, θ,∆) with respect to the variational parameters kB, θ, and

∆, where the constraint NF = −∂PF (µ, θ,∆) /∂µ is imposed to fix the number of

fermions. Actually, the minimization of EB (kB, θ, 0) with respect to kB leads to the

rigorous relation cos (2θ) = kB/kr, and hence we only need to deal with θ and ∆ in

the numerical minimization. The converged results of kB, θ, ∆, and µ are obtained

in the thermodynamic limit with NB, NF , L → ∞ while keeping nB = NB/L and

nF = NF/L finite.

Our results are summarized as follows. Figure 3.3(a1) represents the zero tem-

perature phase diagram of the Fermi gas in the ΩB-β space. It shows three phases:

the non-topological superfluid (SF), the topological superfluid (TSF), and the normal

phase. The first two phases feature finite superfluid order parameter ∆, whereas ∆

vanishes in the normal phase, as shown in Fig. 3.3(a4). The quasi-particle excitation

gap Eg is finite in the SF and the TSP phases, except at the boundary of these two

phases, as shown in Fig. 3.3(a2), where Eg vanishes as expected for topological phase

transition. Several examples of the quasi-particle excitation spectra Ek at various

phases are displayed in Fig. 3.3(b1)∼(b4).

The topological phase transition can be further confirmed by the winding number

Z, which is defined through a loop connecting the two positive excitation branches

at infinitely large k, and can be calculated as [49]

eiZ =
b∏

a=−b

[w∗
1 (ka) · w1 (ka+1)] [w

∗
2 (ka) · w2 (ka+1)] , (3.24)
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where w1 (ka) and w2 (ka) are the quasiparticle eigenstates corresponding to the two

positive excitation branches Ek1 and Ek2 in Eq. (3.22), with the quasi-momentum

defined as ka = 2πa/L with the integer a ∈ [−b, b] where b is a sufficiently large

numerical cut-off. We define w1 (kb+1) = w2 (k−b) and w2 (kb+1) = w1 (k−b) to connect

the two positive excitation branches and form the loop in calculating the winding

number. Note that here ka in (3.24) is no longer restricted in the first Brillouin zone.

As shown in Fig. 3.3(a3), Z jumps from π to 0 when entering from SF to TSF. Finally,

through combining the result of kB in Fig. 3.3(a5), the definition of Ωeff
F in Eq. (3.15),

and the relation cos(2θ) = kB/kr, we can see that the TSF phase does correspond to

the larger Ωeff
F , and hence our result agrees with our previous picture.

3.2 Bose-Bose Mixture with Spin-exchange-induced Novel

Phase Diagrams

In this section, we consider a two-species spinor BEC [1620] and investigate the

effects of SO coupling in such a system. More specifically, each species in our study

represents a spin-1/2 condensate, as produced in a recent experiment [21]. One of

the species is subjected to a Raman-induced SO coupling [1,2224], whereas the other

species is not directly coupled to the Raman beams. We show that the latter species

acquires an effective SO coupling due to the spin-exchange interaction between the

two. Similar to the Bose-Fermi mixture discussed in the previous section, such spin-

exchange-induced SO coupling may overcome the heating problem suffered by certain

atomic species when subjected to Raman beams. Significantly, this Bose-Bose mixture

system displays a very rich phase diagram, with many of the phases not present in

an SO-coupled single-species condensate.
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3.2.1 Hamiltonian

— We consider the Raman SO-coupling scheme [3, 4, 34] onto each species (species

A and B) in our dual-species bosonic mixture, where the two Raman beams conter-

propagate along x axis carrying opposite optical momentum ±!kL, as schematically

shown in Fig. 3.4(a). The relevant atomic energy level structure of each species is

shown in Fig. 3.4(b). Due to the large single-photon detuning, the upper energy level

can be adiabatically eliminated, and as a result under the rotating approximation and

mean field framework, the total energy functional of the system reads (we set ! = 1)

E (ΨA,ΨB) =
∑

i=A,B

∫
dxΨ†

ihiΨi +
∑

i=A,B

Gi + GAB, (3.25)

where Ψi = (ψi,↑,ψi,↓)
T represents the spinor wave function satisfying

∫
dx |Ψi|2 = Ni

with Ni being the total particle number of species i (i = A or B), and

hi =
k2
i

2mi
+
δi
2
σi
z +

Ωi

2

⎛

⎜⎝
0 e−2ikLxi

e2ikLxi 0

⎞

⎟⎠+ V i
ext (xi) (3.26)

is the single-particle Hamiltonian where δi denotes the two-photon detuning, V i
ext (xi)

depicts the external potential, kL is the recoil momentum associated with the Raman

process, and Ωi = Ωi
1Ω

i
2/2∆i characterizes the two-photon Raman coupling strength

with ∆i being the single-photon detuning of the species i. Note that in the Hamil-

tonian (3.26) we only keep the spatial terms along the direction of x, because the

perpendicular terms (in y-z plane) are decoupled with hi. From an experimental

point of view, the spin-1/2 BEC mixture can be reduced from a spin-1 mixture with

large quadratic Zeeman splittings. In this work, we assume the either species is on

a two-photon resonance with δi = 0, and only focus on the situation with ΩB ≈ 0

which can be simply realized, for instance, by properly adjusting the frequencies of

Raman beams satisfying ∆B ≫ ∆A, as shown in Fig. 3.4(b).
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Figure 3.4 : (a) Schematic representation of the dual-species BECs system. (b)
Atomic level structure for either species.

The last two terms in Eq. (3.25) characterize two different types of two-body inter-

actions, interaspecies or homonuclear interaction Gi and interspecies or heteronuclear

interactions GAB. The former is in a form of Gi =
∫
dx
[
gi
(
ρ2i,↑ + ρ2i,↓

)
+ gi↑↓ρi,↑ρi,↓

]

where ρi,σ = |ψi,σ|2 denotes the spinor density with respect to the species i, and

giσσ′ = 4πaiσσ′/mi with aiσσ′ being s-wave scattering length in different spin channels

and assumed to be always repulsive aiσσ′ > 0 in this work. On the other hand, the

heteronuclear interaction has a form of

GAB =

∫
dV [γ (ρA,↑ρB,↑ + ρA,↓ρB,↓) (3.27)

+ α (ρA,↑ρB,↓ + ρA,↓ρB,↑)

+β
(
ψ∗
A,↑ψ

∗
B,↓ψB,↑ψA,↓ + ψ∗

A,↓ψ
∗
B,↑ψB,↓ψA,↑

)]
,

where interaction strengths are defined as α, β, γ ≡ 2πaα,β,γ/mµ with

mµ ≡ mAmB/(mA +mB) (3.28)

being the reduced mass. Apparently, the first two terms of Eq. (3.27) can be rewritten

into a compact form of (γ + α)ρAρB/2 + (γ − α)FA
z F

B
z /2 with F i

l=x,y,z = Ψ⃗†
iσ

i
lΨ⃗i
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being the spinor spin density operator. In the case of α = γ and β = 0, GAB

only contains a simple density-density interaction term that commonly appeared in

a dual-species scalar BEC mixture. At the Thomas-Fermi limit, γC =
√

gAgB is the

critical point of phase separation of the two species [64]. Hence, in order to explore

the mutual influence of the two species, we only focus on a miscible configuration

by setting 0 < α = γ <
√

gAgB in our following calculation. In particular, the β

interaction term in Eq. (3.27) describes a interspecies spin-exchange process where

two distinguishable particles exchange spin states after the two-body collision. Note

that the sign of β only determines the same or reversed alignment of spins of two

species along x direction but has no influence on ground-state energy, and hence we

only focus on the case of β > 0.

We apply a gauge transformation Ui = eikLxiσi
z for each species in the system.

In the rotating frame, the spinor wave function becomes Ψ̃i = UiΨi and the single-

particle Hamiltonian h̃i = UihiU
†
i has a form of

h̃A =

(
kA − kLσA

z

)2

2mA
+

ΩA

2
σA
x + V A

ext (xA) , (3.29)

and

h̃B =

(
kB − kLσB

z

)2

2mB
+ V B

ext (xB) , (3.30)

where we already set ΩB = 0 and a finite ΩA. Note that the unitary transformation

towards species B is necessary here, since it eliminates the new phase factor gener-

ated by Ψ̃A in the β term, and finally remains the form of heteronuclear interaction

unchanged in rotating frame, i.e. G̃AB = GAB. Although there is no Raman coupling

in the single-particle Hamiltonian h̃B in Eq. (3.30), the β interaction term acts like

a transverse magnetic field coupling of two inner spin states, and as a result induces

an effective SO coupling for species B, which is the key point of our work.
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In the following, we will make detailed discussions on two different parametric

cases: NA ≫ NB and NA = NB. Moreover, for simplicity, our discussions will be only

in the rotating framework, and hence all the tildes symbols can be neglected without

any confusion.

3.2.2 Case of NA ≫ NB

As a good approximation, we can ignore the influence from species B to species A, and

meanwhile only consider the vise action. In this case, the species A is isolated, and A’s

physical properties can be well depicted by the variational method in a homogenous

system (V A
ext = 0) [4], where the ground-state wave function can be described by the

ansätz:

ΨA =
√
ρA

⎡

⎢⎣C+

⎛

⎜⎝
cos θA

− sin θA

⎞

⎟⎠ eiκAxA + C−

⎛

⎜⎝
sin θA

− cos θA

⎞

⎟⎠ e−iκAxA

⎤

⎥⎦ , (3.31)

where ρA denotes the average density of the homogeneous system, and C±, θA, and

κA are the variational parameters with |C+|2 + |C−|2 = 1. The minimization of

the single-particle energy
∫
dxΨ†

AhAΨA with respect to θA yields the relation θA =

arccos (κA/kL) /2 with 0 ≤ θA ≤ π/4. In the condition gA↑↓ < gA, the minimization of

the single-particle energy respect to κA and C± ensures three phases: (i) Stripe (ST)

phase in ΩA < ΩS−P
A where the species A condenses in a superposition of the two

plane wave states with momentums κA and −κA and thus |C+| = |C−| and κA ̸= 0;

(ii) Plane wave (PW) phase in ΩS−P
A < ΩA < ΩP−Z

A where the species A condenses

in a single plane wave state with the momentum κA or −κA and thus |C+||C−| = 0

and κA ̸= 0; (iii) Zero-momentum (ZM) phase in ΩA > ΩP−Z
A where the species A

condenses in a zero-momentum state and thus |C+||C−| = 0 and κA = 0. Here ΩS−P
A

and ΩP−Z
A are phase boundaries between three phases.
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By substituting ΨA in Eq. (3.31) into GAB in Eq. (3.27), one can see the influence

from A to B. Now, the species B is with an effective single particle Hamiltonian hB,eff .

