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ABSTRACT

Searching For FFLO States in Ultracold Polarized Fermi Gases:

A Numerical Approach

by

Hong Lu

Ultracold atomic gases have emerged as an ideal laboratory system to emulate many-body

physics in an unprecedentedly controllable manner. Numerous many-body quantum states

and phases have been experimentally explored and characterized using the ultracold atomic

gases, offering new insights into many exciting physics ranging from condensed matters to

cosmology.

In this thesis, we will present a systematic numerical study of a novel experimental sys-

tem, population imbalanced two-component ultracold Fermi gases. We explore the phase

diagram of this system in both 3D and 1D especially focusing on the exotic Fulde-Ferrell-

Larkin-Ovchinnikov (FFLO) phase, which is characterized by a spatially oscillating order

parameter. In 3D, we solve for the stationary states of trapped imbalanced Fermi gases in

a wide range of parameter space with a home-made parallel eigen-solver for Bogoliubov-

de Gennes (BdG) equations. Our results show that there exists a metastable state with a

FFLO type oscillating order parameter. In 1D, we simulate the dynamical expansion of

the population imbalanced Fermi gases from the trap. A numerically quasi-exact scheme,

time-evolving block decimation (TEBD), is introduced for the comparative studies with



iii

the solution of the time-dependent BdG equation. Our results predict that the existence of

FFLO states will leave conspicuous signatures in the density profiles during the expansion.

For further understanding of the interplay between the population imbalance and two-body

pairing interaction between two spin components, we also study the spin transport proper-

ties through trapped ultracold Fermi gases. The preliminary results will be discussed.
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Chapter 1

Introduction

In the past decade, the field of cold atomic and molecular physics has witnessed an im-

pressive amount of experimental progresses [1, 2, 3, 4, 5, 6] and consequently substantial

theoretical efforts [7, 8] are being spent in understanding the experiments as well as in

investigating underlying physics. Cold atoms provide people with systems amenable to

exquisite experimental control. Experimentalists can tune the interaction strengths, confin-

ing potential geometries, and many other important parameters, which makes cold atomic

gases a very attractive laboratory system to investigate the complicated physics compared

with conventional electronic materials. With the observation of the superfluidity in ul-

tracold Fermi gas, such systems are starting to become a promising ’quantum simulator’

linking atomic physics to condensed matter physics. Superconductivity is one of the most

challenging puzzles in condensed matter physics since early in last century. In the 1950s,

people started to realize that pairing is the key to understand superfluidity and superconduc-

1
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tivity when Cooper first time showed that, in the presence of a Fermi sea, two electrons with

opposite spins can form a bound state at arbitrarily weak interaction strength [9]. Bardeen,

Cooper and Schrieffer later proposed a theory based on a variational form of the ground

state for the many-body system [10], which is now well known as the BCS theory of su-

perconductivity. Later on, in the early 1980s, Nozieres, Schmitt-Rink and Leggett [11, 12]

proposed the crossover picture between weakly attracting fermions described by the BCS

mean-field theory to strongly attractive regime where molecular Bose-Einstein condensates

(BECs) form in the system. The experimental confirmation was not available until the ap-

plication of Feshbach resonance [13, 14] tuning the interaction in cold atom systems.

Let us start by considering a dilute ultracold mixture of fermions in two distinct hy-

perfine states. Such model systems are ideal and powerful tools for physicists to under-

stand pairing mechanism and superconductivity by mimicking spin-1/2 electronic system.

In such two-component ultracold Fermi gases, due to the Pauli exclusion principle and

ultralow temperature, the interaction between the two hyperfine states are dominated by

two-body scattering between unlike spins, which can be modeled using zero-range contact

potential. The amplitude of two-body scattering can be formulated as f (k) = −a/(1 + ika),

where k is the relative momentum and a is called the scattering length, which characterizes

the interaction in two-component Fermi gases. As we can see for a special case, when the

scattering length diverges, i.e.|a| → ∞, the scattering amplitude goes to a universal finite

value f = 1/ik. This regime is called the unitary limit where the system is strongly inter-

acting and the physical properties are independent of the microscopic details. On one side
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Figure 1.1: Feshbach Resonance of 6Li atoms near 834G [16]

of unitary limit where kFa → 0+, the system possesses a two-body molecular bound state.

The tightly bound pairs are highly spatially correlated and can undergo Bose-Einstein con-

densation, therefore this is called the BEC limit. On the other side where kFa → 0−, this

corresponds to a weakly attractive regime called the BCS limit where system is highly mo-

mentum correlated and behaves as a condensate of Cooper pairs. The Feshbach resonance

provides a knob to tune the scattering length in cold atoms [15], enabling experimental-

ists to observe a smooth crossover connecting all these states when the scattering length

changes the sign by passing through the infinity. Fig. 1 shows a BEC-BCS crossover in 6Li

.
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Despite that the BCS theory successfully describes the pairing phenomena and resultant

superfluidity and superconductivity in fermionic system, a natural question arises about the

fate of the superconductor when the system becomes spin polarized, i.e., the population

of two spin components are unequal. In such a scenario, the majority component is nec-

essarily partially unpaired, thus the system needs to configure itself into a new state to

accommodate these unpaired fermions. This question was first investigated independently

by Clogston [17] and Chandrasekhar [18]. Neglecting the orbital effects which induce the

Meissiner effect in the superconductors, they considered the spin imbalance to be induced

by Zeeman coupling between electronic spin and external magnetic field B and found a

first order phase transition from superconductivity to normal state which happens at a cer-

tain magnetic field strength and this is referred to as the Clogston-Chandrasekhar (CC)

limit. Various pairing mechanisms and exotic phases have been proposed for the polairzed

fermionic system. Among them, the most interesting one may be the FFLO state suggested

by Larkin,Ovchinnikov (LO) [19]and Fulde and Ferrel (FF) [20]. The idea was based on

a simple argument as follows: because BCS wavefunction cannot accommodate finite mo-

mentum into Cooper pair, the Fermi surface of the two spin species would move towards

to each other and become closer in one direction. This may lead to a spatially varying

order parameter △(r). It is worth noting that there is some subtle difference between FF’s

proposal and LO’s. In FF’s proposal, they suggested a homogeneous order parameter with

phase modulation:

△(r)FF = △eiq�r (1.1)
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where q = k↑F − k↓F is the finite center of mass momentum, k↑F ,k
↓
Fare the Fermi vectors

for spin ↑ and ↓ particles. LO proposed a spatially modulated order parameter

△(r)LO = △(eiq�r + e−iq�r) = △cos(q � r) (1.2)

There have been exhaustive experimental efforts to search for this exotic pairing state

in condensed matter systems, while it is still elusive from direct observation except for

some ambiguous evidences from heavy fermion [21]and organic [22, 23] superconduc-

tors systems. The polarized Fermi gases enable people to continue this search with a more

controllable manner because cold atoms have longer spin relaxation time compared against

the classical condensed matter systems. The spin imbalance therefore can be created with

radio-frequency field or optical pumping in cold atoms and kept for a long time for ex-

perimental observations. In 2006, two groups at Rice and MIT experimentally realized

3D ultracold polarized Fermi gases at unitarity. While some features of the observations

fall into theorists’ expectations, there are significant discrepancies between the results from

these two groups and the direct signature of FFLO state is missing.

Another crucial factor for successfully observing the FFLO state in the experiments is

the dimensionality of the system, which plays an important role in stabilizing the FFLO

states as have been found in condensed matter systems. It has been predicted [24] that in

3D polarized Fermi gases, stable FFLO state may occupy little of parameter space, while

it could become dominant in phase diagram in 1D due to the analogous of ’nesting’ effects

in charge density waves and spin density waves [25]. In 2010, the Rice group successfully

realized the polarized Fermi gases in 1D [26], which opens a door to the search for the



6

FFLO states. However, the static density profile in trap does not show the smoking gun’s

signature of the existence of the FFLO states.

The aim of this thesis is to present our work in seeking FFLO state in both 3D and 1D

polarized ultracold Fermi gases using numerical simulations. These studies are closely re-

lated to the recent experimental advancements, especially at Rice university. Although a lot

of theoretical efforts are being devoted to the study of ultracold Fermi gases, much is con-

ducted by analytical or semi-analytical means, with the whole range of quantum statistical

tools. As it always happens to the case of complex physical phenomena, analytical methods

face severe limitations whenever genuinely non-perturbative and strongly nonlinear effects

in realistic experiments need to be quantitatively addressed. Under these circumstances,

numerical measures become indispensable. Particularly in ultracold quantum gases, since

all experiments are necessarily performed in the presence of trapping potentials that hold

the atoms together, inhomogeneity and finite-size effect prevent a lot of well-developed

analytical approaches from giving accurate descriptions of such systems. Therefore, this

thesis is organized into two parts for 3D and 1D polarized Fermi gases respectively: in

Chapter 2, we will discuss about our efforts to seek FFLO states in 3D elongated trapped

polarized Fermi gases using mean-field Bogoliubov-de Gennes (BdG) approach. In Chap-

ter 3, we move forward from 3D to 1D while extending our scope from static ground state to

the expansion dynamics of the partially polarized Fermi gases. In this study, besides imple-

menting a time-dependent BdG solver, we introduce the time-evolving block decimation

(TEBD) algorithm, a ’quasi-exact’ numerical method suitable for studying the dynamics
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of 1D strongly correlated systems. Our results, using the combination of these two ap-

proaches, suggest that during the expansion, the existence of FFLO phase would cause

strong peaks in the density profile for direct observation. The TEBD method furnishes

us with an efficient and accurate measure studying the dynamical processes in 1D sys-

tems. With reference to this advantage, we close with a preliminary numerical experiment

of spin transportation to investigate the interplay between the pairing and the population

imbalance.



Chapter 2

BdG studies of trapped polarized Fermi

gases in 3D at unitary

2.1 Introduction

In this Chapter, we present our efforts in understanding ground states and metastability of

ultracold polarized Fermi gases in the unitary regime by using scalable numerical tech-

niques which take full advantage of cutting-edge high-performance computing facilities

running parallel codes over thousands of CPUs. Our investigation was in the first place

motivated by the apparently contradictory results from recent experiments between two

groups [27, 28, 29, 30, 31, 32]. In both experiments it was observed that the trapped

superfliud responds to polarization by phase separating into an inner core with negligible

polarization surrounded by a polarized outer shell. However, the Rice experiments [31, 32]

8
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performed in cigar-shaped traps with total particle numbers N ∼ 105 observed a significant

and unexpected deformation of the central superfluid core, indicating a clear violation of

the prediction based on the so-called local density approximation (LDA) method. In ad-

dition, the results from Rice experiment also suggest a much higher superfluid to normal

CC transition than the MIT experiments [27, 28] in which no deformations were observed.

The excellent quantitative agreement with theory [33, 34, 35, 36] in the MIT experiments,

conducted at much lower trap aspect ratio and with higher particle numbers N ∼ 106, hints

that there might be unexpected physics at work in the Rice experiment. In addition, the

concurrence of experiments performed in Paris [37] with the MIT experiments also sug-

gest a crucial role of the trapping geometry. This impasse has inspired speculations about

the possible role of exotic phases such as the FFLO state in the observed discrepancies.

The apparent discrepancies between the Rice and MIT experiments reflect theoretical

difficulties in understanding the effects of trapped geometries in cold atom experiments. In

order to extract the bulk properties of the system (e.g, the equations of state) from measure-

ment on a trapped sample of cold atoms, LDA, as a typical theoretical method, is widely

adopted to account for the spatial imhomogeneousity in the system. Briefly the LDA as-

sumes the system is locally homogenous as a part of an infinite system and the spatially

varying trapping potential will be absorbed into a local chemical potential µ(r) −→ µ−V(r)

. The LDA can be seen as an accurate approximation for large particle number N without

the presence of phase boundaries. However, if large change in the density occurs, in our

case, from the center to the edge of the trap which indicates multiple phases coexist in the
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system , then care needs to be taken when applying the LDA method. Especially when

the number of particles in the sample is small and finite-size effects are significant, the

corrections to the LDA become crucial even when only one phase is present in the trapped

sample [38]. Furthermore, the LDA method cannot correctly take into account the sur-

face energy correction due to the shape of the distortions [39, 40, 41]. Thus the LDA is

not an adequate approach to capture exotic phases such as the FFLO states. To this end

we employ an approach by self-consistently solving Bogoliubov-de Gennes (BdG) equa-

tions [42], which is a powerful mean-field tool particularly suitable for inhomogeneous

Fermi superfluids, and has been recently adopted by many to study trapped ultra-cold Fermi

gases [36, 43, 44, 45, 46] .