When species A is in PW or ZM phase, hB,eff takes the form

hB,eff =

(
kB,x − kLσB

z

)2

2mB
+

ΩB

2
σB
x , (3.32)

where

ΩB = −βnA sin 2θA. (3.33)

Note that, as expected, the β interaction now provides transverse magnetic field

coherently coupling the two spin states of species B. Then, we can redo the whole

discussions of species A on B by simply assuming B’s ground-state wave function as

ΨB =
√
ρB

⎡

⎢⎣D+

⎛

⎜⎝
cos θB

sin θB

⎞

⎟⎠ eiκBxB +D−

⎛

⎜⎝
sin θB

cos θB

⎞

⎟⎠ e−iκBxB

⎤

⎥⎦ , (3.34)

where D±, θB, and κB are the variational parameters determined by the minimization

of
∫
dxΨ†

BhB,effΨB. In the condition gB↑↓ < gB, species B also has three quantum

phases: ST , PW and ZM. The corresponding phase boundaries can be obtained in

terms of β as

βS−P
B =

1

nA sin 2θA

4GB
−
(
k2
L +GB

+

) (
k2
L − 2GB

−
)

(GB
+ + 2GB

−)
, (3.35)

and

βP−Z
B =

2
(
k2
L − 2GB

−
)

nA sin 2θA
, (3.36)

where the homonuclear interactions parameters of the species B are defined as GB
± =

ρB
(
gB ± gB↑↓

)
/4. Note that the sin 2θA in Eqs. (3.35) and (3.36) is pre-determined in

the species-A ground state as a function of ΩA and other parameters of the species

A.

When the species A is in the ST phase, the effective Hamiltonian hB,eff becomes

hB,eff =

(
kB − kLσB

z

)2

2mB
+ h′

B, (3.37)
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where

h′
B = ρA [1 + sin 2θA cos (2κAxB)]

⎛

⎜⎝
γ −βeiφ(xB)

2

−βe−iφ(xB)

2 γ

⎞

⎟⎠ , (3.38)

with the help of the relationship
∣∣sin 2θA + 2 cos (2κAxB) sin

2 θA + e±2iκAxB
∣∣2

[1 + sin 2θA cos (2κAxB)]
2 = 1. (3.39)

Here, φ (xB) denotes the relative phase factor between the diagonal and off-diagonal

element in h′
B. In particular, when θA = π/4, we have φ(xB) = 0, and the species B

is like being placed into an atomic lattice with a coordinate relevant spin flipping in

a period of κA/π. As for the more general case with θA ∈ (0, π/4), though it is hard

for us to further reduce the express Eq. (3.38), one need to notice that the matrix

in Eq. (3.38) has two eigenvalues γ ± β/2. Further, the γ − β/2 is the lowest band

since β > 0, and the point β = 2γ indicates a phase transition. Specifically, when

β < 2γ, in order to minimize the total energy, the stripe of species B would oscillate

out-of-phase with that of species A. On the contrary when β < 2γ, the stripes of A

and B would be in-phase.

As a comparison to our above analytical discussion in the NA ≫ NB limit, we

carry out a direct numerical result by solving the mean-field Gross-Pitaevskii (GP)

equations corresponding to the total energy functional of the whole mixture system in

Eq. (3.1). We get the ground-state wave function ψi,σ by evoluting the GP equations in

imaginary time. Fig. 3.5(a) shows the ground-state phase diagram where 10 different

phases are observed and classified. Each phase is symboled by a combination of

the conditions of two species. In the meanwhile, the corresponding density profile

of each phase is shown in Fig. 3.5(b). In our calculation, we take species A as

23Na with homonuclear aA = 50aB and NA = 2.5 × 104, while species B as 87Rb

with aB = 100aB and NB = 1 × 103. Moreover, two species are confined in boxed
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Figure 3.5 : (a) Ground-state phase diagram in the case of NA ≫ NB where the upper
and lower yellow dashed lines indicate the analytical phase boundary predicated by
Eq. (3.36) and (3.35), respectively. (b) Typical density profiles of each phases in
phase diagram (a), where density of each species has been renormalized to 1, i.e.∑

σ

∫
dxρi,σ = 1. The the density distribution of PS1 phase, which is measured

by the right ticks, is a phase separation (PS) with PW phase on the box edge and
meanwhile ST/ST 1 phase in the middle. Moreover, similar to PS1, the phase PS2

(not shown) is also a PS but with ST/ST 2 in the middle. In the calculation, we take
NA = 2.5× 104 = 25NB. The unit EL = k2

L/2mA is the recoil energy.
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potentials (LA = 100k−1
L ≈ 27µm and LB = 0.9LA with Li being the box width),

which have been already realized in recent experiment. One can see in Fig. 3.5(b) that

the superiority of the boxed potential is to well simulate a homogeneous system in

the middle of the box. However, near the edge, the density distributions are severely

modulated. Therefore, taking LB slightly smaller than LA is mainly to reduce this

edge effects from A to B. Moreover, we fix aγ = aα = 35aB and ai↑↓ = 0.8ai where two

species are highly miscible, and for either species three quantum phases are predicated

to exist. Finally, we modulate the values of ΩA and β to map out the whole phase

diagram.

In the region where A is in PW or ZM phase, the upper and lower yellow dashed

line on the phase diagram Fig. 3.5(a) are the phase boundaries ΩP−Z
B and ΩS−P

B given

by Eq. (3.36) and (3.35), respectively. Apparently, ΩP−Z
B fits quite well with our

numerical result, while ΩS−P
B has a deviation especially near ΩA → ΩS−P

A . The phase

boundaries, either ΩP−Z
B or ΩS−P

B , is ΩA-dependent (-independent) when A is in PW

(ZM) phase, which can be understood by the fact that, in Eq. (3.33), the θA is ΩA-

dependent when A is in PW phase while θA is fixed as π/4 when A is in ZM phase.

Furthermore, the mismatch between numerical and analytical ΩS−T
B is due to the fact

that the back influence from B to A can be no longer neglected when ΩA approaches

ΩS−P
A from righthand side. Near ΩS−P

A , species A possesses a large polarization with

a small θA. In this case, the density of the lower-density component ρA,↓ is strongly

perturbed by ρB, and as a result possesses a shallow stripe (see ρA,↓ of PW/ST phase

in Fig. 3.5(b)). The striped behavior of species A will finally prompts B to stay in

the ST , which explains the enlarged area of phase PW/ST .

Now we turn to discuss the left 4 phases in phase diagram Fig. 3.5(a). When A

is in the ST phase, species B has two different stripes ST 1,2. The difference between
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ST 1,2 is that the stripe fringes of species B are out-of-phase or in-phase with that of

species A. From the examination of the wave function in momentum space, we find

that, the wave function of ST 1,2 can be roughly described by

ΨB ∝

⎛

⎜⎝
cos θB

sin θB

⎞

⎟⎠ eiκBxB +

⎛

⎜⎝
sin θB

cos θB

⎞

⎟⎠ e−iκBxB − ϵ

⎛

⎜⎝
e3iκBxB

e−3iκBxB

⎞

⎟⎠ , (3.40)

where ϵ ≪ 1 is a small quantity. Here, we have neglected a global normalization

factor. For a certain value of ΩA, the ϵ decreases while sin θB increases as β increases.

Particularly at β ≈ 2γ, ϵ ≈ sin θB where the visibility of ρB,σ almost vanishes. This

lines the phase boundary between ST 1,2, which is in good agreement with our for-

mer analytical discussion. Moreover, we also observe two intermediate phases PS1,2

located near ΩS−P
A . One can see from the bottom-right subfigure in Fig. 3.5(b) that

PS1,2 are phase-separation states, i.e. near the box edge, species A is a PW, while in

the middle, the mixture has a ST/ST 1,2.

3.2.3 Case of NA = NB

In this case, two species have strong mutual influence. In our numerical simulation

of the GP equation, we set NA = NB = 1× 104 and LA = LB = 100k−1
L ≈ 27µm, and

keep all the other parameters used in the former calculation unchanged. Fig. 3.6(a)

shows the ground-state phase diagram, and Fig. 3.6(b) shows the typical density

profiles of the three new phases: longitudinal polarized stripe (PST)/ST , ST/ST 3,

and the third phase separation PS3. One apparent feature in this parametric condition

is that all the homogenous phases disappear, which is obviously due to the strong

mutual influence between A and B. Particularly, the PST/ST phase is a generalization

of PW/ST phase of Fig. 3.5(a), where either spin components of species A, ρA,↑ or

ρA,↓, is severely affected by species B through the interaction GAB. The ground-state
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Figure 3.6 : (a) Ground-state phase diagram in the case of NA = NB. (b) Typical
density profiles of the PST/ST , ST/ST 3 and PS3 phases, where the density of each
species has been renormalized to 1, i.e.

∑
σ

∫
dxρi,σ = 1. In the calculation, we take

NA = NB = 1 × 104, and LA = LB = 100k−1
L with all the other parameters remain

same as the phase diagram Fig. 3.5.
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wave function of PST phase can also be approximately discribed by Eq. (3.31) with

C+ ̸= C−, and as a result A has a z-axis polarization. One can see that the PST/ST

phase is greatly suppressed by ST/ST 1 as ΩA increases. This behavior results from a

back action from B to A. Specifically, without species B and β, the Raman coupling

of species A is only ΩA and it induces the A’s phase transition from ST to PW;

with species B and β, the heteronuclear spin-exchange β provides A an effective

transverse magnetic field β
(
ψ∗
B,↓ψB,↑ + ψ∗

B,↑ψB,↓
)
, and this term suppresses the effect

of ΩA, and thus the ST to PST transition needs a larger ΩA. The ST/ST 3 phase is

a generalization of ZM/ST phase of Fig. 3.5(a). Unlike the ST/ST 1,2 phase where

the species A is a superposition of two spinor states with momenta kA = ±κA, the

ground-state wave function of species A here is a superposition of the states kA = 0

and kA = ±2κA in which kA = 0 plays a dominant role, i.e.

ΨA ∝

⎛

⎜⎝
1

1

⎞

⎟⎠+ ϵ

⎛

⎜⎝
e2iκAxA

e−2iκAxA

⎞

⎟⎠ . (3.41)

Again, a global normalization constant has been neglected. Comparing with the wave

function of ZM phase, the additional ϵ term results from the influence from B to A,

which finally leads to a striped density distribution. Besides, we find a intermediate

phase PS3 located between ST/ST 1 and ST/ST 3, whose density distribution is shown

in the third column of Fig. 3.6(b). Near the box edge, we have a ST/ST 3 while in

the middle we have a ST/ST 1.
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Chapter 4

Cavity-assisted Spin-orbit Coupling in Cold Atoms
in an Optical Cavity

The interaction between atomic internal pseudo-spin degrees of freedom (hyperfine

states) and quantized photon field supported by an optical cavity has long been a

focus of the field of cavity quantum electrodynamics (CQED) [65]. The advent of

cold atoms makes the atomic center-of-mass (COM) motion no longer negligible, and

hence the coupling between the atomic external COM degrees of freedom and the

cavity photon field needs to be considered. The Bose-Einstein condensate in a CQED

system has been realized in experiments on various platforms [66,67]. In this system,

the mutual influence between the atomic COM motion and the cavity photon field

modifies the collective atomic motion [68, 69], the cavity transmission spectra [70],

and can lead to matter wave bistability [71] and multistability behaviors [72], the

entanglement generation [73], etc. In the experimental realization of Dicke model

in Ref. [74, 75], the two-level atomic system is formed by two motional states of the

atom.