Overall, our calculation will serve two purposes: first, we want to examine the validity

of the LDA as the particle number and aspect ratio of the trap are varying. The second

aim is closely related to the new development in interpreting the observations in the Rice

experiment. Recently Parish et.al [47], after carefully examining the detailed setup of the

Rice experiment, proposed that the LDA-violating deformation observed could be a result

of depolarization of the superfluid core by evaporation occurring mainly at the axial center

of the trap. Later on this proposal has been experimentally verified by the Rice group

[48]. According to [47], the evaporative cooling at the center shortens the ellipsoidal

partially polarized region along the major axis where the condensate forms and leads to the

observation of possibly metastable states in the experiment. This led us to investigate the

metastability of these states by constructing initial ansatz imitating this circumstance and
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compare the calculated final states with the results from the Rice experiment directly.

2.2 Hybrid Mean-Field BdG Strategy

2.2.1 Formalism of BdG equations

The system we consider is a gas of N = N↑+N↓ spin-polarized fermionic atoms interacting

through a contact potential (g
∑

i< j δ
3(Ri − Rj)) and confined to a harmonic trap defined in

cylindrical coordinates (ρ, ϕ, z) by Vext(R) = m
2 (ω2

⊥ρ
2 +ω2

z z2) with axial and radial frequen-

cies denoted by (ωz, ω⊥). In addition to the total number N, we define the total polarization

of the cloud P = (N↑ − N↓)/(N↑ + N↓), which can be varied through independent control

of the number of particles in each spin projection Nσ,σ = (↑, ↓) . We work at unitarity

(as → ∞) and within a cigar-shaped trap with the aspect ratio α = ω⊥/ωz. This system of

N = N↑ + N↓ atoms interacting through contact interaction is described by a Hamiltonian

Ĥ =
∫

dR (H0 + HI) with non-interacting H0 and interacting HI portions given by:

H0(R) =
∑
σ

ψ†σ(− ~
2

2m
∇2 + Vext (R) − µσ)ψσ,

HI(R) = gψ†↑(R)ψ†↓(R)ψ↓(R)ψ↑(R) , (2.1)

where ψσ(R) represents the fermionic field operators, m the mass and µσ the chemical

potential of atomic species with spin σ. The coupling constant is defined as g = 4π~2as
m .

Henceforth, we work in trap units for which: m = ωz = ~ = kB = 1. This implies that

energies will be measured in units of ~ωz, lengths in units of l0 =
√

~
mωz

and temperature

(T ) in units of ~ωz/kB .
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We will treat the Hamiltonian (2.1) within the mean-field BdG formalism [42] which

has been adopted in studying many fermionic systems. However, to build a practical nu-

merical scheme to solve the BdG equations, we employ a hybrid structure combining low-

lying eigenmodes of BdG equation and semi-classical LDA for high-lying modes above a

carefully chosen energy cutoff Ec.

We would like to devote a few lines here to comment on the validity of the BdG theory

at unitarity because it is expected that quantum fluctuations and other effects due to the

strong interactions could be significant in this regime. The main drawbacks of the BdG

formalism is that it fails to account for phase fluctuations. At unitarity it has an additional

disadvantage in that it also fails to account for interactions within the normal fluid which is

unitarity limited [49]. However the BdG is widely expected to yield qualitatively reliable

answers for two main reasons. First, because of the finite size of these experiments, the

trapped gas enjoys protection from fluctuations of arbitrarily low energy or of very long

wavelengths. Secondly, due to experimental evidence for superfluidity at unitarity, it is

quite clear that interactions within the normal fluid are not so great that the order parameter

cannot form or will be destroyed. Thus, the failure to account for these effects is not

expected to change the topology of the phase diagram but at most would slightly shift the

phase boundaries. Since our purpose to examine the suitability of the LDA is qualitative,

we are confident that the BdG can account for the essential physics. Nevertheless, due

to the limitations within the BdG formalism, in particular the neglect of interaction in the

normal fluid, our calculation fails to quantitatively locate the position of the Clogston limit.
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In addition, it cannot be applied to study a system with extremely large polarization (i.e.,

P ≈ 1) where the polaron physics will dominate [37, 50].

2.2.2 BdG formalism for low-lying state

Now we apply mean field approximation on the interacting Hamiltonian, and define mean-

field quantities, the pairing field or gap parameter ∆(R) as following:

∆(R) = −g⟨ψ↓(R)ψ↑(R)⟩, (2.2)

and the mean-field interacting Hamiltonian can be expressed as

HI(R) = −∆ψ†↑(R)ψ†↓(R) − ∆∗ψ↑(R)ψ↓(R) (2.3)

By introducing the Nambu spinor Ψ(R) = [ψ↑(R), ψ†↓(R)]T, we can derive the effective

mean-field Hamiltonian as:

Heff =

∫
dRΨ†(R)


H s
↑(R) ∆(R)

∆∗(R) −Hs
↓(R)

Ψ(R) (2.4)

where the single particle Hamiltonian

H s
σ(R) = −∇2/2 + Vext (R) − µσ. (2.5)

Heff can be diagonalized(decoupled) into Heff =
∑

j,σ E j,ση
†
j,ση j,σ, where η†j,σ and η j,σ

are the creation and annihilation operators of the quasi-particles, which obey the fermionic

commutation relations. For this purpose, we change Nambu spinor into the quasi-particle
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basis η j≡ [η j,↑, η
†
j,↓]

T using the Bogoliubov transformation, which is defined by

Ψ(R) =
∑

j


u j,↑(R) −v∗j,↓(R)

v j,↑(R) u∗j,↓(R)

 ηj (2.6)

This yields the BdG equations for the pair wave functions u j,σ(R) and v j,σ(R) with the

corresponding eigenvalues E j,σ as follows:
H s
σ ∆(R)

∆(R) −H s
σ̄




u j,σ(R)

v j,σ(R)

 = E j,σ


u j,σ(R)

v j,σ(R)

 (2.7)

In accordance with fermionic commutation relations [42], the u j,σ(R) and v j,σ(R) are nor-

malized as ∫
dR (|u j,σ(R)|2 + |v j,σ(R)|2) = 1 (2.8)

and are related to the spin densities through :

nσ (R) =
1
2

∑
j

[∣∣∣u jσ

∣∣∣2 f
(
E jσ

)
+

∣∣∣v jσ̄

∣∣∣2 f
(
−E jσ̄

)]
(2.9)

where f (E) = 1/(eE/kBT + 1) is the Fermi-Dirac distribution function at temperature T . The

paring field or gap paramter is given by

∆(R) =
g
2

∑
j

[
v∗j↑u j↑ f

(
E j↑

)
− u j↓v∗j↓ f

(
−E j↓

)]
(2.10)

Furthermore, the above BdG equation ( 2.7) can be simplified by noticing that there exists

one-to-one correspondence between the solution for two spin components as follows,

E jσ ↔ −E jσ̄, (2.11)
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and 
u jσ (R)

v jσ (R)

↔

−v∗jσ̄ (R)

+u∗jσ̄ (R)

 . (2.12)

Therefore, we only need to solve the BdG equation for one spin component. removing the

spin index from the Eq. ( 2.7), we obtain that:
H s
↑ ∆(R)

∆(R) −Hs
↓




u j(R)

v j(R)

 = E j


u j(R)

v j(R)

 , (2.13)

Correspondingly, the normalization and spin densities and gap parameter have a new form

in u j and v j, ∫
dR (|u j,σ(R)|2 + |v j,σ(R)|2) = 1 (2.14)

ρ↑(R) =
∑
j=1

|u j(R)|2 f (E j),

ρ↓(R) =
∑
j=1

|v j(R)|2 f (E j). (2.15)

and

∆(R) = −g⟨ψ↑(R)ψ↓(R)⟩ = −g
∑

j

u j(R)v∗j(R) f (E j) (2.16)

Eqs. (2.13), (2.14) and (2.16) constitute a closed set of nonlinear equations which can be

solved self-consistently.

However, using the contact potential will lead to ultraviolet divergence in 3D because

the contact interaction assumes wrongly that all states are scattered in the same way re-

gardless of their incoming energy and consequently sums in contributions from collisions

at arbitrarily high energy. Hence the gap equation ( 2.16) needs to be properly regularized.

The renormalization process is described in Appendix A.
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2.2.3 LDA treatment above cutoff

In order to ensure accuracy, as previously stated, an energy cutoff Ec is introduced, such

that in the sum of Eq. ( 2.16), only modes with |E j| < Ec are included. To incorporate the

contribution from states above the energy cutoff, we use the LDA formalism, which is the

leading order of a semiclassical approximation in the BdG equations by setting

u j(R) → u(k,R) exp [ik · R] ,

v j(R) → v(k,R) exp [ik · R] ,

E j → E (k) , (2.17)

the BdG equation becomes
H s
↑(k,R) ∆(R)

∆(R) −H s
↓(k,R)




uk

vk

 = E(k)


uk

vk

 (2.18)

where the quasi-classical single particle Hamiltonian

H s
σ (k,R) = k2/2 + Vext(R) − µσ (2.19)

It is easy to see that the equation has two branches of solutions as follows,

E (k,±) = Ek ∓ δµ (2.20)

where Ek =
[
ξ2

k + ∆
2(R)

]1/2
and ξk = ~

2k2/2m + Vext(R) − µ. The corresponding eigen-

functions for the two branch solutions are, respectively,

u2
k =

1
2

(
1 +

ξk

Ek

)
, v2

k =
1
2

(
1 − ξk

Ek

)
, ukv∗k = +

∆(R)
2Ek

. (2.21)



17

and

u2
k =

1
2

(
1 − ξk

Ek

)
, v2

k =
1
2

(
1 +

ξk

Ek

)
, ukv∗k = −

∆(R)
2Ek

. (2.22)

If we choose a sufficiently large energy cut-off (βEc ≫ 1), we arrive at the following

simplified expressions of density and gap profile for the above cut-off LDA contributions:

n↑,LDA (R) =
∑

E(k,−)>Ec

1
2

(
1 − ξk

Ek

)
, (2.23)

n↓,LDA (R) =
∑

E(k,+)>Ec

1
2

(
1 − ξk

Ek

)
, (2.24)

and

∆LDA(R) = U
∑

E(k,−)>Ec

[
−∆(R)

2Ek

]
. (2.25)

2.2.4 Numerical Implementation

We discretize the BdG equation using a linear triangular finite element mesh in the ρ-z

plane which anticipates that our results will retain the cylindrical symmetry of the confin-

ing potential Vext. The accuracy of these calculations are controlled by the density of the

trianglular mesh and the cut-off Ec used in the hybrid scheme. Both of these are changed

in successive solutions until the free-energy or relevant observable converges to a sufficient

accuracy. Experience has taught us that this simple renormalization scheme typically con-

verges when the cutoff is of the order 6EF (where EF is the Fermi energy) which implies

that the number of quasiparticle states to be directly calculated by Eq. (2.13) is about 6N.

Note that this puts a constraint on the density of the discretizing mesh. Thus, for moderate
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system sizes, we are still presented with a very large problem. For example, for N ∼ 103

particles, one essentially needs to calculate ∼ 104 quasiparticle states at each iteration.

One important consequence of our finite element discretization is that it yields sparse

matrices which are suitable to massively parallel matrix computations. This is of key im-

portance given that the slow convergence of the gap function condemns us to calculate

a very large number of quasi-particle states. This is true inspite of our efficient hybrid

scheme, without which calculation would be prohibitive. It is immediately obvious that

these difficulties will increase with the number of particles N, and will make the problem

impractical for even moderate particle numbers without very careful formulation. In our

case these difficulties are inescapable since the issues to be addressed occur in the pres-

ence of finite size effects and confinement. Hence, it was crucial to develop the ability

to perform calculations with realistic particle numbers because it is not a priori obvious

how physical properties will scale with system size. At each iteration, we need to find a

large number of eigenvalues and eigenfunctions for large matrices. To this end, based on

shift-and-invert scheme [51], we solve the BdG equation using a parallel eigen-solver we

developed independently but is very similar to the one described in Ref. [52].

Briefly, the scheme involves partitioning the sought spectrum amongst groups of pro-

cessors working independently. The size of the group is determined by the minimum num-

ber of processors with enough total memory to store the inverted matrix which is required

for building the local Krylov basis. The main challenge here is bookkeeping to prevent

over-counting of states and balancing the load amongst the processor groups. It is conceiv-
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able that this method could have issues in cases where the equations support huge degener-

ate subspaces. In our particular formulation we exploited cylindrical symmetry and parity

along the long trap axis to reduce the problem. Consequently we only had to contend with

accidental degeneracies. We note here that this parallelization scheme is very efficient on

distriubted computing systems and scales easily to thousands of CPU’s which is as high

as we have tested. Potentially it can be used to study much larger systems than we have

reported in this thesis.

2.2.5 Summary of the algorithm

To provide a straightforward overview of the structure of the code, we put it into a flow

chart as in Fig. 2.1.

As shown in the flow chart, the program will:

1. start with an initial guess of the order parameter ∆(R) such as the LDA result or a

previously calculated state,

2. discretize the BdG equation over a fine enough finite element mesh, which is chosen

on a self-consistent basis,

3. solve the BdG equation for all the states up to the chosen energy cut-off to find u j (R)

and v j (R) using the shift-and-invert iterative solver,

4. update density and gap profiles and then adjust the chemical potentials µ↑ and µ↓

under the conserved number of particles constraint,
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previous

data
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NO
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NO

σµ

until:

σ σ=∫

Refine mesh to check
self-consistency of
results until determine
an optimal mesh for each
case

Figure 2.1: The basic flow of the code solving BdG equation self-consistently
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5. generate new states using a modified Broyden’s mixing method [53] to improve the

self-consistency of the alogrithm until the calculation is converged to a steady state.

6. for specified particle number N and trap aspect ratio α, to ensure the accuracy of

the eigen-solutions obtained, we repeat above steps on a refined finite element mesh,

check the self-consistency of the results and determine an optimal mesh for the fol-

lowing calculations.

2.3 Results and discussions

With our home made powerful BdG solver, we were able to perform a systematic study of

trapped polarized fermi gases with varying characteristic parameters such as total particle

number, trap aspect ratio, and polarization. We search extensively in a large parameter

space to charactize the effect of trap geometry and manifest the signature of FFLO states

in experimental observations. Briefly, we can categorize our results into two classes by

starting from different initial ansatz. The first class of solutions has a structure similar to

that of LDA solution and is consistently the lowest in energy within our analysis, while the

second class of solutions has a tendency towards metastable behavior as the trap becomes

increasingly elongated. This could lead to the observation of states that are not necessarily

the ground state.
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Figure 2.2: Density (left) and order parameter (right) profiles along the axial axes in a spherical

trap, showing both BdG and LDA results

2.3.1 A case study for N = 200

We first choose a relatively small particle number of N = 200. As we will show, the system

is rather sensitive to the trap geometry. In the following section, we first briefly discuss the

case of a spherical trap with α = 1 and then concentrate on elongated cigar-like trapping

potentials with α > 1 and then discuss them in detail. In all calculations, we adopted the

LDA state as the intial ansatz to obtain the BdG results.

Spherical trap

To benchmark our work, we first did a confirmatory calculation for spherical trap geometry

and found our results in perfect agreement with those reported in Ref. [36]. In this case,

even though we anticipate only cylindrical geometry, the density profiles always obey the

spherical symmetry. Note that the authors of Ref. [36] solved the one-dimensional (1D)

radial equation, hence the spherical symmetry of the cloud is automatically imposed. We

refer the readers to Ref. [36] for details, here we just briefly present the key features as

shown in Fig. 2.2. The density profiles indicate a phase-separation scenario: a fully paired
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BCS superfluid core at the trap center surrounded by a fully polarized shell composed of

excess majority spins. A thin layer of partially polarized gas forms the interface between

the superfluid core and the normal shell. In this intermediate regime, the minority density

and the order parameter sharply drop to zero. Here and in other cases, we always found

that the profile of the order parameter closely follows that of the density of the minority

spin component. Furthermore, in this case, the LDA gives very good agreement with the

full BdG calculation even for particle numbers as small as a few hundred.

Cigar trap

In practice, all the experiments on spin-imbalanced Fermi gases have been performed in

cigar-like traps with aspect ratio α > 1. Figure 2.3 illustrates several examples of the

density profiles for N = 200 atoms confined in a moderately elongated trap with α = 5,

which is a trap aspect ratio close to what has been used in the MIT experiments. We

express our results in terms of the Fermi energy EF = (3N)1/3α2/3, central number density

(2EF)3/2/(6π2), and the Thomas-Fermi radius along the z-axis ZF =
√

2EF for a single

species ideal Fermi gas of N/2 particles in a trap with identical parameters. The upper

row of Fig. 2.3 shows the density profiles of a system with a relatively small polarization

P = 0.2. Here the axial spin density δρ1d(z) exhibits a double-horn structure and vanishes

near z = 0. This is a clear violation of the LDA which predicts that δρ1d(z) should be

flat topped [55]. Fig. 2.3 can be examined in tandem with Fig. 2.4 where upon closer

inspection, we plot the densities and the order parameter along the axial and radial axis for
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Figure 2.3: Density profile of the atomic cloud for N = 200 in an elongated trap with aspect

ratio α = 5. Adopted from Ref. [54]. The upper, middle and lower row are results

from different polarizations P = 0.2, 0.4 and 0.6, respectively. In each row, we have

shown (from left to right) the column densities of the majority component
∫

dx ρ↑, the

minority component
∫

dx ρ↓, their difference
∫

dx (ρ↑ − ρ↓), and the axial spin density

δρ1d(z) =
∫

dxdy (ρ↑ − ρ↓).
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two different polarizations. Fig. 2.4(a) displays results for P = 0.2. The density profiles

along the z-axis show clearly a phase separated three-region structure — moving from

the center to the edge of the trap, we encounter a fully paired superfluid core, a partially

paired intermediate region and a fully polarized normal gas, just like in the previous case

of spherical trap. In stark contrast, the density profiles for the two components along the

ρ-axis are completely overlapped. In fact, this matching of the radial profiles occur for

|z| ≤ 0.1. As a consequence, the axial spin density vanishes near z = 0 as shown in the

upper row of Fig. 2.3.

That the majority and minority densities overlap along the radial direction can be un-

derstood from an argument invoking the surface energy. When induced phase separation

occurs, there is an accompanying surface energy associated with the interface between the

two phases. The system will then try to minimize the interface in order to reduce the associ-

ated energy. For a cigar-like trap as we study here, the superfluid-normal gas interface area

can be efficiently reduced if the two spin components match their densities radially. The

authors of Ref. [39, 40] devised phenomenological theories to include the surface term vari-

ationally to explain the breakdown of the LDA observed in the Rice experiment [31, 32].

In our calculation, the surface energy is automatically included from the self-consistent

BdG formulation [56].

As polarization increases, eventually it becomes energetically unfavorable to have this

radial overlap. This is illustrated in Fig. 2.4(b) for P = 0.6. Consequently, the axial

spin density no longer vanishes near z = 0 and the LDA becomes more accurate (see the
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with α = 5 for two differnet polarizations: (a) P = 0.2 and (b) P = 0.6. Adopted from

Ref. [54].
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Figure 2.5: Same as in Fig. 2.3, but for α = 50, Adopted from Ref. [54].

middle and bottom rows of Fig. 2.3). In addition, it is quite noticeable that, particularly for

large P, the minority component density has a steeper down turn along the axial axis than

along the radial axis. Moreover, in the partially polarized intermediate region, the order

parameter has a small oscillation along the axial axis, but not along the radial axis. Similar

order parameter oscillations were also found in the spherical trap case [36]. This is a

consequence of the proximity effect which, in the context of superconductor, occurs when a

superconductor is in contact with a normal metal, the Cooper pairs from the superconductor

diffuse into the normal component.

Next, we increase the trap aspect ratio to α = 50 which represents a much more elon-
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gated cigar trap and close to what is used in the Rice experiment. A similar display of the

column and axial spin density profiles for different polarization as in Fig. 2.3 is shown in

Fig. 2.5. In this very elongated trap, the majority and minority components have their den-

sities matched along the radial axis up to the highest polarization we have calculated which

is P = 0.7, and the minority component has a boxy-looking density profile. This further

confirms that the system is able to greatly reduce the effective surface area between the

normal state and the superfluid state in anisotropic cigar-like traps. Another marked fea-

ture for such an elongated trap is the prominent oscillations of the order parameter along

the z-axis. As demonstrated in Fig. 2.6, these oscillations are quite generic features in such

a trap with finite P. As P increases, both the amplitude and the spatial extension of the

oscillations increase. As shown in Fig. 2.6(b), at large polarizations, the axial length of the

partially polarized intermediate region becomes comparable to or even larger than that of

the BCS core. Accompanied by the oscillation in the order parameter, the density profiles

(in particular, the minority density) also exhibit strong oscillations, which are reminiscent

of the FFLO state.

Our calculations also show that these axial oscillations are aligned along the radial axis,

as shown in Fig. 2.6(c). We even intentionally started from an initial ansatz of ∆ where the

axial oscillations are present but with the nodes mis-aligned in the radial direction, and

the BdG iterations eventually converge to a state where the nodes are perfectly aligned

radially. This radial alignment has important impact in detecting the oscillations in column

density profiles where the densities are integrated along one radial axis: Due to the radial
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Figure 2.6: α = 50 for two different polarizations: (a) P = 0.2 and (b) P = 0.7. Adopted from Ref.

[54]. Same units as in Fig. 2.4. We do not show the radial density and order parameter

profiles, which look more or less like those in Fig. 2.4(a). (c) The surface plot of the

order parameter for the case of P = 0.7 in the ρ-z plane, showing strong oscillations

with the nodes aligned along the radial direction. (d) The density oscillations for P =

0.7 leave a strong signal in the doubly integrated axial spin density δρ1D(z).
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alignment, the oscillations are not washed out and can be easily observed, for example, in

the doubly integrated axial spin density δρ1d(z), as illustrated in Fig. 2.6(d).

It is interesting to compare our result with the recent work by Bulgac et al. [57] who,

using a density functional theory (DFT), argued that the FFLO pairing phase occupies a

larger phase space region than people previously thought for a 3D homogeneous system.

The FFLO state found in Ref. [57] is also associated with large-amplitude density oscilla-

tions, particularly in the minority component. Another perspective on the order parameter

oscillations and its potential connection with the FFLO phase is dimensionality. It has been

shown that the partially polarized phase with FFLO-like oscillations could be prominently

featured in the phase space of 1D systems [58, 59, 60]. Besides the analogs of Fermi sur-

face nesting, that FFLO state is favored in the reduced dimensionality can be understood

alternatively from the cost of creating domain walls. The cigar-like traps used in our calcu-

lation mimic a quasi-1D system and may be the reason that we see pronounced oscillations

in our calculation. If this latter explanation is correct, i.e., the partially polarized region

featuring FFLO-like oscillations is due to the effective reduction of the spatial dimension,

we then expect to see these oscillations diminish as N is increased while the trap aspect

ratio is fixed, which makes the system more 3D-like. To check this, we keep α = 50 but

vary the total particle number N. Fig. 2.7 shows the density and order parameter along the

axial and radial axis at a fixed polarization P = 0.3 but different values of total particle

number N. As one can clearly see, the oscillations in both the order parameter and the

density profiles diminish as N is increased and the LDA approximation becomes more and
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more accurate, which indicates that the FFLO-like region observed above for small N does

not represent a bulk 3D phase. Rather, it is a finite-size effect due to the effective reduction

of the spatial dimension.