The purpose of this Chapter is to understand the mutual influence between three

degrees of freedom, including the atomic internal pseudo-spin states, the atomic COM

motion, and the cavity photon field. Due to the fact that the photon field influences

both the internal and external states of the atom, an effective spin-orbit coupling

(SOC) can be realized. In section 4.1, we systematically discuss how the spin-orbit

coupling affect the ground-state and dynamic properties of the JC model and the
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superradiant phase transition in the TC model. In section 4.2, we add dissipations

into our model through considering the photon pumping and leakage of the optical

cavity, and compare the mean-field results with results obtained from the beyond-

mean-field quantum Master equation.

Here, it needs to be explicitly stated that Sec. 4.1 is reprinted from Ref. [20] and

Sec. 4.2 is reprinted from Ref. [21], except some minor add-ons, modifications and

reorganizations.

4.1 Effects of Spin-Orbit Coupling on Jaynes-Cummings and

Tavis-Cummings Models

One of the simplest CQED systems is described by the Jaynes-Cummings (JC)

model [76] which concerns the interaction of a single two-level atom and a single-

mode cavity field under the rotating wave approximation. Over the past few decades,

various techniques have been developed to realize such a system in experiment [77–86],

and both the static [80–82] and dynamic [83,84] properties have been explored. The

corresponding model with N two-level atoms coupled identically to the single-mode

cavity was considered by Dicke [87] and, later, by Tavis and Cummings [88]. In

the literature, the N -atom model with and without the rotating wave approxima-

tion are often referred to as the Tavis-Cummings (TC) model and the Dicke model,

respectively. It was Dicke who first suggested to treat all atoms as a single quan-

tum system in the study of coherent spontaneous radiation process [87] and proposed

what is now called the Dicke states which are a family of correlated N -atom states

whose spontaneous emission rate scales as N2. In the context of CQED, both the

TC and the Dicke model predict the superradiant phase transition which describes a
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sudden emergence of macroscopic cavity photon number when the atom-cavity cou-

pling strength exceeds a critical value. Several recent experiments have explored this

phoenomenon [74, 75, 89]. Theoretically, the Dicke superradiant phase transition in

both zero [90–93] and finite [94] temperatures has been investigated, and the non-

equilibrium physics [95, 96] of the Dicke model has also been considered.

Our purpose in this section is to investigate the effects of the SOC on both the JC

and the TC models. In experimental setups for both Bose [3,97–99] and Fermi [9,11]

gases, the SOC is generated by a pair of counter-propagating coherent laser beams

coupling two hyperfine states of the atom via a two-photon Raman process [100].

Many-body [4, 33, 101–103] and few-body [17, 22, 23] theories have been proposed to

study the emergence of various quantum phases, and the SOC-induced dynamics

[104, 105] has been investigated. In our proposal, we replace one of the Raman laser

beams by the cavity field which is dynamically coupled to the atoms, in the sense

that the atomic dynamics provides a back action to the cavity field. Several previous

studies have focused on the properties of quantum gases subjected to such dynamic

SOC [21,106–110]. In Ref. [87], Dicke already considered the effect of the atomic COM

motion on the superradiant emission, although SOC was not explicitly mentioned.

Our system is schematically shown in Fig. 4.1, where ultracold atoms are inside a

ring optical cavity that supports a single plane-wave mode. The cavity field, together

with an external coherent laser field, drives a two-photon Raman transition between

two internal pseudo-spin states of the atom. This gives rise to an effective coupling

between atom’s pseudo-spin and external center-of-mass (COM) motion. The motiva-

tion of this section is to clarify how the atomic COM motion and the SOC modify the

static and dynamic properties of the JC model and the superradiant phase transition

in the TC model.
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This Section is organized as follows. In Sec. 4.1.1 we analytically present the

excitation number and the energy dispersion of a single atom with cavity-assisted

SOC in homogeneous space, and compare these results to the JC model and the

classical-laser-induced SOC. In Sec. 4.1.2 we show that the combination of SOC and

a confining trapping potential not only further modifies the excitation number of

the JC model, but also dramatically modifies the spin dynamics. In Sec. 4.1.4 we

investigate the Dicke superradiant phase transition of a many-atom system in the

thermodynamic limit, and discuss how the cavity-assisted SOC modifies the Dicke

phase transition boundary.

4.1.1 Single Atom without Trap

We consider a single atom with two internal pseudo-spin states, denoted as |↑⟩ and

|↓⟩, inside a ring cavity, as shown in Fig. 4.1(a). The ring cavity supports a single

mode travelling wave with frequency ωC , and an external light source produces an

additional classical laser beam with frequency ωR. These two counter-propagating

light beams induce a two-photon Raman transition between the |↑⟩ and |↓⟩ states,

and simultaneously transfer a recoil momentum of ±2qr to the atom along the cavity

axis which we denote as the z-axis. In the lab frame, this cavity-assisted SOC model

with the rotating wave approximation is governed by the following Hamiltonian,

hlab =
k̂2
lab

2m
+
ω0

2
σ̂z +

Ωe2iqrz

2
σ̂+c+

Ωe−2iqrz

2
σ̂−c† + ωLc

†c, (4.1)

where m is the atomic mass, k̂lab denotes the atomic COM momentum operator along

the cavity axis, ω0 represents the energy difference between |↑⟩ and |↓⟩, c and c† are the

cavity photon annihilation and creation operator, respectively, ωL = ωC−ωR describes

the frequency difference between two light beams, and Ω is the single-photon Raman
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coupling strength. A rotation with frequency ωR of the coherent laser beam has been

considered in obtaining Hamiltonian hlab. We will always assume ωL > 0 in this work,

as, otherwise, Hamiltonian (4.1) supports no ground state. We have set ! equal to

unity for convenience and will choose ω0 as the energy unit. Here σ̂z, σ̂+, and σ̂− are

defined as

σ̂z = |↑⟩ ⟨↑|− |↓⟩ ⟨↓| ; (4.2)

σ̂+ = |↑⟩ ⟨↓| ; σ̂− = |↓⟩ ⟨↑| .

Note that for simplicity, we have ignored the atomic COM motion along the two

transverse directions perpendicular to the cavity axis, as they are not coupled to the

cavity field. It is often more convenient to work in a quasi-momentum frame where

the Hamiltonian reads

h =
k̂2

2m
+

qrk̂

m
σ̂z +

ω0

2
σ̂z +

Ω

2

(
σ̂+c+ σ̂−c†

)
+ ωLc

†c . (4.3)

Here the quasi-momentum frame and the lab frame are connected by a gauge trans-

formation h = UhlabU† with

U ≡ e−iqrz |↑⟩ ⟨↑|+ eiqrz |↓⟩ ⟨↓| . (4.4)

Note that in the quasi-momentum frame, k̂ = −i∂/∂z represents the COM quasi-

momentum operator, which is related to actual atomic momentum k̂lab as k̂lab =

k̂+ σ̂zqr. In the following, our discussion will be in the quasi-momentum frame if not

otherwise specified.

In this homogeneous system, both the quasi-momentum k̂ and the excitation

number

n̂ = c+c+ |↑⟩ ⟨↑| , (4.5)
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Figure 4.1 : (a) Schematic diagram of the spin-orbit coupled system in a ring cavity.
(b) Effective two level model for the scheme in (a), where a photon field with frequency
ωL induces a transition from |n, ↓, k⟩ to |n− 1, ↑, k⟩, during which the actual atomic
COM momentum k̂lab = k̂ + σ̂zqr changes from k − qr to k + qr.

are conserved. Our model, as described by Hamiltonian (4.3), can also be effectively

viewed as a two level atom coupled by a photon field with frequency ωL as shown

in Fig. 4.1(b). A coupling is present between the states |n, ↓, k⟩ and |n− 1, ↑, k⟩,

where |np, σ, k⟩ denotes a state with np cavity photons, and the atom in spin-σ with

quasi-momentum k. This spin flipping transition conserves k, but the actual atomic

COM momentum k̂lab changes from k−qr to k+qr as its spin changes from | ↓⟩ to | ↑⟩

by absorbing a cavity photon. Note that if the photon recoil momentum vanishes,

i.e., qr = 0, (which occurs when the cavity field and the external laser beam are

co-propagating), the SOC term (the second term on the r.h.s. of Hamiltonian (4.3))

is absent, thus the atomic COM motion is completely decoupled from the cavity

field. Under this situation, our system is reduced to the conventional JC model after

the irrelevant kinetic energy term k̂2/(2m) in Hamiltonian (4.3) is ignored. In this
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section, we investigate the ground state excitation number, and clarify how the SOC

modifies the JC model. We also discuss how the quantization of the cavity photon

field modifies the SOC induced by two classical lasers.

We choose |np, σ, k⟩ as the basis states. As the excitation number n and atomic

quasi-momentum k are good quantum numbers, we can consider the two-dimensional

subspace characterized by n ≥ 1 and atomic momentum k which is spanned by two

basis states |n− 1, ↑, k⟩ and |n, ↓, k⟩. The Hamiltonian for this subspace is given by

(the subspace for n = 0 contains only one state |0, ↓, k⟩):

hn (k) =

⎡

⎢⎣
h↑
n(k)

√
nΩ
2

√
nΩ
2 h↓

n(k)

⎤

⎥⎦ , (4.6)

with

h↑
n(k) =

k2

2m
+

qrk

m
+
ω0

2
+ (n− 1)ωL ; (4.7)

h↓
n(k) =

k2

2m
− qrk

m
− ω0

2
+ nωL .

Diagonalizing hn (k), we obtain two energy dispersions in this subspace

E±
n!1 (k) =

k2

2m
± 1

2

√(
δeffk
)2

+ nΩ2 +

(
n− 1

2

)
ωL , (4.8)

where

δeffk = δ + 2qrk/m , (4.9)

with δ = ω0 − ωL being the bare two-photon detuning for the Raman transition, and

the effect of the SOC can be regarded as producing a momentum-dependent effective

two-photon detuning δeffk . To complete the spectrum, we should also include the single

dispersion curve in the n = 0 sector which is given by

E−
n=0 (k) =

k2

2m
− qrk

m
− ω0

2
. (4.10)
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Ground-State Excitation Number

In the following, we will first consider the ground state excitation number in this

subsection, and then discuss the energy dispersion curve in the next subsection.