2.3.2 Linking to the experimental observation

Numerically, due to the high nonlinearity in BdG equation, with different initial ansatz, the

solution may converge to distinct final states. While in the experiments, whether the ground

state or a metastable state will be realized may depend upon how the evaporative cooling

procedure is implemented [47]. This has been confirmed recently in a new experiment

at Rice [48]. Thus, we take the approach of exploring the solution space using ansatze

constructed with reference to [47] and the phase diagram on the BCS side of the Feshbach

resonance [61, 62]. Specifically, we use the LDA solution for the gap (∆LDA) as a base to

construct an initial ansatz ∆I which is axially partitioned into different regions:

∆I(r, z) =


∆LDA |z| < zc

∆LDA cos[q(z − zc)] e−(z−zc)2/λ2 |z| > zc.

(2.26)

∆I allows us to explore various distorted states. In its most general form, one encounters

the unpolarized BCS, FFLO, and normal phases as one traverses along the axial direction

from the trap center to the edge. The initial size of the FFLO region in the ansatz is deter-

mined by λ. When λ is too small to accomodate a single wavelength of the gap oscillation,

i.e., 0 < λ < 2π/q, where q = k↑ − k↓ is the anticipated FFLO oscillation wave num-

ber, we start without an FFLO phase and zc represents the axial coordinate of superfluid
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Figure 2.7: Density and order parameter profiles along the axial and the radial axis in a cigar-like

trap with α = 50 for P = 0.3 but different values of total particle number N. Adopted

from Ref. [54]. Same units as in Fig. 2.4.
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to normal (S/N) transition. Conversely, an FFLO phase is initially present in the ansatz

when λ > 2π/q. In this case zc represents the superfluid to FFLO (S/FFLO) transition.

Henceforth we refer to these initial conditions as ∆P−N
I and ∆P−SF

I , respectively, which re-

flects our nomenclature for the eventual solutions as well, i.e., we name the entire solution

according to the character of the partially polarized region: We have a partially polarized

superfluid solution (P-SF) when there is an FFLO-like phase present. When the partially

polarized region is completely normal, we refer to the entire solution as a P-N solution.

Here, for clarity we single out the LDA-like solution we have discussed in the previous

section which is obtained when ∆I = ∆LDA, as the SF solution. In both the P-N and P-SF

solutions, the central unpolarized BCS superfluid core is shortened along the z-axis in com-

parison to the SF solution. As we shall see, this shortened BCS core is manifested in the

LDA-violating distortion of the density profile of the the minority spin component.

A broad feature of our results, which directly informs on the question of metastability,

is the observation of a barrier between the shortened states, either P-N or P-SF, and the SF

solution. For small atom numbers, this barrier is absent, the converged solution is unique,

independent of the initial ansatz we take, and we see a dramatic departure from the LDA

prediction due to significant finite-size effect, which is demonstrated in section 2.3.1 for the

study of N = 200 particles. However with increasing N, the axial S/N or S/FFLO transition

point is pinned near its initial value zc and we obtain different solutions by starting from

different initial anstze. Starting from ∆P−SF
I or ∆P−N

I we always converge to a shortened state

in a manner which is only sensitive to our choice of q. In other words, we do see a transition



34

between the P-SF and P-N states which is very sensitive to q and largely insensitive to λ;

both of which are set in the initial condition ∆I . It works as follows. When q is less than

a critical value qc, the oscillations in the ansatz ∆I are amplified and the solution flows

to a P-SF state oscillating with roughly the same q no matter the size of λ, and locally the

FFLO oscillation wave number q(z) =
√

2(µ↑ − Vext(z))−
√

2(µ↓ − Vext(z)) is approximately

uniform over the entire FFLO-like region as shown in the Fig. 2.8. Conversely when

q > qc, the oscillations are damped and ∆I always converges to a P-N state. A similar

resonance behavior has also recently been observed in studies of the S/N boundary while

tuning as across the BEC-BCS crossover [41], in which case calculations were performed

without the radial confinement.

We ascribe the consistent convergence to a shortened state as due to the emergence of

energy barriers separating the P-SF and P-N states from the SF state with increasing N or

α. In Fig. 2.8(a) we illustrate the dramatic differences in the superfluid gap for the various

solutions encountered. Apart from the emerging energy barriers, another important result

with regard to metastability is the decrease in the relative energetic separation of all the

states, P-SF, P-N and SF, as α is increased. Taken together, these observations suggest that

the relaxation of the physical system from any of the shortened states to the SF state, which

is the lowest in energy, becomes less favorable as α is increased, a deduction which is borne

out by the discrepancies of the Rice and MIT experiments.

For a given value of zc, the energy of the P-SF solution is consistently lower than the P-

N solution. Furthermore, the beyond mean-field DFT calculation by Bulgac et al. suggest
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Figure 2.8: Adopted from Ref. [63]. (a) Axial profiles of the gap (in units of EF) showing the P-N

(blue dashed line), P-SF (red solid line) and SF (green dotted line) states. The LDA

solution (not shown) almost completely overlaps with the SF result. The free energies

per particle are: 0.67(0)EF, 0.65(8)EF, 0.65(5)EF and 0.64(4)EF for the P-N, P-SF, SF

and LDA states, respectively. (b) Local polarization p(R) within the partially polarized

region of the P-SF(red solid line) and P-N(blue dashed line) solutions. (c) An r-z plot

of the normalized density difference δρ = (ρ↑ − ρ↓)/ρF of the partially polarized region

of the P-SF state (ρF =
√

(2EF)3/6π2). All the results shown in this paper are obtained

at a small temperature T = 0.02EF/kB, and with N = 50000, α = 50, and P = 0.3.
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that the inclusion of fluctuations should make the P-SF state even more stable [57]. Thus,

we expect that if the system converges to a shortened state, it will choose the P-SF state.

Now let us have a closer look at the manifestations of FFLO state in the P-SF state.

0.35

−1.

0.40

−0.5 0.5

0.45

1.

0.50 0.55

z/ Z
F

z/ Z F

Figure 2.9: Plots showing the doubly integrated axial spin density δρ1d(z) for, from top down, the

SF, P-N and P-SF states shown in Fig. 2.8(a). Adopted from Ref. [63]

In Fig. 2.8(b) we contrast the appearance of local polarization p(R) = (ρ↑−ρ↓)/(ρ↑+ρ↓)

in the partially polarized regions of the P-SF and P-N states. We note that in [57], the

strong oscillations displayed in p(R) were observed to survive the effects of fluctuations.

We are pleased to observe that Fig. 2.8(c) still shows radial alignment of the nodes of the

FFLO phase as in N = 200 case. Auspiciously, it also suggests that when an array of

1D tubes, such as the ones are being used in current experiments [26], are coupled to

yield a quasi-3D confinement, the FFLO nodes at each tube are likely to align to yield a

measurable signal. A comparison of the plots in Fig. 2.9 confirms that the presence of an

FFLO phase would indeed provide a smoking gun signal in doubly integrated axial spin

density δρ1d. In the close-up we observe that the signal of the FFLO region is not as strong

as that in Fig. 2.8(c) because of contributions from the fully polarized shell encasing it.



37

a) b) c) d)

theory experiment

Figure 2.10: Each display shows the column densities (rescaled to have aspect ratio 5 for clarity)∫
ρ↑dx,

∫
ρ↓dx,

∫
(ρ↑ − ρ↓)dx and the axial spin density δρ1d, respectively. The states

represented are (a) the SF, (b) P-SF and (c) P-N states illustrated in Fig. 2.8(a). In

(d) we plot the Rice experimental results for N ≈ 260000, P ≈ 0.35, α = 45.23 and

T < 0.05EF/kB. Adopted from Ref. [63]

Quantitatively, it indicates that a lower bound of the signal to noise ratio ≈ 6.5 is required

to observe at least half of the FFLO phase.

A casual comparison of all column density profiles in Fig. 2.10 rules out the observation

in Rice experiment of the SF state, which is consistent with the LDA and, within the BdG

formulation, has the lowest free energy. However, due to the noise on the experimental data,

it is not clear which of the shortened states (P-SF or P-N) has been observed. To produce

noise with similar characteristics as that in the experiment, we added white noise with

standard deviation which is a similar fraction of the average value of the column density∫ ∞
−∞ ρ↑ dx in the plotted window. Theoretically, since it has the lower energy and since the

transition between the FFLO phase and the normal phase is continuous, one expects that,

between the two shortened states, the P-SF solution will be favored.



Chapter 3

Expansion of one-dimensional polarized

ultracold Fermi gases

3.1 Introduction

In this chapter, we move our focus to the one-dimensional polarized Fermi gases, which, as

previously discussed, would be much more promising in capturing the signals of the FFLO

states. There has been copious theoretical evidence that FFLO correlations will occur and

also be fairly robust in a polarized degenerate Fermi gas confined to a 1D harmonic trap

[45, 58, 64, 65, 66, 67, 68, 69]. A dramatically different phase diagram [59, 71] from

that in 3D is predicted for these 1D systems, and the recent Rice experiment [26] has

confirmed the most important aspect of this phase diagram. The theory and experiment

both show that the density profile of 1D polarized Fermi gases always exhibit a partially

38
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Figure 3.1: Polarized Fermi gases in one-dimension, right: The theoretically predicted phase di-

agram of 1D polarized Fermi gases. left: The experimental verification of the phase

diagram showing perfect agreement to the theoretical calculation. The x axis repre-

sents the polarization in the central 1D tube left while the y axis represents the distance

from the center of the tube. Figures are adopted from Ref. [26]

.

polarized core while the wings can be either fully polarized or fully paired as shown in Fig.

3.1 depending on the degree of imbalance.

Although a partially polarized phase was observed through direct imaging in the exper-

iment, it is quite clear from recent work that the FFLO correlations may not leave a strong

detectable signature on the ground state density profiles. Thus the character of the partially

polarized phase remains unknown. Here we propose that such evidence is possible to be

observed during a non-equilibrium expansion after the gas is suddenly released from the

confinement. Our numerical experiment shows the polarized 1D Fermi gas develops strong

signatures in the density profiles of the pairing species which are a direct consequence of
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the FFLO crystalline order and constitute incontrovertible evidence for experiment obser-

vation.

We model the system as a gas of N fermionic particles each of mass m with two spin

projections labeled by σ = (↑, ↓) initially confined to a cigar-shaped harmonic trap. In

accordance with the experimental situations [26, 27, 28, 31, 37, 72], we assume that the

inter-particle interaction arises from a broad Feshbach resonance and is thus highly con-

trollable. In these systems, the ratio of the radial ω⊥ and axial ωz trapping frequencies

which defines the anisotropy of the trap, α = ω⊥/ωz, can be made so large that the Fermi

energy EF associated with the axial dynamics of the trap N~ωz and the temperature kBT ,

are both much smaller than the energy level spacing of the radial confinement ~ω⊥ i.e.,

N~ωz, kBT << ~ω⊥ [26]. Due to the extremely rarefied nature of the gas, the atomic

physics at play and the one-dimensional nature of the confinement, there are virtually no

spin relaxation processes and the particles interact via s-wave scattering g1Dδ(z). The total

polarization of the cloud P = (N↑ − N↓)/(N↑ + N↓) is defined as previously. Formally, this

system is described by the Hamiltonian Ĥ =
∫

dz (H0 + HI) with:

H0(z) =
∑
σ

ψ†σ

[
− ~

2

2m
∂2

∂z2 + Vext (z) − µσ
]
ψσ

HI(z) = g1Dψ
†
↑(z)ψ†↓(z)ψ↓(z)ψ↑(z) (3.1)

where ψσ(z) and µσ are fermionic field operators and the chemical potential, respectively,

of atomic species with spin σ, and Vext(z) = m
2ω

2
z z2. We define the Fermi energy, radius,

momentum and temperature as EF = N, ZF =
√

2EF, kF =
√

2EF and TF = EF . We

measure the relative strength of the interaction with the ratio (γ) of the interaction (ϵI) and
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the kinetic (ϵk) energy densities. In the limit of weak interaction ϵI ∼ g1Dρ(z) and ϵk ∼ ρ2(z)

yielding:

γ = g1D/ρ (3.2)

The 1D effective coupling constant g1D < 0 is expressed through a relation with the 3D

scattering length a3D by [73]: g1D =
2~2a3D

mal(1−Aa3D/al)
. Here al is the radial oscillator length and

A = ξ(1/2)/
√

2 ≈ 1.0326, where the ξ is the Riemann Zeta function. As usual, we work in

’trap’ units: m = ωz = ~ = kB = 1.

Our calculations are done using two methods with distinct but complementary advan-

tages. First is the Time Evolving Block Decimation (TEBD) [74, 75], an unbiased ap-

proach that retains all important correlations. Second is the previously discussed mean-

field BdG method, an effective-theory approach which describes the spin densities ρσ(z)

and the superfluid gap ∆(z) through quasi-particle wavefunctions. The BdG has the advan-

tage that, when correct, it provides a clear picture of the dynamics of the pairing field ∆(z) =

g1D⟨ψ↑(z)ψ↓(z)⟩ in direct association with the particle densities ρσ(z) = ⟨ψ†σ (z)ψσ (z)⟩.

However, although the BdG has been observed to give a very good description of 1D sam-

ples at weak interaction [58], we do not expect this trend to extend from moderate to strong

interactions. Complementarily, the TEBD method provides a stringent check for the phe-

nomena observed in the BdG approach. In both cases we work at T = 0 [76] and employ

a canonical approach which fixes N and P.
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3.2 Mean-Field treatment: time-dependent BdG formal-

ism

In order to study the expansion dynamics, we first need solve the static BdG equation for

the ground state of the trapped cold atom sample. Similar to what we have done in the

previous chapter, we can still simply state the BdG equations for the pair wave functions

u j(z) and v j(z) which decouple Hamiltonian Ĥ :


Hs
↑(z) − µ↑ ∆(z)

∆(z) −H s
↓(z) + µ↓




u j(z)

v j(z)

 = E j


u j(z)

v j(z)

 , (3.3)

where

H s
σ(z) = −1

2
∂2

∂z2 + Vext (z)

and E j is the associated energy. Similarly, the system is subject to normalization :
∫

dz|u j(z)|2+

|v j(z)|2 = 1. And the order parameter ∆(z) may be written as :

∆(⃗r) = g1D

∞∑
j=1

u j(z)v∗j(z) f (E j) (3.4)

where f (E) represents the Fermi-Dirac distribution function: f (E) = 1/(eE/kBT +1). We

follow a convention that N↑ > N↓, and define k↑↓F =
√

2µ↑↓ and the FFLO wave number by

q0 = k↑F − k↓F . We can solve this BdG equation by following the procedure mentioned in

Chapter 2. After obtaining the ground state, we remove the trapping confinement from the

single particle Hamiltonian and employ Runge-Kutta scheme to propagate u j(z) and v j(z)

using the time-dependent form of the BdG equation:
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HE
↑ − µ↑ ∆(z, t)

∆(z, t) −HE
↓ + µ↓




u j(z, t)

v j(z, t)

 = i~
∂

∂t


u j(z, t)

v j(z, t)

 , (3.5)

where H s
σ(z) is replaced by HE

σ(z) as

HE
σ(z) = −1

2
∂2

∂z2

3.3 Numerics: Time-Evolving Block Decimation Algorithm

In this section, we provide an overview of the TEBD method, which is an alternative

method we employed to investigate the expansion dynamics of 1D polarized Fermi gases.

3.3.1 Introduction

In the past couple of decade, for 1D quantum systems, one category of numerical technique,

called density matrix renormalization group (DMRG), originally proposed by White in

1992 [77], has been successfully implemented on various well known models. While

the DMRG is considered to be a numerically ’exact’ method for solving static ground

state properties of 1D models, it remains a challenging problem to apply this powerful

scheme to study the dynamics. The solution came from a relatively new branch of modern

physics called quantum information theory (QIT). One major mission in the field of QIT

is to search for certain genuine quantum algorithms which are only suitable for a quantum

computer while such algorithm would have very bad performance on a classical computer.
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The source that responsible for the necessity of quantum algorithms is identified as the

quantum entanglement in the systems [78]. In 2003, Vidal [74] showed that, for 1D

quantum systems with limited entanglement, there exists a time evolution algorithm, which

later is referred to as TEBD algorithm, can be performed on a classical computer efficiently.

From the perspective of practical implementation, TEBD algorithm can be easily adopted

into well developed DMRG scheme, leading to an adaptive time-dependent DMRG [79].

With all these merits, TEBD made itself a powerful tool for studying the time-dependent

quantum many-body systems in 1D. In this sense, the TEBD algorithm is the best fit for

our purpose to study the expansion dynamics of 1D polarized Fermi gases. In this section

we briefly introduce the basic concepts and formalism of TBED, as well as describe the

practical procedure using the algorithm to simulate the 1D system and extract physical

observables.

3.3.2 Vidal decomposition

If a system contains N sites with local dimension of d, in general, a quantum state in such

system can be expressed as

|Ψ⟩ =
d∑

i1...iN=1

ci1...iN |i1 . . . iN⟩ (3.6)

We will thus have dN coefficients ci1...iN , which is the size of the Hilbert space. Due to this

exponential dependence on N, it is easy to see that a simulation of such a system will be-

come beyond classical computing capacity even for a very small N. In physics, a ’solution’

can be achieved by introducing a variational ansatz for the system which truncates the size
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of the Hilbert space while preserving the ’essential’ physical properties we are interested

in. One of the most widely adopted ansatz is the mean-field one, which simply restrict the

a many-body quantum state to be a product state |Ψ⟩ =
d∑

i1...iN=1

ci1 . . . ciN |i1⟩ . . . |iN⟩, which

reduces the size of the Hilbert space from dNto dN. The mean-field ansatz neglects all

quantum correlations and hence is over-simplified under many situations. For 1D many-

body systems, in particular, it is highly unreliable because quantum fluctuations become

more pronounced in lower dimensions. The TEBD method recasts the form of |Ψ⟩ in Eq.

( 3.6) into a tensor product form. The corresponding N-body coefficient ci1...iN can be ex-

pressed in a form called Vidal’s decomposition, which is a sum over product of local vector

λ[l] and local tensor Γ[l]:

ci1...iN =

χ∑
α1...αL

Γ[1]i1
α1

λ[2]
α1
Γ[2]i2
α1α2

λ[3]
α2
Γ[3]i3
α2α3

. . .Γ[L]iL
αL−1

(3.7)

here we restrict our discussion to an open boundary condition which we use for our cal-

culation and χ is the Schmidt rank associated with bipartite splitting procedure. Now with

this form, the total number of coefficients we have, i.e., λ’s and Γ’s, has been reduced to

dNχ2+ (N+1)χ. If χ scales polynomially in system size, the Vidal decomposition can help

us achieve an exponential speedup.

To see the validity of TEBD, we can start from an arbitrary bipartition of the system

into two subsets, say, A and B. By using the well-known Schmidt decomposition, we can

write the state as following:

|Ψ⟩ =
χA∑
α=1

λα
∣∣∣ΦA

α

⟩
⊗

∣∣∣ΦB
α

⟩
=

χA∑
αl=1

λ[l+1]
αl

∣∣∣Φ[1...l]
αl

⟩
⊗

∣∣∣Φ[l+1...N]
αl

⟩
(3.8)
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Figure 3.2: The tensor structure of the Vidal decompostion

where λ[l+1]
αl is the Schmidt coefficients which satisfy

χA∑
αl=1

(λ[l+1]
αl )2 = 1.

∣∣∣Φ[1...l]
α

⟩
and

∣∣∣Φ[l+1...N]
α

⟩
are, respectively, the eigenvalues of the reduced density matrices ρ[1...l] = Tr(l+1)...N |ψ⟩ ⟨ψ|

and ρ[l+1...N] = Tr1...l |ψ⟩ ⟨ψ| and (λ[l+1]
αl )2 is the corresponding eigenvalue. χA is the Schmidt

rank which satisfies 1 5 χA 5 min(dl, dN−l). We can carry out this procedure iteratively

and finally obtain the decomposition of the state coefficients in the form as shown in Eq.

( 3.7). Now let us look into where the numerical errors are introduced in Vidal decompo-

sition. Since there would be no approximation if we choose χ = χA, the numerical error

is incurred when we choose to keep only χ largest eigenvalues λ[l+1]
αl , where χ < χA, while

rejecting the other χA − χ eigenvalues. We here introduce the Schmidt measure Eχ = log χ

to evaluate how this approximation preserves the entanglement in the system. If the 1D

quantum system is critical and finite-range interacting, it can be proven that the von Neu-

mann entropy will scale as S ∼ log N. Therefore we can conclude that the cut-off param-

eter scales polynomially in the system size for those 1D systems and Vidal decomposition

would effeciently represents the quantum state.
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Figure 3.3: One-Site operation in the Vidal representation

3.3.3 Operations in the Vidal representation

Up to now, we haven’t seen the power of Vidal decomposition. To find out this, we need

to inspect how unitary operations act in Vidal representation. Most Hamiltonians in 1D

only involve single-site and two-site operations on wavefunctions. Therefore, based on this

observation, it is convenient for us to only consider these two categories of operators. First

consider applying an unitary operator Û which acts on lth single site:

Û =
∑
il,i′l

Uili′l
|il⟩

⟨
i′l
∣∣∣ (3.9)

As shown in Fig. 3.3, this operation will not affect the left Schmidt coefficient when

we perform Schmidt decomposition for a bipartite splitting at link l, therefore Γ[i] and λ[i+1]

for i ≤ l − 1 will remain unchanged. Similarly we can see that Γ[i] and λ[i] for i ≥ l + 1

will keep unchanged. So we can conclude that the only affected local tensor is Γ[l] and the
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transformation has the form as follows:

Γ̃[l]il
αl−1αl

=
∑

i′l

Uili′l
Γ

[l]i′l
αl−1αl (3.10)

Next we consider a two-site operation V̂ which acts on two neighboring sites l and l+ 1

as shown in Fig. 3.4 :

V̂ =
∑

il,il+1,i′l ,i
′
l+1

V ilil+1
i′l i
′
l+1
|ilil+1⟩

⟨
i′l i
′
l+1

∣∣∣ (3.11)

We put the initial state into a form of bipartite splitting between l and l + 1

|Ψ⟩ =
∑

αl−1αlαl+1;il,il+1

λ[l]
αl−1
Γ[l]il
αl−1αl

λ[l+1]
αl
Γ[l+1]il+1
αlαl+1

λ[l+2]
αl+1

∣∣∣Φ[1...l−1]
αl−1

⟩
⊗ |ilil+1⟩ ⊗

∣∣∣Φ[l+2...N]
αl+1

⟩
(3.12)

then we can introduce an object Θ

Θilil+1
αl−1αl+1

=
∑
αl

λ[l]
αl−1
Γ[l]il
αl−1αl

λ[l+1]
αl
Γ[l+1]il+1
αlαl+1

λ[l+2]
αl+1

(3.13)

then rewrite the expression of |Ψ⟩ as

|Ψ⟩ =
∑

αl−1αl+1;il,il+1

Θilil+1
αl−1αl+1

∣∣∣Φ[1...l−1]
αl−1

⟩
⊗ |ilil+1⟩ ⊗

∣∣∣Φ[l+2...N]
αl+1

⟩
(3.14)

with this transformation, after applying the two-site operation V̂ , only Θ needs to be up-

dated as

Θ̃ilil+1
αl−1αl+1

=
∑
i′l i
′
l+1

V ilil+1
i′l i
′
l+1
Θ

i′l i
′
l+1

αl−1αl+1 = λ
[l]
αl−1
Γ̃[l]il
αl−1αl

λ̃[l+1]
αl
Γ̃[l+1]il+1
αlαl+1

λ[l+2]
αl+1

(3.15)

and we arrive at that

|Ψ⟩ =
∑

αl−1αl+1;il,il+1

Θ̃ilil+1
αl−1αl+1

∣∣∣Φ[1...l−1]
αl−1

⟩
⊗ |ilil+1⟩ ⊗

∣∣∣Φ[l+2...N]
αl+1

⟩
(3.16)

A practical algorithmical implementation will follow such a procedure [80]: first nor-
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V

Figure 3.4: Two-Site operation in the Vidal representation

malize Θ̃ such that
∑

α,i, j,γ

∣∣∣Θ̃i j
αγ

∣∣∣2 = 1 and recast the normalized Θ̃ into a (χd) × (χd) matrix

Θ̃RS , then a single value truncation will be preformed on this matrix by keeping only the χ

largest singular values and finally update tensors λ̃[l+1]
αl , Γ̃[l], Γ̃[l+1] as follows

Θ̃RS
S VD−→ US V (3.17)

Γ̃[l]il
αl−1αl

= U(il−1)χ+αl−1,αl/λ
[l]
αl−1

(3.18)

Γ̃[l+1]il+1
αlαl+1

= Vαl,(il+1−1)χ+αl+1/λ
[l+2]
αl+1

(3.19)

λ̃[l+1]
αl
= S αl/

√√
χ∑
α=1

S 2
α (3.20)
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3.3.4 Trotter expansion

Now we show how to evolve a quantum state |Ψ⟩ in the Vidal representation under a certain

Hamiltonian Ĥ. The unitary evolution operator thus is Û(δt) = e(−iĤδt/~), where δt is the

time interval. Generally such evolution operator is of a size of dN × dN even if only local

interaction is involved. Therefore, for given many-body Hamiltonian Ĥ, we need to find a

way to decompose this time evolution operator into a series of one-site or two-site unitary

operations so that we can put the method we discussed above into application. Fortunately

as we have pointed out, a lot of well-known model Hamiltonians in 1D only consist of

one-site operation or two-site operation acting on nearest neighbors. So we can decompose

Ĥ as

Ĥ =
∑

l

Ĥl =
∑
odd

Ĥl +
∑
even

Ĥl = Ĥodd + Ĥeven (3.21)

here the l is the index of a link, which means Ĥl acts on sites connecting to link l, i.e., site

l and l + 1. The reason that we divide Ĥl into odd and even subgroups is that Ĥl and Ĥl+1

usually do not commute, which makes us unable to decompose the Û(δt) into direct product

of e(−iĤlδt/~). However, the terms in the subgroup Hodd or Heven will commute with each other

since
[
Hl,Hl+ j

]
= 0, j = 2. Now the last step we need to do is to separate Hodd or Heven

in the exponential and the natural way to proceed is to employ the well-known Suzuki-

Trotter expansion, which was originally developed for quantum Monte Carlo method [81].