For the case with δ = 0, by taking the derivative of E−
n (k), we analytically

obtain one minimum for E−
0 (k) at k = qr, two minima for E−

1"n<nc
(k) at k =

±qr
√

1− nΩ2/ (16E2
r ), and one minimum for E−

n!nc
(k) at k = 0, where nc = (4Er/Ω)

2,

and Er = q2r/ (2m) is the photon recoil energy which also characterizes the strength

of the SOC. Hence, the energy minimum E (n) in each n subspace can be written

into two pieces

E (n) = n
(
ω0 − Ω2

16Er

)
− ω0

2 − Er, n < nc (4.11)

E (n) = ω0

(√
n− Ω

4ω0

)2
− Ω2

16ω0
− ω0

2 , n ! nc

Finally we obtain the ground state energy and the corresponding excitation number

by identifying the smallest E (n) among all n’s.

Figure 4.2(a) presents the ground-state excitation number ngs as a function of the

Raman coupling strength Ω and the recoil energy or SOC strength Er. For Er = 0,

we recover the result for the JC model, where as Ω increases from zero, ngs starts from

0 and increases with steps of one at succeeding critical values of Ω. This is plotted as

the black dashed line in Fig. 4.2(b). The critical values Ωn at which ngs jumps from

n to n+ 1 can be straightforwardly obtained as

Ωn=0 ≡ ΩJC
c = 2ω0 ; (4.12)

Ωn!1 = 2ω0

[
(2n+ 1) + 2

(
n2 + n

) 1
2

] 1
2
,

where we have denoted the first critical value as ΩJC
c .

In the presence of SOC (i.e., Er ̸= 0), ngs still increases in steps at critical values
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Figure 4.2 : (a) Ground-state excitation number ngs of a single atom in a homogeneous
space, as a function of Raman coupling strength Ω and recoil energy Er, with ωL = ω0.
(b) Ground-state excitation numbers for Er = 2ω0 and Er = 0 (Jaynes-Cummings
model) as step functions of Ω with ωL = ω0. (c) The critical Raman coupling strength
at which ngs jumps from 0 to finite value as a function of ωL/ω0. The red solid line
corresponds to ΩSOC

c with Er = 2ω0, and the black dashed line to ΩJC
c obtained at

Er = 0.
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of Ω. However, in comparison to the JC model, there are some key differences. First

the parameter regime for ngs = 0 is enlarged, i.e., the first jump where ngs changes

from 0 to finite occurs at a critical Raman coupling strength Ω = ΩSOC
c > ΩJC

c . This

is due to the fact that, as can be seen from Eqs. (4.11) and (4.10), finite Er (or qr)

reduces the value of E−
n=0 more than that of E−

n!1, which helps to enlarge the n = 0

regime. Here the value of ΩSOC
c can be obtained from Eq. (4.11) as

ΩSOC
c =

⎧
⎪⎨

⎪⎩

2 (ω0 + Er) , for Er " ω0

4
√
ω0Er , for Er > ω0

. (4.13)

Second, at Ω = ΩSOC
c , ngs jumps from 0 to a finite value that is not necessarily equal

to 1. An example is shown in Fig. 4.2(b) as the red solid line. Third, as Ω keeps

increasing from ΩSOC
c , ngs will jump with steps of 1 at exactly the same critical values

as in the JC model, because for Ω > ΩSOC
c , the ground state always occurs at k = 0

and hn (k = 0) in Eq. (4.11) takes exactly the same form as that in the JC model.

For the case with δ ̸= 0, we can proceed in a similar way to obtain results with

δ ̸= 0. Critical values of Ω at which ngs jumps can still be found analytically, but

the results are too cumbersome to write down explicitly. The main features are not

qualitatively different from the previous case with δ = 0. In particular, the parameter

regime with ngs = 0 is always enlarged in comparison to the JC model. In other words,

we always have ΩSOC
c > ΩJC

c at any value of δ, as can be seen in Fig. 4.2(c).

Energy Dispersion and Degeneracy

We now discuss the energy dispersion curve and ground state degeneracy, which are

determined by Eqs. (4.8) and (4.10). For the Raman spin-orbit coupling induced by

two classical laser beams whose Hamiltonian is given by

hcl =
k̂2

2m
+

qrk̂

m
σ̂z +

δ

2
σ̂z +

Ωcl

2
σ̂+ +

Ωcl

2
σ̂− , (4.14)
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Figure 4.3 : (a) Degenerate-to-nondegenerate transition boundary and ground state
excitation number ngs in the parameter space corresponding to the white box in
Fig. 4.2(a). The region bounded by the red dash and the blue solid lines features two-
fold degenerate ground state. Outside this region, the ground state is non-degenerate.
(b)-(e) Energy dispersion relations for excitation number n = 3, 4 with Ω = 7.3ω0 and
Er = 3.27ω0 in (b), Ω = 7.3ω0 and Er = 3ω0 in (c), Ω = 7.55ω0 and Er = 3.53ω0 in
(d), and Ω = 7.55ω0 and Er = 3.34ω0 in (e). These parameters correspond to points
(b)-(e) in (a).
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it is well known [13] that, for δ = 0, the energy dispersion exhibits a single minimum

when Er " Ωcl/4, and two double minima when Er > Ωcl/4.

In our system with quantized light field, things become more complicated. An

example is shown in Fig. 4.3. In Fig. 4.3(a), whose parameter space corresponds to

that represented by the white box in Fig. 4.2(a), the background color represents the

value of ground state excitation number ngs. The region bounded by the red dashed

and the blue solid lines has two-fold degenerate ground state, while the other region

features nondegenerate ground state. The two lowest dispersion curves of 4 points

labelled by (b-e) in Fig. 4.3(a) are plotted in Fig. 4.3(b-e).

As Er decreases from point (b) to (c), the n = 3 dispersion transforms from two

double minima to a single minimum, and the ground state changes from degenerate to

non-degenerate. This process is similar to what happens in the classical-laser-induced

SOC, since the ground state always stays in n = 3 dispersion.

As Er decreases from point (d) to (e), the n = 3 dispersion curve always possess

two minima, but the ground state changes from degenerate to nondegenerate as the

ground state excitation number ngs jumps from 3 to 4. Hence, this process is a unique

feature of the cavity-assisted SOC.

4.1.2 Single Atom in Harmonic Trap

In the absence of the trapping potential, the atomic quasi-momentum is conserved.

For a fixed quasi-momentum k, Hamiltonian (4.3) is the same as that for the JC

model, and the SOC term is to effectively shift the atomic transition frequency ω0 by a

momentum-dependent amount of 2qrk/m, or equivalently to give rise to a momentum-

dependent detuning δeffk defined in Eq. (4.9). When a trapping potential is present,

k will no longer be a good quantum number, and different quasi-momentum com-
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ponents will therefore be coupled together. This is the situation we are now going

to investigate. Specifically, we will consider the presence of a harmonic trap with

trapping frequency ωt. The total Hamiltonian is now

ht = h+
1

2
mω2

t z
2, (4.15)

where h is given in Eq. (4.3).

Ground-State Excitation Number

We first consider the ground state excitation number. Note that, even in the presence

of the trapping potential, the excitation number n, defined in Eq. (4.5), remains a

good quantum number. Note that Hamiltonian (4.15) can be represented by phonon

operators a and a† of the harmonic oscillator as

ht =ωta
†a+ iqr

√
ωt

2m

(
a† − a

)
σz

+
ω0

2
σ̂z +

Ω

2

(
σ̂+c+ σ̂−c†

)
+ ωLc

†c,

(4.16)

where we have used k̂ = i
√

mωt/2
(
a† − a

)
and made an energy shift of ωt/2. We

obtain the ground state through the exact diagonalization approach by expanding

the Hamiltonian (4.16) onto the basis states |np, σ, q⟩, where |np⟩ is the photon Fock

state, |σ⟩ is the atomic spin state, and |q⟩ represents the phonon Fock state of the

harmonic oscillator defined by a†a |q⟩ = q |q⟩. A sufficiently large cutoffs for np and q

are chosen in the calculation.

Figure 4.4(a1) shows the ground-state excitation number ngs as a function of

Raman coupling strength Ω and recoil energy Er for δ = 0 in the presence of a

relatively weak harmonic trap with trap frequency ωt = 3ω0. Compared to the

previous result without the trap as shown in Fig. 4.2(a), here the boundaries between

different ngs are bent curves instead of straight lines. Figure 4.4(a2) shows ngs as a
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Figure 4.4 : (a1)(b1) Ground-state excitation number ngs of a single atom in harmonic
trap with trap frequency ωt = 3ω0, 300ω0, as a function of Raman coupling strength Ω
and recoil energy Er. (a2)(b2) The ngs for Er = 2ω0 and Er = 0 (Jaynes-Cummings
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function of Ω for two values of Er. The case with Er = 0 corresponds to the absence

of SOC and our model is reduced to the JC model. At finite Er, the SOC term shifts

the values of the critical Raman coupling strength at which ngs jumps. In addition,

ΩSOC
c > ΩJC

c is still satisfied for any ωL ! 0 as in the previous case of homogeneous

space.

In Fig. 4.4(b1) and (b2), we plot the ngs for a relatively strong harmonic trap with

ωt = 300ω0. In this case, we find that the results for finite Er are not very different

from the JC model results as long as Er ≪ ωt. This can be intuitively understood

as follows. In the presence of a very strong trapping potential, the effect of photon

recoil, and hence that of the SOC, becomes less important. This is analogous to the

Lamb-Dicke limit in the context of ion trapping, in which the coupling between the

ion’s internal dynamics and its motional dynamics induced by an external light field

is suppressed by a strong confining potential.

Spin Dynamics

In the JC model, when a cavity field with definite photon number (i.e., a cavity

Fock state) is coupled to the two-level atom, the ensuing spin dynamics is described

by the well-known Rabi oscillation, where the oscillation frequency is determined by

the coupling strength Ω and the detuning δ. In our model, the trapping term cou-

ples different quasi-momentum states, and each quasi-momentum state experiences

a momentum-dependent effective Raman detuning δeffk . The resulting spin dynamics

becomes much more complicated.

To investigate the spin dynamics in our model, we consider a specific initial state

|ψ(0)⟩ = |np, ↓, q = 0⟩ in the lab frame, where the atom is prepared in the | ↓⟩ state

and the ground state of the harmonic trap, and the cavity field is in a Fock state with
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np photons. This confines the system dynamics within the subspace characterized by

excitation number n = np. Within this subspace, the Hamiltonian in Eq. (4.15) takes

the form as (after neglecting a dynamically irrelevant constant term)

ht (np) =
k̂2

2m
+

qrk̂

m
σ̂z +

δ

2
σ̂z +

Ωcl

2
σ̂+ +

Ωcl

2
σ̂− +

1

2
mω2

t z
2 , (4.17)

where Ωcl ≡ Ω
√
np, and σ̂z, σ̂+, and σ̂− are re-defined as

σ̂z = |np − 1, ↑⟩ ⟨np − 1, ↑|− |np, ↓⟩ ⟨np, ↓| ; (4.18)

σ̂+ = |np − 1, ↑⟩ ⟨np, ↓| ; σ̂− = |np, ↓⟩ ⟨np − 1, ↑| .

Note that this Hamiltonian is mathematically equivalent to the Hamiltonian describ-

ing a spin-orbit coupled atom where the SOC is generated by two classical Raman

laser beams (see Eq. (4.14)) [3, 13, 97, 98]. As a consequence, the result presented

below is also valid in that context. In the classical laser context, the corresponding

spin dynamics has been studied in [105], whereas we focus on the effects of the photon

recoil on the Rabi oscillation in cases of different trapping strengths.

We solve the time-dependent Schrödinger equation numerically to find the state

vector |ψ(t)⟩ starting from the initial state |ψ(0)⟩, we then calculate the probability

of finding the atom in | ↑⟩:

P↑ (t) ≡
∞∑

q=0

|⟨np − 1, ↑, q| ψ (t)⟩|2 . (4.19)

Examples of spin dynamics are plotted in Fig. 4.5(a-c), which represent the δ = 0

cases for a strong, an intermediate, and a weak trap, respectively, where the trap

strength is measured against Er.

Strong Trap — As we discussed in the previous subsection, in the presence of a

strong trap with ωt ≫ Er, the system is in the Lamb-Dicke regime where the effect
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Figure 4.5 : (a)-(c) Time evolution of the spin-up probability P↑ (t) of a single atom in
a harmonic trap with ωt = 20Er, Er, and 0.03Er. The system is initially prepared in
the harmonic oscillator ground state with spin down. The inset of (a) plots f (ωt), the
oscillation frequency of P↑ (t), as a function of ωt in the strong trap regime, where the
black solid line depicts the numerical result obtained by Fourier analysis and the blue
dashed line depicts the analytical result from the perturbation theory [Eq. (4.21)], and
a logarithmic scale is used for the horizontal axis. In (c) for the weak trap regime,
the red solid line shows the numerical result, and the blue dashed line shows the
analytic result in Eq. (4.24) where the coupling between different momentum spaces
is neglected. The corresponding long time evolutions of P↑ (t) are shown in the inset
of (c). Other parameters: Ωcl = 4Er, δ = 0.
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of SOC may be regarded as a small perturbation. The corresponding spin dynamics

shown in Fig. 4.5(a) is accurately described by a sinusoidal oscillation as

P↑ (t) = sin2

[
f (ωt)

2
t

]
, (4.20)

where f (ωt) denotes the oscillation frequency depending on ωt. In the limit of ωt →

∞, the JC model result is recovered as the oscillation frequency f (ωt → ∞) = Ωcl,

with the Rabi frequency Ωcl = 4Er in this example. For large but finite ωt, the

oscillation frequency f (ωt) deviates away from this value. By treating the SOC term

as a small perturbation, we can analytically obtain the oscillation frequency as

f (ωt) = Ωcl −
2ErΩcl

ωt
− 2ErΩ3

cl

ωt (ω2
t − Ω2

cl)
. (4.21)

Details of this derivation can be found in Sec. 4.1.3. In the inset of Fig. 4.5(a), we

compare the spin oscillation frequency obtained from the numerical calculation (black

solid line) and the analytic result of Eq. (4.21) (blue dashed line), and find excellent

agreement for large ωt.

Weak Trap — An example of weak trap with ωt ≪ Er is presented in Fig. 4.5(c),

where the short- and long-time behaviours are plotted in the main figure and the

insets, respectively. For short-time scale, the system exhibits a damped oscillation.

This damped oscillation can be intuitively understood as follows. The initial COM

wave function of the atom is a Gaussian (the ground state of the harmonic oscillator),

which in the (quasi-)momentum space can be written as

φ0 (k) = (πmωt)
− 1

4 e−
(k−qr)

2

2mωt . (4.22)

For such a weak trap, and for short time scale, we can neglect the trap-induced cou-

pling between different momentum components. Then each momentum component
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exhibits Rabi oscillation, such that for a given quasi-momentum k we have

p↑(t, k) =
Ω2

cl

Ω2
cl +

(
δeffk
)2 sin

2

(
1

2

√
Ω2

cl +
(
δeffk
)2
t

)
, (4.23)

where δeffk = 2qrk/m is the effective two-photon detuning for the given momentum

component k. Integrating over all the momentum components, we have

P↑ (t) =

∫
dk |φ0(k)|2p↑(t, k) . (4.24)

In the main figure of Fig. 4.5(c), the red solid line represents the result obtained from

the numerical calculation and the blue dashed line the result based on Eq. (4.24).

Both results agree with each other very well. The damping of the oscillation arises

from the dephasing effect, as different momentum components oscillate at different

frequencies due to the momentum-dependent effective detuning δeffk .

For time scales on the order of or longer than 1/ωt, the assumption underlying

Eq. (4.24) that different momentum components behave independently is no longer

valid. The numerically obtained long-time result and the one based on Eq. (4.24)

are plotted in the insets of Fig. 4.5(c). Significant discrepancies can be seen. In

particular, Eq. (4.24) predicts a featureless flat line: once the dephasing occurs, P↑

no longer oscillates and stays constant. But the full numerical result shows that,

due to the momentum components coupling induced by the trapping potential, the

long-time behaviour of the system can be quite rich.

4.1.3 Perturbation Theory for Modified Rabi Oscillation

In this subsection, we provide a detailed derivation of Eq. (4.21) using a perturbation

calculation. It is more convenient to carry out the calculation in the lab frame, in

which the Hamiltonian reads

hlab
t =

k̂2

2m
+

1

2
mω2

t x
2 +

δ

2
σ̂z +

Ωcle2iqrx

2
σ̂+ +

Ωcle−2iqrx

2
σ̂− , (4.25)
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which is the counterpart of Hamiltonian (4.17).

In the limit of large trapping frequency ωt ≫ Er, the atoms are tightly confined

within a spatial region much smaller than 1/qr. Hence we may Taylor expand the

two exponentials in Hamiltonian (4.25) to second order in qr, and write

hlab
t = h0 + V, (4.26)

where

h0 =
k2

2m
+

1

2
mω2

t x
2 +

δ

2
σ̂z +

Ωcl

2
σ̂+ +

Ωcl

2
σ̂−; (4.27)

V =
(
iqrx− q2rx

2
)
Ωclσ̂

+ −
(
iqrx+ q2rx

2
)
Ωclσ̂

−. (4.28)

We shall treat V as a perturbation to h0, and focus on the case with δ = 0.

The eigenenergies and eigenstates of the unperturbed Hamiltonian h0 are given

by

E(0)
q± =

(
1

2
+ q

)
ωt ±

Ωcl

2
; (4.29)

|q±⟩ = 1√
2
(|↑⟩± |↓⟩) |q⟩ , (4.30)

where q is the harmonic oscillator quantum number. Our initial state has the atom

in | ↓⟩ and harmonic oscillator ground state |q = 0⟩, which can be written as

|ψ(0)⟩ = 1√
2
(|0+⟩ − |0−⟩) . (4.31)

Neglecting V , the ensuing dynamics will lead to Rabi oscillation with frequency Ωcl,

i.e., the energy difference between the two eigenstates |0±⟩. This is the result for the

JC model.

To find the oscillation frequency when V is included, we shall calculate the energy

shift to the states |0±⟩ to second order in qr. The corresponding oscillation frequency
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will then be

f =
(
E(0)

0+ + E(1)
0+ + E(2)

0+

)
−
(
E(0)

0− + E(1)
0− + E(2)

0−

)
(4.32)

with E(1)
0± and E(2)

0± being the 1st and 2nd order energy shift due to the perturbation V ,

respectively. Through the standard time independent perturbation theory, we obtain

E(1)
0± = ⟨0±|V |0±⟩ = ∓ErΩcl

ωt
; (4.33)

and

E(2)
0± =

|⟨1∓|V |0±⟩|2

E(0)
0− − E(0)

1∓
+

|⟨2±|V |0±⟩|2

E(0)
0− − E(0)

2±
(4.34)

= − ErΩ2
cl

ωt (ωt ∓ Ωcl)
−
(
ErΩcl

ωt

)2 1

ωt
.

Substituting Eqs. (4.29)(4.33)(4.34) into Eq. (4.32), we obtain the oscillation fre-

quency of P↑ (t)

f (ωt) = Ωcl −
2ErΩcl

ωt
− 2ErΩ3

cl

ωt (ω2
t − Ω2

cl)
, (4.35)

as given in Eq. (4.21) in sec. 4.1.2.

4.1.4 Many-atom Superradiance in Thermodynamic Limit

So far, we have been focusing on the properties of a single atom. In this section, we

consider a system where the single mode cavity photon field is coupled to many atoms

in thermodynamic limit. We neglect the bare interactions between atoms. However,

as each atom influences the whole photon field which back acts on the other atoms,

the photon field induces an effective coupling between atoms. When the atomic COM

motion is neglected, our model reduces to the TC model. One of the most well-known

many-body effects in this model is the Dicke superradiant phase transition [90–94].

Here we investigate how the COM degree of freedom and the SOC affect the Dicke

phase transition.
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We consider a canonical ensemble where N atoms inside the cavity are confined

within a box with volume V . In the thermodynamic limit, both N and V are taken

to be infinity but the number density ρ = N/V is finite. The Hamiltonian of this

system is given by

H = ωLc
†c+

N∑

j=1

ĥj , (4.36)

with the Hamiltonian for the jth atom

ĥj =
k̂2
j

2m
+

qrk̂zj
m

σj
z +

ω0

2
σj
z +

Ω̃

2
√
N

(
σ+
j c+ σ−

j c
†) , (4.37)

where Ω̃ =
√
NΩ is the rescaled Raman coupling strength, and k̂j is the three dimen-

sional quasi-momentum operator for the jth atom.

To investigate the thermodynamic phase transition at temperature T , we take a

similar approach as in Ref. [94] in which the Dicke phase transition in the TC model

is investigated. The canonical partition function Z = Tr
(
e−βH

)
with β = 1/ (kBT )

can be calculated as

Z =
V N

(2π)3N

∫
d2α

π

N∏

j=1

⎛

⎝
∫

dkj

∑

σj=↑,↓

⎞

⎠ ⟨Ψ| e−βH |Ψ⟩ , (4.38)

where we have chosen the states

|Ψ⟩ = |α⟩
N∏

j=1

|kj⟩ |σj⟩ (4.39)

as our basis states to evaluate the trace. Here |α⟩ is the photon coherent state, i.e.,

the eigenstate of photon annihilation operator such that c|α⟩ = α|α⟩, |kj⟩ is the

quasi-momentum eigenstate for the jth atom, and |σj⟩ (σj =↑, ↓) is the eigenstate of

σj
z for the jth atom. By using the condition N → ∞, we obtain

⟨α| e−βH |α⟩ = exp

[
−β
(
ωL |α|2 +

N∑

j=1

ĥα
j

)]
, (4.40)
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where

ĥα
j =

k̂2
j

2m
+

qrk̂zj
m

σj
z +

ω0

2
σj
z +

Ω̃

2
√
N

(
σ+
j α + σ−

j α
∗) . (4.41)

As the summation over spin and integral over momentum in Eq. (4.38) are indepen-

dent for different atoms, the partition function can be simplified as

Z =

∫
d2α

π
e−βωL|α|2

[
V

(2π)3

∫
dk
(
e−βϵ+ + e−βϵ−

)]N
, (4.42)

where

ϵ± =
k2

2m
±

√√√√
(
qrkz
m

+
ω0

2

)2

+

(
Ω̃

2

)2
|α|2

N
(4.43)

are the eigenvalues of ĥα
j in Eq. (4.41). Integrating over the complex angle of α and

x, y components of k in (4.42), and letting u = |α|2
N , we can rewrite the partition

function as

Z = C1

∫ ∞

0

du exp {N [F (u)]} , (4.44)

with constant C1 = N
(

mV
4π2β

)N
and

F (u) = −βωLu+ log S (u) , (4.45)

S (u) = 2

∫
dkz exp

(
−βk

2
z

2m

)
cosh ξ (kz, u) , (4.46)

ξ (kz, u) = β

√√√√
(
qrkz
m

+
ω0

2

)2

+

(
Ω̃

2

)2

u . (4.47)

The Laplace’s method [94] is used to deal with the integral over u in Eq. (4.44). For

N → ∞, this yields

Z = C2 max
u∈[0,∞)

exp {N [F (u)]} , (4.48)

where C2 is a constant and we denote that the maximum of F (u) is reached at u = u0.