According to the first order Suzuki-Trotter expansion,

eδA+δB = lim
δ→0

(eδAeδB + O(δ2)) (3.22)
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and the accuracy can be improved to O(δt3) by taking a symmetric form to obtain the second

order expansion

eδA+δB = lim
δ→0

(eδA/2eδBeδA/2 + O(δt3)) (3.23)

Therefore, in our case, we can write

e−iĤδt/~ = e−iĤoddδt/2~e−iĤevenδt/~e−iĤoddδt/2~ + O(δt3) (3.24)

Since all terms within Hodd or Heven commute each other, we have

e−iĤoddδt/2~ =
∏

e−iĤlδt/2~ (3.25)

e−iĤevenδt/~ =
∏

e−iĤlδt/~ (3.26)

Furthermore, there are various higher order perturbative expansion formalisms available.

For the open boundary condition which we employ for our calculation, a fifth-order Suzuki-

Trotter expansion is given by the Forest-Ruth formula as follows

e−iĤδt/~ = e−iĤoddθδt/2~e−iĤevenθδt/~e−iĤodd(1−θ)δt/2~e−iĤeven(1−2θ)δt/~

e−iĤodd(1−θ)δt/2~e−iĤevenθδt/~e−iĤoddθδt/2~ + O(δt5) (3.27)

where θ = 1/(2 − 21/3) is the Forest-Ruth parameter. With the higher-order expansion, we

can use coarser time step δt′ = (δt)3/5 to maintain the same accuracy while to reduce the

total number of time steps in calculation.

The procedure discussed above can not only be used for real time propagation, but also

works for seeking faithful ground state by using imaginary time evolution as usual, i.e.,

let τ → it and evolve the state with the operator Û(δτ) = e(−Ĥδτ/~). However, this is no
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longer an unitary operation, therefore after each time step a renormalization of the state is

required. Finally the obtained converged ground state can be expressed as

∣∣∣Ψg

⟩
= lim

τ→∞

e(−Ĥτ/~) |Ψ0⟩∥∥∥e(−Ĥτ/~) |Ψ0⟩
∥∥∥ (3.28)

3.3.5 Calculation of observables

In order to faithfully represent a many-body system, a numerical algorithm should be ca-

pable to calculate all the relevant physical observables. In TEBD method, a majority of

observables are calculated through the reduced density matrices which are convenient to

obtain from λs and Γs because the Vidal representation is essentially build on the Schmidt

decomposition. Therefore we first show how to obtain the single-site and two-site reduced

density matrices, ρ̂l and ρ̂kl.

Starting from the density matrix ρ̂ of the full system and trace over all sites but l we

obtain

ρ̂l = Trk,l(|Ψ⟩ ⟨Ψ|) =
∑
il,i′l

(
∑

i1...il−1,il+1,...iN

c∗i1...i′l ...iN
ci1...il...iN ) |il⟩

⟨
i′l
∣∣∣ (3.29)

To express this in terms of λ’s and Γ’s, we isolate the single site l

|Ψ⟩ =
∑

il,αl−1αl

∣∣∣Φ[1...l−1]
αk−1

⟩
⊗ λ[l]

αl−1
Γ[l]il
αl−1αl

λ[l+1]
αl
|il⟩ ⊗

∣∣∣Φ[l+1...N]
αl

⟩
(3.30)

then tracing over all sites but l, we obtain that

(ρ̂l)ili′l
=

∑
αl−1αl

λ[l]
αl−1

(Γ[l]i′l
αl−1αl)

∗λ[l+1]
αl

λ[l]
αl−1
Γ[l]il
αl−1αl

λ[l+1]
αl

(3.31)

Following the similar procedure, we can obtain two-site reduced density matrices ρ̂kl

by tracing over all sites but k and l. We skip the detailed derivation and jump to the final
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results in terms of λs and Γs, assuming k < l

(ρ̂lk)iliki′l i
′
k
=

∑
ik+1...il−1

∑
αk−1,αl

∑
αk ...αl−1

∑
α′k ...α

′
l−1

(λ[k−1]
αk−1
Γ[k]ik
αk−1αk

λ[k]
αk
Γ[k+1]ik+1
αkαk+1

λ[k+1]
αk+1

. . . λ[l−2]
αl−2
Γ[l−1]il−1
αl−2αl−1

λ[l−1]
αl−1
Γ[l]il
αl−1αl

λ[l]
αl

) ×

(λ[k−1]
αk−1

(Γ[k]i′k
αk−1α

′
k
)∗λ[k]

α′k
(Γ[k+1]i′k+1

α′kα
′
k+1

)∗λ[k+1]
α′k+1

. . . λ[l−2]
α′l−2

(Γ[l−1]i′l−1
α′l−2α

′
l−1

)∗

λ[l−1]
α′l−1

(Γ[l]i′l
α′l−1α

′
l
)∗λ[l]

α′l
) (3.32)

Using the reduced density matrices, we can calculate the expectation values of single-

site or two-site observables as ⟨
Âl

⟩
= Tr(ρ̂lÂ) (3.33)⟨

B̂kl

⟩
= Tr(ρ̂klB̂) (3.34)

In practical simulations, those observables could be density and pair correlation functions

as we will discuss in the following section. The extension to the expectation of N-site

observables is straightforward and the detailed method can be found in Ref. [82].

3.4 Expansion dynamics of polarized Fermi gases in 1D

With the mean-field BdG and TEBD methods discussed above, we are now able to start

our comparative study of the real-time expansion dynamics of 1D polarized Fermi gases.

However, to adopt the TEBD formalism for our purpose, we first need to derive the discrete

model describing the system. We utilize the approach proposed by Tezuka et. al, to build

a discrete Hamiltonian which can be used to represent a continuum system trustfully as

shown in their DMRG simulation [67, 83].
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3.4.1 Discretizing continuous system

Following the approach in Ref. [83], here again we only consider two-body s-wave inter-

action, we start with an effective Hamiltonian for continuum 1D polarized Fermi gases in

harmonic traps, which has the form as follows:

Ĥcont =

∫
dz

∑
σ

Ψ†σ

(
− ~

2

2m
d2

dz2 + Vext

)
Ψσ + g1D

∫
dzΨ†↑Ψ

†
↓Ψ↓Ψ↑ (3.35)

where Vext = ω
2
z z2/2 is the trapping potential. From now on we take the trap units letting

~ = m = ωz = 1. The above continnum Hamiltonian can be discretized over a 1D lattice by

substituting the field operator

Ψi,σ → ci,σ/
√
∆z (3.36)

and approximating the kinetic term

d2

dz2Ψi,σ → (Ψi+1,σ + Ψi−1,σ − 2Ψi,σ)/(∆z)2 (3.37)

where the subscript i denotes the ith site on the lattice, ∆z is the lattice grid size, and

Ψi,σ, ci,σ is the field operator and fermionic annihilation operator at the ith lattice site re-

spectively. Discretizing the above continnum Hamiltonian on a 1D lattice with L sites, we

can obtain a Fermi-Hubbard-like Hamiltonian as follows:

H = −J
∑
σ

L∑
i=2

(c†i,σci−1,σ + h.c.) + U
L∑

i=1

ni,↑ni,↓ +

L∑
i=1

Vi(ni,↑ + ni,↓) (3.38)

where c†i.σ, ci.σ is the fermionic creation and annihilation operator for spin-σ particles at ith

lattice site, J is the hopping amplitude between the neighboring sites, and U is the on-site

interaction strength between two spin species. To compare with the mean-field BdG results,
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we need express the model parameters J and L in terms of system physical parameters. If

we adopt the trap units used in BdG calculation, we have hopping amplitude J = L2

2l2 , where

l is the length of the 1D system, and thus parameters U
J = 2g1D( l

L ), Vi
J = ( l

L )4(i − L
2 )2 are

choosen accordingly. In our simulation, we typically choose L to be 300 ∼ 400. The

convergence of a TEBD calculation is mainly controlled by the parameter χ, which is

the number of eigenvalues retained when truncating the Hilbert space. In practice, the

computation time scales as the order of χ3. Optimally we choose χ ∼ 150 to ensure the

convergence is good enough when comparing with the results with higher χ. On the other

hand, the intrinsic errors of TEBD aslo comes from Trotter-Suzuki expansion for the time

evolution operator. We adopt fifth-order Trotter-Suzuki expansion in our calculations with

open boundary condition. The time step is optimally chosen to balance the accurancy and

efficiency based on the self-consistent stability test.

As a benchmark study, we study a very weakly interacting Fermi gas in which g1D =

−1.4 and polarization P = 0.05. It is expected that BdG method can generate reliable

results in this case, which thus can be used as a bechmarking check for TEBD result using

the discretized model. We use both method to calculate the ground state, and comparison

between the results from two methods is presented in Fig. 3.5. The density profile of

ground state generated by two methods show perfect match at this interaction strength,

confirming the validality of the discretized model.
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Figure 3.5: Comparing ground states obtained by BdG and TEBD when g1D = −1.4 and P = 0.05.

3.4.2 Density modulations in expanding polarized gases

We now present the major discovery in our numerical studies. To observe the FFLO state,

experiments must verify crystalline order in ∆(z) or, alternatively, that the average center-

of-mass momentum of the pairs ⟨nk⟩ is proportional to the separation of the Fermi surfaces,

i.e., ⟨nk⟩ ∝ k↑−k↓. Recently, a number of authors [65, 66, 84] have suggested that the time-

of flight measurement of the pair-momentum distribution function nk as the most promising

avenue for detecting the finite center-of-mass momentum q of the pairs. These suggestions

are extrapolations from equilibrium studies where nk shows peaks at k = ±q in contrast to

the peak at k = 0 expected for regular BCS pairing. However, we are not aware of analyses

of the evolution of nk accounting for the interacting nature of the expansion dynamics and

in particular how well this signal will be preserved. This is particularly important for

1D given that γ increases during expansion [see Eq. (3.2)]. In our study we explore the

possibility of finding a signal directly in real space. Our calculations reveal that: (1) Upon
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axial expansion, strong peaks develop in the spin density profiles. (2) The position of these

peaks exactly coincide with the nodes in the pair correlation function and represent prima

facie evidence of FFLO correlations. (3) The strength of this signal increases with γ and

decreases with polarization, being strongest when the spin excitations are gapped. (4) The

peaks in the spin density move much more slowly than the edge of the cloud.

In Fig. 3.6 dramatic modulation in the spin densities are observed as the cloud expands.