We numerically obtain a u0 ! 0 by taking the first and second order derivatives of
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F (u), and it is straightforward to show that u0 is actually the normalized photon

number

u0 =

〈
c†c
〉

N
, (4.49)

where
〈
c†c
〉
/N > 0 corresponds to the superradiant phase with a macroscopic photon

excitation appearing in the thermodynamic limit; and
〈
c†c
〉
/N = 0 corresponds to

the normal phase.

Figure 4.6(a) shows
〈
c†c
〉
/N as a function of the temperature T and the rescaled

Raman coupling strength Ω̃ with the SOC strength Er = 0.5ω0. The red solid line

in the figure represents the critical coupling strength Ω̃c (i.e., the phase boundary):

Above this line, we have
〈
c†c
〉
/N > 0 and the system is in the superradiant phase; and

below this line,
〈
c†c
〉
/N = 0 which corresponds to the normal phase. In Fig. 4.6(b),

we plot Ω̃c as a function of T for several different values of Er. As in the previous

single-atom case, we recover the usual TC model when Er = 0 (bottom curve in

Fig. 4.6(b)). For the TC model, Ω̃c is a monotonically increasing function of T , and

Ω̃c = 2
√
ω0ωL at T = 0. For finite Er, Ω̃c is larger than the corresponding value in the

TC model. In other words, in the presence of the SOC, the regime of normal phase is

enlarged, which is consistent with the single-atom property that the SOC enlarges the

n = 0 regime with no photons, as shown in Eqs. (4.12) and (4.13), and Fig. 4.2. The

upward shift of Ω̃c at finite Er is more pronounced at lower temperature. This may

not be surprising as, at lower temperature, the average atomic COM kinetic energy

is lower and hence the photon recoil plays a more significant role. This temperature

dependent shift leads to another important feature brought by the SOC: Ω̃c is no

longer a monotonic function of T , as can be easily seen in Fig. 4.6(b), and reaches

the minimum value at a finite temperature.

A consequence of the nonmonotonic behaviour of Ω̃c is that the normal phase
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Figure 4.6 : (a) Normalized photon number
〈
c†c
〉
/N as a function of temperature

T and effective Raman coupling strength Ω̃ with Er = 0.5ω0, where
〈
c†c
〉
is the

average photon number and N is the atom number. Here
〈
c†c
〉
/N > 0 corresponds

to the superradiant phase and
〈
c†c
〉
/N = 0 corresponds to the normal phase. (b)

Normal-Superradiant Phase boundary in T − Ω̃ plane for Er/ω0 = 0, 0.2, 0.5, 0.8, 1.
(c)
〈
c†c
〉
/N as a function of T for Ω̃ = 2.9ω0 with Er/ω0 = 0, 0.5. We take ωL = 0.8ω0

in these figures.
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may become reentrant as the temperature varies. This is depicted in Fig. 4.6(c),

where we plot
〈
c†c
〉
/N as a function of T with Ω̃ = 2.9ω0 for Er = 0.5ω0 (red solid

line) and Er = 0 (blue dashed line). For the TC model (Er = 0), the system is in

the superradiant phase at sufficiently low temperature when Ω̃ > 2
√
ω0ωL (as is the

case shown in Fig. 4.6(c)) with finite
〈
c†c
〉
/N . As temperature increases,

〈
c†c
〉
/N

decreases monotonically until it reaches 0 at the critical temperature Tc which is given

by

4ω0ωL

Ω̃2
= tanh

(
ω0

2ωLkBTc

)
. (4.50)

For the example shown in Fig. 4.6(c) with finite Er, the system is in the normal

phase with
〈
c†c
〉
/N = 0 at both the low and the high temperature ends, and is in the

superradiant phase in an intermediate temperature window between T (1)
c and T (2)

c .

A remark is in order. In our derivation of the partition function Z in Eq. (4.38),

we have treated the N atoms as distinguishable particles which obey the Boltzmann

distribution. In other words, we have ignored the quantum statistics of atoms. This

should be a good assumption at high temperature. We may estimate the temperature

regime in which this assumption is valid as follows. Let us assume that the atoms

are ideal bosons. The critical temperature for the bosons to form Bose-Einstein

condensate is given by

TBEC = 3.31
!2ρ 2

3

mkB
≈ 3× 10−4

(
!ω0

kB

)
, (4.51)

where we have taken typical values such that the atomic number density ρ = 1013cm−3,

m the mass of 87Rb atom, and energy splitting between two ground state hyperfine

states ω0 = 2π × 4.81MHz. When T ≫ TBEC, quantum statistics is not important,

and the bosons can in practice be treated as distinguishable particles. As TBEC is

very small in our unit system, our results as presented in Fig. 4.6 should largely re-
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main valid for typical experimental situations. Note that as TBEC is roughly the same

as Fermi degenerate temperature, this estimate is also valid for a system of Fermi

gas. How to properly incorporate quantum statistics of atoms in the calculation for

temperatures within the quantum degenerate regime remains a challenge and will be

investigated in the future.

4.2 Spin-orbit Coupled Atoms inside a Dissipative Optical

Cavity

In this Section, we extend our previous system to a dissipative system with photon

pumping into the cavity and photon leakage from the cavity, where the interplay

between the atomic dynamics and the cavity field gives rise to intriguing nonlinear

phenomena. We explore the full quantum mechanical treatment beyond the mean-

field formalism, and investigate the correspondence between the quantum and the

mean-field treatment. The quantum treatment is carried out by solving the Master

equation for the total density operator, from which we can derive various quantities of

interest, such as the cavity photon statistics, the degree of entanglement between the

atom and cavity field. These two different approaches provide a deeper understanding

to this intriguing system.

This Section is organized as follows. In Sec. 4.2.1, we show that the mean-field

approach results in a phase diagram characterizing nonlinear band structures. In Sec.

4.2.2, we develop the full quantum mechanical formalism to the physical system of

interest. In Sec. 4.2.3, we discuss the intimate correspondence between these two

approaches.
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4.2.1 Model Setup and Mean-Field Approach

As shown schematically in Fig. 4.7, we consider a single atom being confined by a

single-mode unidirectional ring cavity, whose cavity mode together with an additional

coherent laser beam form a pair of Raman beams that induces transition between

two hyperfine atomic ground states denoted as | ↑⟩ and | ↓⟩, while transferring recoil

momentum ±2!qrẑ to the atom. The ring cavity has a resonant frequency of ωc, decay

rate κ, and is pumped by an external laser field with frequency ωp and pumping rate

εp. The Hamiltonian under the rotating wave approximation can be written as,

Heff =
∑

σ=↑,↓

∫
dz

[
ψ̂†
σ(z)

(
k2 + 2ασqrk

2m
+ ασδ

)
ψ̂σ(z)

]

+
Ω

2

∫
dz
[
ψ̂†
↑(z)ψ̂↓(z)ĉ+ h.c.

]

+ iεp(ĉ
† − ĉ)− δcĉ

†ĉ , (4.52)

where, for simplicity, we only consider the atomic COM motion along the z-axis,

which is the direction of the photon recoil. In Hamiltonian (4.52), k is the atomic

COM quasi-momentum (we take ! = 1) along the z-axis, ĉ is the cavity annihilation

operator, ψ̂σ(z) (σ =↑, ↓) is the atomic operator, α↑,↓ = ±1, 2δ represents the two-

photon Raman detuning, δc = ωp − ωc is the cavity-pump detuning, and Ω denotes

the atom-cavity coupling strength (or more specifically, the Raman coupling strength

per cavity photon). Finally we will treat the cavity decay phenomenologically, which

amounts to adding a non-Hermitian term −iκĉ†ĉ in the above effective Hamiltonian.

Note that for a quasi-momentum k, the real momentum for an atom is spin-dependent:

it is k + qr for | ↑⟩ state and k − qr for | ↓⟩ state.

From Hamiltonian (4.52), one can easily obtain the Heisenberg equations of motion

for both atomic and cavity fields. In this work, we only consider a single atom inside

the cavity. Hence we rewrite the atomic field operators as first quantization wave
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Figure 4.7 : Schematic diagram of the cavity-assisted spin-orbit coupled system.
Inside the red dashed box, we show the level diagram of the atom and the light field
configuration where ωp represents the cavity field and ωR is an external coherent laser
beam. εp and κ are the cavity pumping rate and decay rate, respectively.
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functions ψ̂σ(z) → ψσ(z). Assuming spatial homogeneity, we further take the plane-

wave wave function for the atomic modes ψσ(z) = eikzϕσ with the normalization

condition |ϕ↑|2+|ϕ↓|2 = 1. To proceed further, we adopt the mean-field approximation

by replacing the photon field operators by its respective expectation value: ĉ → c ≡

⟨ĉ⟩. The validity of this mean-field approximation lies on two assumptions: (1) the

cavity field can be described as a coherent state; (2) the atomic field and the cavity

field have negligible entanglement. We shall come back to these two assumptions

later when we compare the mean-field results with results obtained from the beyond-

mean-field quantum Master equation.

Within the mean-field formalism, the steady-state solution for the photon field is

obtained by taking the time derivative of the photon field to be zero, from which we

obtain:

c =
εp − iΩ2ϕ

∗
↓ϕ↑

κ− iδc
. (4.53)

Inserting this into the equations for atomic fields, we obtain the coupled nonlinear

time-dependent equations for the two spin components as,

iϕ̇↑ =

(
k2

2m
+ qrk + δ

)
ϕ↑ +

Ωeff

2
ϕ↓ , (4.54)

iϕ̇↓ =

(
k2

2m
− qrk − δ

)
ϕ↓ +

Ω∗
eff

2
ϕ↑ . (4.55)

where Ωeff ≡ Ωc = Ω
εp−iΩ2 ϕ

∗
↓ϕ↑

κ−iδc
is the effective Raman coupling strength between two

atomic states. The fact that Ωeff depends on the atomic field itself is a manifestation

of the non-linearity arising from the atomic back-action to the cavity field.

For a given atomic quasi-momentum k, we define eigenstate and eigenenergy as

the solution of the time-independent version of Eqs. (4.54) and (4.55), by replacing

i(∂/∂t) with ϵ(k). After some lengthy but straightforward algebra, we find that ϵ(k)



93

0 0.4 0.8 1.2 1.6 2

2

4

6

8

10
Ω
/κ

εp/κ

IV

III

II

I
0

(a)

(b1) (b2)

(b3) (b4)

−2 0 2
−0.05

0

0.05

0.1

/κ

−5 0 5
−0.5

0

0.5

1

−10 0 10

0

1

2

3

4

−5 0 5

0

0.4

0.8

/κ

1.5

k/qr k/qr

Figure 4.8 : Single particle eigen-energy spectrum “phase diagram”. The dispersion
curve is generally catagorized by four regions, represented from I to IV in (a). From
(b1) to (b4), we fix εp = κ. In region I, the dispersion has double minima as shown
in (b1) with Ω = 0.03κ; region II is enclosed by the red solid curve in (a) and we
show the typical point in (b2) (Ω = κ) where only single minimum exisits in the
lower helicity branch; region III is enclosed by the black dashed lines in (a) and it
is a region where loop structure emerges, as in (b3) with Ω = 5κ; finally, in region
IV we recover the double minimum dispersion although it’s different from region I by
closing the gap at k = 0, as in (b4) with Ω = 8κ. Throughout this Section we fix
δc = κ and δ = 0, and adopt a dimensionless unit system with ! = m = κ = 1. A
typical value for κ is 2π× 1 MHz, and we choose qr = 0.22 in our dimensionless units
(based on a realistic experimental parameter estimate).

obeys a quartic equation in the form of

4ϵ4 +Bϵ3 + Cϵ2 +Dϵ+ E = 0 . (4.56)

We can gain some insights about the general structure of the dispersion relation

ϵ(k), e.g. the degeneracy condition and the appearance and disappearance of the loop.

In the case of vanishing two-photon detuning (i.e., δ = 0), simple analysis shows that

there should be a total of four regimes, as shown in Fig. 4.8(a). In region I, the

two dispersion branches are gapped, and the lower branch has a double degenerate
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minima, as shown in Fig. 4.8(b1). This dispersion curve structure is very similar to

the case when both Raman beams are provided by classical coherent laser fields (we

shall refer to this as the “classical case”) and the Raman coupling strength is small.

In region II, as shown in Fig. 4.8(b2), the two dispersion branches are still gapped,

but the lower branch has a single minimum. This is similar to the classical case with

a large Raman coupling strength. Regions III and IV do not have analogs in the

classical case. Region III features a loop structure, as shown in Fig. 4.8(b3), whereas

in Region IV, the loop dissolves but the two dispersion branches becomes gapless at

k = 0, as shown in Fig. 4.8(b4). In the looped region, the quartic equation (4.56)

yields four real roots. It can be shown that this requires the coupling strength Ω to

satisfy

Ω(1)
c ≡ 4εp ≤ Ω ≤ 4εp

√
1 + (δc/κ)2 ≡ Ω(2)

c .

The two dashed lines in Fig. 4.8(a) represent the two critical values Ω(1)
c and Ω(2)

c ,

respectively.

It is instructive to examine how the effective Raman coupling strength Ωeff behaves

as a function of Ω. In Fig. 4.9(a), we plot |Ωeff| for the lowest dispersion branch as a

function of Ω for different k values. Note that |Ωeff |2 = Ω2nphoton where nphoton = |c|2

is the steady-state cavity photon number. A few remarks can be made based on this

plot. First, the fact that Ωeff is different for different k clearly shows the influence

of the atomic COM motion on both the atomic internal dynamics and the cavity

photon number. Second, |Ωeff | is not a monotonous function of Ω. For given k,

|Ωeff | increases with Ω linearly for small Ω. This can be intuitively understood as

follows. At such weak atom-photon coupling, the back-action from the atom to the

cavity photon is negligible. The number of cavity photons nphoton is roughly given

by nphoton ≈ n0 =
∣∣∣ εp
κ−iδc

∣∣∣
2

=
ε2p

κ2+δ2c
, where n0 is the number of cavity photons when
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Figure 4.9 : (a) Effective Raman coupling |Ωeff| is plotted as a function of atom-
photon coupling strength Ω for different k values, 0, qr, 10qr for blue dash-dot, red
solid and black dashed lines. We observe that |Ωeff| does not monotonically increases
with Ω but rather peaks at an intermediate value, then approaches zero in the large
Ω limit. Figure (b) shows a comparison between critical boundary of region I and II
(red solid curve) and the analytical result (blue dashed line) given in Eq. (4.57). At
large εp limit, the two results match asymptotically well.

the atom is absent. As a result, we have |Ωeff | ≈ Ω
√
n0 which is independent of the

atomic quasi-momentum k. On the other limit, when Ω is very large, the strong

atom-cavity coupling strength significantly detunes the cavity away from resonance

and the cavity photon number nphoton, and hence |Ωeff |, decreases as a function of Ω.

Such a non-monotonous behavior of Ωeff is a unique feature of the cavity system and

a direct manifestation of the non-linearity of the system arising from the back-action

of the atom on the cavity photon.

From the above analysis, it should also become clear that when the effect of the

back-action is weak (which occurs when Ω is small and/or εp is large), we should

recover the properties of the classical case. In particular, in the classical case, the

lower dispersion branch change from two degenerate minima to a single minimum



96

when the Raman coupling strength exceeds a critical value. Using our notation, this

occurs when |Ωeff | exceeds the critical value 4Er where Er = q2r/(2m) is the photon

recoil energy. For weak atom-cavity coupling, |Ωeff | = Ω
√
n0 = Ω εp√

κ2+δ2c
. Hence the

critical value of Ω is given by

Ω = 4Er

√
κ2 + δ2c
εp

. (4.57)

In Fig. 4.9(b), we plot this critical value (blue dashed line) as a function of cavity

pump rate εp and compare it with the numerically determined lower boundary (red

solid line) between region I and II of Fig. 4.8(a). The two curves overlap with each

other when εp increases. Therefore, as we have expected, in the limit of weak atom-

cavity coupling and strong cavity pumping, we fully recover the classical case where

the SOC is induced by two classical laser beams.

4.2.2 Master Equation Approach

The above discussion is based on the mean-field approach where the cavity field

is replaced by a c-number that represents the photon amplitude. This mean-field

treatment relies on two implicit assumptions: (1) the atom-photon correlation is

negligible, and (2) the photon field can be well approximated by a coherent state.

In order to examine the validity of these assumption, and hence the validity of the

mean-field approximation, we now turn to a full quantum treatment based on the

Master equation:

ρ̇ =
1

i! [Heff, ρ] + L[ρ] . (4.58)

Here ρ is the total density operator of the coupled atom-cavity system, the effective

Hamiltonian Heff is the same as in Eq. (4.52). The dissipation arising from cavity

decay is modeled by the Liouvillean term in the standard form of Lindblad super-
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operator,

L[ρ] = κ(2cρĉ† − ĉ†ĉρ− ρĉ†ĉ) . (4.59)

Again, due to spatial homogeneity, we decouple momentum eigenstates by taking the

plane-wave ansatz for the atomic modes as ψ̂σ(z) = eikzψ̂σ. As there is no coupling

between atomic operators with different k, we can work in the subspace for a fixed

value of k. Here we explicitly write the commutator in Eq. (4.58), for a given atomic

quasi-momentum k, as,

[Heff(k), ρ] =

(
k2

2m
+

qrk

m
+ δ

)(
ψ̂†
↑ψ̂↑ρ− ρψ̂†

↑ψ̂↑

)

+

(
k2

2m
− qrk

m
− δ

)(
ψ̂†
↓ψ̂↓ρ− ρψ̂†

↓ψ̂↓

)

+
Ω

2

(
ψ̂†
↑ψ̂↓ĉρ+ ĉ†ψ̂†

↓ψ̂↑ρ− ρψ̂†
↑ψ̂↓c− ρĉ†ψ̂†

↓ψ̂↑

)

+iεp
(
ĉ†ρ− ĉρ− ρĉ† + ρĉ

)
− δc

(
ĉ†ĉρ− ρĉ†ĉ

)
. (4.60)

Note that if the photon recoil qr = 0, which occurs when the cavity mode and the

external laser beams are co-propagating, the COM kinetic energy terms k2/(2m) can

be gauged away after a simple gauge transformation. Our model is then reduced

to the J-C model and the atomic COM motion does not play a role. To solve the

Master equation (4.58), we choose our basis states as direct product states of photon

Fock state |n⟩ and atomic internal state |σ =↑, ↓⟩: |n; σ⟩ ≡ |n⟩ ⊗ |σ⟩, where non-

negative integer n denotes cavity photon number. Our goal is to calculate the entire

matrix elements of the density operator under this set of basis states, denoted by

⟨m; σ|ρ|n; σ′⟩ ≡ ρσσ
′

mn. We found the governing equation for the matrix element can
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be written as,

d

dt
ρσσ

′

mn = −i

(
k2

2m
+

qrk

m
+ δ

)
(δσ↑ − δσ′↑) ρ

σσ′

mn − i

(
k2

2m
− qrk

m
− δ

)
(δσ↓ − δσ′↓) ρ

σσ′

mn

+
Ω

2i
(δσ↑

√
m+ 1ρσ̄σ

′

m+1n + δσ↓
√
mρσ̄σ

′

m−1n − δσ′↑
√
n+ 1ρσσ̄

′
mn+1 − δσ′↓

√
nρσσ̄

′
mn−1)

+ εp
(√

mρσσ
′

m−1n −
√
m+ 1ρσσ

′

m+1n +
√
nρσσ

′

mn−1 −
√
n+ 1ρσσ

′

mn+1

)

+ iδc (m− n) ρσσ
′

mn + κ
(
2
√
m+ 1

√
n+ 1ρσσ

′

m+1n+1 − (m+ n)ρσσ
′

mn

)
, (4.61)

where σ̄ represents the flip-spin value, i.e. ↑̄ =↓ and ↓̄ =↑.

With Eq. (4.61), we can study the dynamical evolution of the density operator ρ

for a given initial state. Obviously, we need to introduce a sufficiently large photon

number cutoff. Once we obtain the density operator, all relevant physical quantities

can be readily calculated. An example is given in Fig. 4.10, where we show the

time evolution of the cavity photon number n = Tr[ρn̂] = Tr[ρĉ†ĉ] for the initial

state |0; ↑⟩. The three different curves in Fig. 4.10 correspond to different atomic

quasi-momentum k.