Through a comparison of the density plots with the corresponding gap parameter |∆(z)|

(the bottom row in Fig. 3.6) one can make a key observation: The position and growth

of the spin density peaks respectively coincide with the nodes and amplification of |∆(z)|.

Furthermore, these spin density peaks (or the order parameter nodes) move much slower

during the expansion as compared to the edge of the whole cloud as shown in Fig. 3.7.

We note that this is not a manifestation of the spin-charge separation as here the spin refers

not to an excitation in the spin sector, but rather excess majority atoms. In fact, previous

studies have indicated that, in a spin-imbalanced system, the spin and charge excitations

are coupled [86, 87, 88].

To understand this phenomenon, it is helpful to first layout some broad features of the

ground state utilizing the phase diagram for a homogeneous system together with the LDA

treatment [59, 67, 71, 83]. There are two regimes to be considered [26, 58, 60, 64, 65,

67] depending on whether P is smaller or larger than a critical polarization Pc, which is

approximately 0.1 at this interaction strength according to our simulation. For P < Pc, we

obtain an FFLO state at the center of the trap surrounded by fully paired BCS wings at the
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Figure 3.6: The expansion of sample with N = 40, g1D = −8.0 and P = 0.05 which is below Pc ≈

0.1. Adopted from Ref. [85]. From left to right, each column represents snapshots of

the expansion dynamics at t=0.0, 1.0, 1.7 (1/ωz). Row 1 displays the density profiles.

In each plot, we show ρ↑, ρ↓ and S = ρ↑ − ρ↓ obtained from BdG calculation. Row 2 is

the same as Row 1 except that the results are obtained from TEBD calculation. Row 3

shows the spin densities S (z) from the TEBD. Finally in Row 4 we plot the amplitude

of the superfluid gap |∆| from the BdG calculation.
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Figure 3.7: The positions of cloud edge and spin density peaks during expansion for N = 40,

P = 0.05 and g1D = −8.0.

edges. Here the BdG calculation tells us that there is exactly one excess spin bound to each

of the nodes of the order parameter and the FFLO state is analogous to a band insulator of

the relative motion between the unpaired and paired particles. The ground state represented

in Fig. 3.6 is within this regime and spin density peaks represent the localization of unpaired

spins at the nodes of ∆. During the time of flight, the excess spins are kept pinned to

the nodes of the order parameter and become more tightly bound. The dramatic effects

observed occur when this localization couples with the average enhancement of |∆| implied

by an increasing γ as the density drops during expansion [see Eq. (3.2)]; a uniquely 1D

phenomenon. Henceforth we refer to these spin peaks as node signatures.

For P > Pc, the FFLO state still remains at the center in the ground state, but the wings

exclusively contain the majority spin component. In this regime, there are more excess
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Figure 3.8: Density profiles, obtained from TEBD calculation, during the expansion of a sample

with N = 40, g1D = −8.0 and P = 0.15, which is above Pc ≈ 0.1. Adopted from Ref.

[85].

spins than nodes of ∆, and consequently they are less tightly bound. Here we expect the

node signatures to be less dramatic which is confirmed in Fig. 3.8. In particular, the spin

peaks near the edges are not well resolved. We can therefore conclude that the best place

to observe the node signature is at P < Pc, where the signal is enhanced by both a large

separation of the nodes and greater contrast with the background density. We note that, in

weakly-interacting regime, the value of Pc increases with |g1D| up to a maximum Pc = 0.2

as shown in Ref. [60], implying a sizable observation window for the strong interactions
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with which experiments are conducted.

At equilibrium, the FFLO correlation appears as peaks in the pair-momentum distribu-

tion nk defined by:

nk =
1
L

∫ ∫
dzdz′ eik(z−z′) O(z, z′) , (3.39)

where O(z, z′) ≡ ⟨ψ†↑(z)ψ†↓(z)ψ↓(z′)ψ↑(z′)⟩ is the two-point correlation function. In Fig. 3.9,

we observe the effects of interaction on this signature during the expansion. The t = 0

curve represents nk for the trapped ground state. One can clearly see that the nk peaks at

q0 = |k↑ − k↓| as expected for an FFLO state. Furthermore we should expect q0 ≈ π/d,

where d is the distance between two peaks in density profile, roughly corresponding to the

half wavelength of the FFLO oscillation. For instance, for N = 40, g1D and P = 0.05, we

observe that d ≈ 0.6ZF , and thus π/d ≈ 0.6 in the trap units, which matches very well with

the peak position q0 ≈ 0.08kF as shown in the upper panel in Fig. 3.9. This reflects the

fact that the extra spins tend to be localized at the nodes of the mean-field gap as shown in

Fig. 3.6. However, after the expansion starts, the peaks diminish continuously as a result

of interaction. After a sufficiently long time [89], nk no longer possesses observable peaks

at finite momentum. In order to observe the peaks at finite momentum during expansion,

one needs to shield the effect of the interaction between pairs. In principle, this can be

achieved by suddenly increasing the interaction strength g1D, so the pairs are tightly bound

and interaction between pairs becomes negliable. However, simulating such process within

TEBD scheme requires keeping a significant number of states to ensure the fidelity of the

calculation. Therefore a simulation of such scenario for a sufficiently long time period is
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beyond the capability of our current numerical implementation of the TEBD method.
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Figure 3.9: Pair momentum distribution at two different polarization for g1D = −8 and N = 40.

In each panel, we display nk for different times. Counting from the left, the curves

correspond to t = 0, 0.47, 0.94 and 1.41, from top to bottom. In both cases the momen-

tum peaks representing the FFLO state disappear from the plot during the expansion.

Adopted from Ref. [85].

One may wonder whether the node signatures can be observed in in situ density profiles

of a trapped cloud with sufficiently large interaction strength. To answer this, we show in

Fig. 3.11 the density profiles of a trapped system for g1D = −8, −20 and −36. (Note that

for the experiment reported in Ref. [26], g1D ∼ −50 for the central tube.) One can see

that the modulation depth of the spin density of a trapped cloud is not very sensitive to

g1D. This is in sharp contrast to the BdG calculation where the spin density modulation is

indeed enhanced as γ is increased as shown in Fig. 3.10 — an indication of the invalidity



63

1

2

3

4

g
1D

=-8

-1 -0.5 0 0.5 1
0

1

2

3

4

g
1D

=-20

Z/ZF

D
e
n

s
i
t
y

Figure 3.10: Ground state density profiles in trap, with N = 40, P = 0.05 and for different inter-

action strengths g1D = −8 and −20 while the BdG calculation was not able to obtain

faithful ground state for g1D = −36. In each plot, we show ρ↑, ρ↓ and S obtained from

mean-field BdG calculation.

of the mean-field theory for strong interaction. In the TEBD calculation, the localization of

excess spin at large |g1D| is counter-balanced by increased quantum fluctuations neglected

in the mean-field theory. Therefore, the dramatic emergence of node signatures is a unique

feature of the expansion dynamics.

Finally, we address the question of the effect of the interaction strength in Fig. 3.12,

where the spin densities in an expanding cloud are shown for two sets of interaction

strength. Though the results for strong and weak interactions are qualitatively similar, the

spin peaks start to develop earlier for the case of smaller g1D. This could play an important

role in practice when the finite lifetime of the system must be taken into account.
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Figure 3.11: Ground state density profiles in trap, with N = 40, P = 0.05 and for different in-

teraction strengths g1D. In each plot, we show ρ↑, ρ↓ and S obtained from TEBD

calculation. For clarity, the spin density S is magnified by a factor of 2. Adopted from

Ref. [85].

3.5 Spin transport through ultracold Fermi gases in a har-

monic trap

The TEBD scheme we discussed above provides us with a powerful and numerically accu-

rate tool to investigate the dynamics of 1D strongly interacting systems. Using the TEBD

method, we are able to characterize the states of matter by studying important dynamical

properties such as spin transport. This section is devoted to a study aiming at gaining a
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expansion. Adopted from Ref. [85].
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deeper understanding of the pairing mechanism. We achieve this with a numerical study

of spin transport in 1D trapped cold atoms using the TEBD method. With a series of sim-

ulation of transporting a single spin through different stationary states at the center of the

harmonic trap, we study how the pairing between the two spin components is affected by

the population imbalance and interaction strength in the two-component fermionic sys-

tems. Still we consider that these two fermionic component interacts only via inter-species

contact interaction, therefore the system can be fully characterized by the 1D coupling pa-

rameter g1D as before. The initial states in our experiment is built in the following way: a

ground state of interest at the center of the harmonic trap is obtained by imaginary time evo-

lution using TEBD method. Then at t=0 we let a spin-↑ particle , which is used as a probe

and originally located at the edge of the trap, start to move freely towards the central state

under the influence of harmonic trapping potential and this probe spin will interact with the

central stationary state after reaching the trap center. The real-time evolution of the whole

sytem can be reliably emulated by using TEBD simulation. We perform a systematic and

comparative simulation by initially placing different trapped ground state at the trap center.

The four representative stationary state we choose are following: a trapped ground state

of (I) a single spin-↓ particle, (II) a single pair of particles (↑↓), (III) two spin-↓ particle

(↓↓) and (IV) three particles with a configuration (↓↑↓). Also we will present an on-going

study of transporting the probe spin through the population imbalanced ground state that

we discussed in the previous section of this chapter.
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3.5.1 Case I:

Figure 3.13: Schematic diagram of the experimental setup of case (I)

We start with a benchmark study of case (I), where a spin-↑ probe particle collides with

a spin-↓ particle initially at rest at the trap center. This problem can be effectively treated

as a single-particle problem as the center-of-mass motion and the relative motion can be

decoupled [96, 97, 98]. Starting from the Hamiltonian for two distinguishable fermions

denoted as spin-↑ particle and spin-↓ particle as follows.

H = − ~
2

2m

∑
σ=↑,↓

(
d2

dz2
σ

+
1
2

mω2
z z2
σ) + g1Dδ(z↑ − z↓) (3.40)

which can be separated into the center-of-mass part Hc and relative motion part Hr:

Hc = −
~2

2M
d2

dR2 +
1
2

Mω2
z R2

Hr = −
~2

2µ
d2

dr2 +
1
2
µω2

z r2 + g1D(r)δ(r) (3.41)

where the new coordinates R = (z↑ + z↓)/2 and r = z↑ − z↓ and the reduced mass µ = m/2

while M = 2m is the total mass. Correspondingly the wavefunction of the system can be
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decomposed into the form as follows:

Ψ↑↓(z↑, z↓) = Ψc([z↑ + z↓]/2)Ψr(z↑ − z↓) = Ψc(R)Ψr(r) (3.42)

where Ψc and Ψr are the wavefunctions in center-of-mass and relative motion coordinates

respectively. Since it is easy to see that Ψc will be under simple harmonic oscillation in the

center-of-mass frame, we just need to focus on the part Ψr, whose effective potential can

be reduced to be a 1D harmonic oscillator in addition to a delta potential g1Dδ(r) as shown

in Eq. ( 3.41).

g=-6t=0.8 ↑

↓

t=2.6

g=-36

-5 0 5 10

g=-200

-5 0 5 10

Z

Figure 3.14: From top to bottom: time evolution of the density profile for g1D = −6,−36 and −200

for case I. The trap is centered at z = 0. Representive snapshots are taken at t = 0.8

(left column) and 2.6 (right column) respectively.