As evidenced in Fig. 4.10, due to the presence of cavity decay, a steady state will

eventually be reached. Let us now focus on the properties of the steady state. The

steady-state density operator matrix elements can be obtained by equating the RHS of

Eq. (4.61) to zero. The red dashed lines in Fig. 4.11(a)-(c) represent the steady-state

photon number as functions of atomic quasi-momentum k. The horizontal arrows in

the plot represent the cavity photon number by setting qr = 0, in which case our

model reduces to the J-C model and all physical quantities become k-independent.

To have a better understanding of the photon statistics, we study the steady-state

photon number fluctuation. Specifically, we calculate the normalized photon number

fluctuation defined as

∆n =
⟨(∆n)2⟩
⟨n̂⟩ =

⟨n̂2⟩ − ⟨n̂⟩2

⟨n⟩ ,
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Figure 4.10 : Time evolution of cavity photon number. The initial state is given by
|0; ↑⟩ and we consider the same parameter as in Fig. 4.11(a) with k/qr = −10, 0, 10.
The steady-state values, obtained in the long time limit as shown here, correspond
to red dashed lines at corresponding k values in Fig. 4.11(a).
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where the expectation values of the operators are obtained with the help of the

steady-state density operator. For a coherent cavity field, the photon fluctuation

is Poissonian and we have ∆n = 1. The solid curves in Fig. 4.11(d)-(f) represent

∆n (left vertical axis) as functions of k, and the horizontal arrows pointing to left

give the values of ∆n from the J-C model by setting qr = 0. For the parameters we

have used, we note that the J-C model always predicts a super-Poissonian photon

statistics, whereas our model gives super-Poissonian photon statistics only for small

atomic quasi-momentum, but Poissonian statistics as k/qr → ±∞.

Last but not least, to characterize the correlation between the atom and the

cavity field, we investigate the so-called negativity which measures the degree of

entanglement for a mixed state system. The negativity is defined asN (ρ) = (||ρTA ||1−

1)/2, where ρTA is the partial transpose of the density operator with respect to either

the atom subsystem or the cavity subsystem, and ||ρTA ||1 denotes its trace norm

with the definition ||Â||1 ≡ Tr[
√

Â†Â]. A negativity of zero indicates that the two

subsystems (the atom and the cavity, in our case) are not entangled, whereas a positive

negativity means that finite degree of entanglement is present. The dashed curves

in Fig. 4.11(d)-(f) represent the negativity (right vertical axis) in the steady state

as functions of k, and the horizontal arrows pointing to right give the values of the

negativity from the J-C model by setting qr = 0. One can observe that for the chosen

parameters, the J-C model always predicts a finite degree of entanglement between

the atom and the cavity field. By contrast, the degree of entanglement in our model

weakens when k/qr → ±∞.
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Figure 4.11 : (a)∼(c) Photon number obtained from the mean-field approach (solid
curves) and from quantum mechanical Master equation approach (red dashed curves).
From (a) to (c), Ω = 3κ, 5.6κ, 6κ. The color on the solid curves represents the
normalized decay rate γ/Ω of unstable mean-field states. The black color represents
stable mean-field states. We have used εp = κ, and other parameters are the same as
in Fig. 4.8. (d)∼(f) Corresponding photon number fluctuation (blue solid curve) and
negativity (green dashed line) obtained from the quantum approach. The parameters
used here are the same in (a)∼(c), respectively. The horizontal arrows indicate results
from the J-C model by taking qr = 0.



102

4.2.3 Master Equation versus Mean-Field Results

In the previous two sections, we have presented two different methods for studying

the system. We are now in a position to discuss their connections.

In Fig. 4.11(a)-(c), in addition to the steady-state photon number obtained from

the quantum treatment (dashed curves), we also plot the photon number nphoton = |c|2

obtained from the mean-field approach (solid curves), with c given in Eq. (4.53). In

the quantum treatment, the steady-state density matrix is obtained by solving a set of

linear equations. For a given k, the solution is unique. Hence we only get one steady-

state photon number for a given atomic quasi-momentum. On the other hand, the

mean-field treatment allows multiple steady-state solutions corresponding to different

real roots of the quartic equation Eq. (4.56). Hence a single k value is associated

with more than one steady-state photon number. However, due to the non-linearity

intrinsic in the mean-field method, not all steady-states are dynamically stable. A

straightforward stability analysis allows us to quantify the dynamical stability of the

mean-field states. The stability information of the mean-field states are encoded as

the color value in the solid curves. Those stable states are represented by black

color, while any color other than black indicates an unstable state, and the color

value represents the decay rate (see the colorbar) of the corresponding state. From

Fig. 4.11(a)-(c), we clearly see that at large atomic quasi-momentum k/qr → ±∞,

the Master equation result overlaps with the stable mean-field branch; while at small

|k|, the quantum result deviates significantly away from the mean-field solution.

The agreement for large |k| and the discrepancy at small |k| are both consistent

with the results of the negativity and photon number fluctuations as presented in

Fig. 4.11(d)-(f): At large |k|, the negativity is small (i.e., atom-cavity entanglement

is weak) and the photon number fluctuation tends to Poissonian (i.e., the photon
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field is well approximated by a coherent state), this is exactly the regime where we

expect the mean-field approximation is valid. By contrast, for small |k|, the quantum

calculation indicates that there is non-negligible entanglement between the atom and

the cavity field, and the cavity field itself cannot be assumed as a coherent state.

Hence the mean-field assumption is no longer valid.

The reason why mean-field approximation only works for large |k| is actually

rather simple. Consider a Raman transition process where the atom jumps from | ↑⟩

to | ↓⟩. The quasi-momentum k does not change during this process, however the real

momentum changes from k+ qr to k− qr. Therefore the effective two-photon Raman

detuning is not just 2δ, but 2δ + 2qrk/m, where the additional term comes from the

difference of the kinetic energies for different pseudo-spin state |σ⟩. In other words,

the SOC renders the two-photon detuning momentum-dependent. In the examples

we presented in this work, we have taken δ = 0. Hence the Raman transition is only

near-resonant for small |k|, and becomes far off-resonant for large |k|. Therefore, for

large |k|, the atom-photon coupling, and hence the atomic back-action to cavity, are

weak. This explains why the mean-field assumption becomes valid in this regime.
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Chapter 5

Summary

In summary, we have presented five innovative research projects in the research field

of ”synthetic spin-orbit coupling in cold atoms”, based on a variety of novel quantum

systems, which includes the harmonically trapped system presented in Chapter 2,

the Bose-Fermi mixture in Sec. 3.1, the Bose-Bose mixture in Sec. 3.2, the quantum

optical system in Sec. 4.1, and the dissipative optical cavity in Sec. 4.2.

In Chapter 2, we have systematically investigated the single-particle and two-

body ground states of Raman-induced spin-orbit coupled ultracold atoms in a 1D

harmonic trap. In the absence of the Raman coupling, all single-particle eigenstates

are two-fold degenerate. As the Raman coupling strength increases, the degeneracy of

higher energy eigenstates start to be lifted first, and eventually at a critical coupling

strength, the ground state (and hence all energy eigenstates) becomes non-degenerate.

The single-particle spectrum and wave functions help us to understand the two-body

properties of the system for both bosons and fermions. For the two-boson case, we

point out three phases distinguished by the behaviors of the degeneracy, density-

density correlation functions, and spin density profiles. Then we identify a regime

where the two atoms in the ground state are entangled and characterized by stripes

in density-density correlations. This regime corresponds to the regime of the exotic

stripe phase in the mean-field many-body limit. This Chapter therefore establishes a

connection among one-, few- and many-body physics of trapped atomic systems with

spin-orbit coupling.
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In Section 3.1, we have investigated a system of Bose-Fermi spinor mixtures. The

bosons form a condensate that subjected to the Raman-induced spin-orbit coupling,

while the fermions are not coupled to the Raman lasers, but interact with the bosons

via the density-density and/or spin-exchange interaction. We show that the spin-

exchange interaction makes the fermions experiencing an effective spin-orbit coupling,

without suffering Raman-induced heating. This could pave a new way towards the

first realization of spin-orbit coupled fermionic superfluids, which can be made to be

topological with a proper choice of parameters. The interplay between the bosons

and fermions also has an interesting effect on the former: the Bose-Fermi interaction

favors the condensate to be in the stripe phase, with an interaction-dependent spatial

modulation period. With realistic parameters, the spatial modulation period can be

as large as several microns, making the stripe phase readily observable with the in

situ imaging technique. This provides a significant advantage in both the realization

and the observation of the stripe phase. This providing a new and unique platform

to explore the physics of spin-orbit coupling.

In Section 3.2, we have presented a study of a mixture of two species of spin-1/2

Bose condensates, with only one of the species subjected to a pair of Raman laser

beams which induces spin-orbit coupling in that species. Through the interspecies

spin-exchange interaction, however, the other species also exhibits spin-orbit coupling.

With many control parameters, such as the relative atomic numbers, interaction

strengths, etc., the mixture system displays a very rich phase diagram, and many

of the phases do not exist in a single-species system. Similar to the Bose-Fermi

case discussed in Sec. 3.2, the Bose-Bose mixture provides a viable way of achieving

spin-orbit coupling in bosonic species that suffer from severe Raman-induced heating.

In Section 4.1, we have studied the Raman spin-orbit coupling induced by one cav-
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ity photon field and one classical Raman laser beam, where all three degrees of freedom

including the atomic internal pseudo-spin, the atomic external center-of-mass motion,

and the cavity photon field are coupled and treated self-consistently. For the single-

atom case, we show that the spin-orbit coupling stabilizes the sector which contains

no photons. Furthermore, the spin-orbit coupling combined with a trapping potential

gives rise to rich spin dynamics. For the many-atom case in thermodynamic limit, we

focused on the physics of the Dicke superradiance phase transition. In comparison to

the Tavis-Cummings model where the atomic center-of-mass motion is neglected, the

spin-orbit coupling modifies the phase transition boundary by increasing the critical

atom-cavity coupling strength at which the system becomes superradiant. Further-

more, the non-monotonic behavior of the critical coupling strength can lead to the

reentrant of the non-superradiant normal phase as the temperature varies.

In Section 4.2, we have studied spin-orbit coupled cold atoms inside a dissipative

ring cavity system, through adding dissipative terms into the model shown in Sec. 4.1)

and employing both the mean-field theory and the full quantum mechanical Master

equation approach. By treating both light and atom on equal footing and seeking

the self-consistent solution in both approaches, we have found: (1) cavity-assisted

spin-orbit coupling dramatically modifies atomic dispersion relation, (2) intriguing

dynamical instabilities exist in the system, (3) atom’s back-action onto cavity field

also leads to non-trivial atom-photon coupling that is fundamentally different from

either the system with classical-laser induced spin-orbit coupling in the absence of

the cavity or the Jaynes-Cummings model where the atomic center-of-mass motion

is neglected. We have also explored correspondence and discussed the connection

between the mean-field and the quantum approaches. The two distinctively different

approaches provide us with a deeper understanding and complementary insights into
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this system.
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