The evolution of the system can be obtained by solving the 1D time-dependent Schrödinger

equation (TDSE) numerically with the delta potential modeled by a narrow Gaussian,

which provides us with a good basis for benchmarking the TEBD results based on the

full two-body Hamiltonian. In Fig 3.14, we show the evolution of the system calculated by
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Figure 3.15: Solution of single-particle TDSE in the relative motion coordinate, from top to bottom,

snapshots showing the transmission/reflection when g1D = −6,−36,−200.

the TEBD method for various attractive interaction strengths g1D = −6,−36 and −200. A

strikingly interesting phenomenon found here is that at strong attractive interacting strength

g1D = −200, the collision between the two particles behave like that between two classical

billiard balls. The incoming spin-↑ particle reaches the bottom of the trap, collides with

and transfers all its momentum to the initially stationary spin-↓ particle. And the incoming

spin-↑ particle will remain at bottom trap center after the collision. This complete elastic

collision would correspond to a total reflection of the wave packet Ψr by the delta potential

in the relative motion frame, which has been confirmed with the solution of TDSE as shown

in the Fig. 3.15. Furthermore, the TDSE solution confirms that the total reflection happens

for |g1D| = 200 no matter whether the interaction is attractive or repulsive. It is well known

that when plane waves are scattered by a delta potential in 1D, the reflection/transmission

coefficients are independent of the sign of the delta potential. However, it is not obvious

that the same relation can be extended to our case if we consider a Gaussian wavepacket
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Figure 3.16: Time evolution of spin-↑ particle in the repulsively and attractively interatintg case

for |g1D| = 6 calculated by TEBD method. The trap is centered at z = 0. From top to

bottom, representive snapshots taken at t = 1.3, 1.8, 2.3 and 3.1.

scattered by a delta potential with the presence of a harmonic trap. By using the propa-

gator for Gaussian wavepacket, it can be shown in a homogeneous system [101] that the

wave packet reflection/transmission coefficients are the same as that of plane wave after a

long time, and hence is independent of the sign of the delta potential. Although this fact

is difficult to be confirmed with the TDSE calculation due to the numerical errors caused

by the finite width of the narrow Gaussian potential we used to emulate the delta poten-

tial, our TEBD calculation has verified this as shown in Fig. 3.16. When the interaction
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strength is reduced, Ψr will experience partial reflection as shown in Fig. 3.14. Again it is

in full agreement with the TDSE results. Overall in this benchmarking case we show that

TEBD results have a good agreement with the single-body TDSE solution on how the two

distinguishable fermions will interact with each other under harmonic trapping.

3.5.2 Case II:

Figure 3.17: Schematic diagram of the experimental setup of case (II)

We now move on to case (II), to find out how a pair of spin-↑ and spin-↓ particles that

originally stays in its ground state at the center of the harmonic trap will be affected when

the incoming spin-↑ particle collides with it. To characterize the effect of the interaction

strength, we keep track of the density variation of the spin-↓ particle by recording its peak

value as a function of time. As shown in the Fig. 3.18, the density maximum of the spin-↓

particle for g1D = −6, a weak interaction strength, experiences much stronger variation

during the whole process comparing with the intermediately interacting case at g1D = −36

and the strongly interacting case at g1D = −200. Furthermore, we observe that the pat-

tern of the time-varying density maximum of spin-↓ is very similar for intermediately and
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strongly interacting cases, in which a dip shows up when collision happens between the

pair and incoming spin-↑ particle. This is strikingly different for the weakly interacting

case, in which a peak appears instead. The behavior at weak interaction strength can be

intuitively understood: due to the attractive interaction between spin-↑ and spin-↓ particles,

when the incoming spin-↑ reaches the bottom of the trap, the spin-↓ particle experiences

an enhanced attractive interaction. Hence its peak density increases. The counter-intuitive

behavior at stronger interaction strength can be understood as follows: when the interaction

strength increases, the pair originally staying at the center of the trap is tightly bounded as a

bosonic molecule. The collision process should really be understood as a collision between

the incoming spin-↑ particle with the bosonic molecule. That a small dip appeared in the

peak density of spin-↓ particle at g1D = −36 and −200 indicates that the interaction between

the spin-↑ particle and the bosonic melecule is weakly repulsive. It might be reasonable to

speculate that there exists a critical interaction strength above which the system becomes

’repulsive’ and the pair is less affected during the passing through than in the weakly inter-

acting case. The representative snapshots at t = 1.3, 1.5, 1.8 and 2.0 for three interaction

strengths are shown in the Fig. 3.19.

3.5.3 Case III:

We move our exploration forward to case (III) with two originally stationary spin-↓ parti-

cles at the center of the trap. We first look at the strongly interacting system, g1D = −200 .

As shown in the Fig 3.21, we find that after the collision, the momentum of the incoming
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Figure 3.18: Evolution of the density maximum for the spin-↓ particle for g1D = −6,−36,−200.

spin-↑ particle is entirely transferred to one of the spin-↓ particles, which will be knocked

out and move towards the edge of the trap, while the incoming spin-↑ will be stopped at

the center of the trap. This process is similar to an elastic collision seen in classical sys-

tem. Again the system appears to be repulsive with the strong interaction strength. The

two particles (one spin-↑ and one spin-↓) remaining at the center of the trap are separated

from each other, indicating that they are not paired as usually expected from a strongly

attracted pair. The two particles staying at the center of the trap are therefore in a highly

excited state. This is because that the full pairing between spin-↑ particle and spin-↓ par-

ticle with strongly attractive interaction, g1D = −200 leads to significant lowering in the

energy and thus the extra energy needs to be expelled from system due to requirement of

energy conservation. Since such energy dissipation mechanism is absent, the full pairing

cannot happen between the ↑ and ↓ spin. As a consequence, this procedure allows us to

create excited states in a controlled way.
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Figure 3.19: Time evolution of the density profiles for case II. The trap is centered at z = 0. Left

column: g1D = −6, right column:g1D = −200. Representive snapshots are taken at

t = 1.3, 1.5, 1.8 ,and2.0 respectively.
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Figure 3.20: Schematic diagram of the experimental setup of case (III)

Now let us describe the situations with lower interaction strengths. As shown in the Fig.

3.21, significant difference shows up when the interaction strength is lower to g1D = −6.

We can find that the wavepacket of the spin-↑ particle partially transmits through and mixes

with wavepacket of the spin-↓ particles. The partial wave packets of both spin components

travel forward together while the remaining wave packets at the center of the trap keep

changing with time indicating that it is left in a non-stationary state, which is dramatically

different from the observation in the cases with stronger interaction strengths.

3.5.4 Case IV:

In this case, an imbalanced configuration ↓↑↓ is initially prepared at the center of the trap.

In the strongly interacting case, g1D = −200, the incoming spin-↑ knocks out one spin-↓

particle entirely (shown in the right column in Fig. 3.23 ) and a new configuration ↑↓↑

forms and remains at the center. This is very similar to what we have seen in case III and

the underlying physics in both cases is different from that in case II. The kinetic energy

carried by the incoming spin-↑ particle is transferred to the knocked out spin-↓ particle.
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Figure 3.21: Time evolution of the density profiles for case III. The trap is centered at z = 0. Left

column: g1D = −6, right column:g1D = −200. Representive snapshots are taken at

t = 1.3, 1.5, 1.8, 2.0, 2.6 respectively.
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Figure 3.22: Schematic diagram of the experimental setup of case (IV)

From the symmetry between the spin-↑ particle and spin-↓ particle, it is easy to see that

the system conserves the energy. In the weakly interacting limit, g1D = −6, similarly the

incoming spin-↑ wave packet partially transmits (as shown in the left column in Fig. 3.23).

And a part of the wave packets of both the spin-↑ particles and spin-↓ particles continue to

move towards the edge of the trap. The fully pairing between the two spin-↑ particles and

the two spin-↓ particles is again prohibited by the requirement of the energy conservation.

3.5.5 Case V

At last, we show the preliminary result of the transport of a single spin-↓ particle through

a population imbalanced state we discussed in the previous part of this chapter. Here we

consider a partially polarized ground state of 40 particles sitting at the center of the trap.

The polarization of the system is P = 0.05, consisting of 21 spin-↑ particles and 19 spin-

↓ particles, and here the coupling parameter is g1D = −36. Again we observe similar

dynamics as shown in case IV, that is, the incoming minority spin-↓ particle knocks out a
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Figure 3.23: Time evolution of the density profiles for case IV. The trap is centered at z = 0. Left

column: g1D = −6, right column:g1D = −200. Representive snapshots are taken at

t = 1.3, 1.5, 1.8, 2.0 respectively.
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majority spin-↑ particle entirely. As a result, after the collision, the central state becomes

population balanced with 20 particles in both spin-↑ and ↓ component. It is easy to see

that such state is still not in its ground state due to energy conservation constraint. This

observation is consistent with the results we presented above. However, by using this

trapped partially polarized ground state as the central stationary state, we may consider

some more intersting scenarios, such as using the majority spin-↑ particle as the probe

spin. We can also initially place a ground state with a polarization above Pc at the trap

center. Results of these on-going investigations will be reported in other places.

In summary, we carried out systematic numerical experiments studying the transport

dynamics of a single spin in trapped two-component systems with only a few particles,

which deepens our understanding of the pairing mechanism. Recent advancements in ex-

periment techniques have made ultracold Fermi gas an ideal laboratory to investigate in-

teresting physics in few-particle system[99]. Experimentalists have been able to prepare

the ultracold few-particle samples in traps with high fidelity [99, 100]. Therefore our

proposed scheme is feasible to be implemented with currently available experimental tech-

nology. The major observation from our simulation shows that the spin transport dynamics

is very sensitive to the interaction strength as well as population difference. Therefore it

can serve as a powerful tool to investigate the novel properties of quantum gases.



80

t=0.5 t=1.0
↑

↓

t=1.3 t=1.5

t=1.8 t=2.0

-8 -4 0 4 8 12

t=3.1

-8 -4 0 4 8 12

t=3.6

Z

Figure 3.24: Time evolution of the density profiles for case V. The trap is centered at z = 0. The

trapped ground state intially staying at the center of the trap consists of 21 spin-↑

and 19 spin-↓ particles and g1D = −36. Representive snapshots are taken at t =

0.5, 1.0, 1.3, 1.5, 1.8, 2.0, 3.1, and 3.6 respectively.



Chapter 4

Conclusions

The evidence of the FFLO phase, a novel type of superfluid, which has been intensively

searched for in various condensed matter systems, still remains elusive. The utilization of

cold atom system provides us with a unique opportunity for the experimental verification of

such exotic phase. In this thesis, we have pesented a numerical study focused on the search

of FFLO states in ultracold polarized Fermi gases. We have employed several numerical

techniques, which range from mean-field level to quasi-exact calculation of many-body

states. The results we have obtained not only can help the understanding of the underlying

physics of diversified experimental observations, but also can help guide future experiments

for the direct evidence of the FFLO phases.

The trapping geometries may create theoretical difficulities in clearly understanding

the results of cold atom experiment. The effective chemical potential µ varies in space, and

several phases may co-exist within a trapped sample. In order to explore the phase diagram

81
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of trapped cold atom samples and motivated by the Rice experimental results, we carried

out a systematic study of trapped 3D Fermi gases in the unitary limit which is presented in

Chapter 2. By starting from different initial ansatz, we are able to arrive and identify three

categories of solutions through a self-consistently solution of the BdG equations using

state-of-the-art numerical techniques. For large particle numbers, the class of LDA-like

solution always has the lowest energy in our calculations. However, the validity of the

LDA is also sensitive to the trap geometry: Traps with small anisotropy favor the LDA. Our

calculations show that for a relatively small number of atoms in a very elongated trapping

potential, the system contains three phases: an unpolarized BCS phase, a partially polarized

FFLO-like phase and a normal phase. That the FFLO region exists may be understood

from the view point of reduced effective spatial dimension. As N is increased while all

other parameters remain fixed, the FFLO-like region eventually disappears. Starting from

engineered gap ansatz with spatial modulations, the iterative solution chooses between two

stationary points, which are not necessarily the global free energy minimum, but each of

which features density profiles strikingly similar to experimental observations at Rice. The

most likely solution which is consistent with the Rice experiment is a metastable state that

supports a partially polarized superfluid phase strikingly similar to the FFLO phase. This

state becomes increasingly robust as trapping geometry becomes more elongated. Even

within a trapped environment, the nodes of the order parameter in the FFLO-like phase

are radially aligned which, with low enough noise, leave an accessible signal in axial spin

density δρ1d.
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As predicted in theory, polarized Fermi gases in lower dimensions are much more

promising for observing the FFLO state directly. Although the Rice’s experimental realiza-

tion of 1D polarized Fermi gases has shown exciting agreement with the theoretical fore-

casting, further verification of the existense of the FFLO states is still needed. It has been

proposed that such confirmation might come from the time-of-flight experiment, which is

a powerful and straightfoward tool to study cold atom systems. Different from many other

proposals relying on inference effect, our results predict that strong spin density modu-

lations, which can be readily observed in experiment, emerge during the expansion and

provide direct evidence of the FFLO state. Experimentally, an array of 1D tubes are cre-

ated [26] and the measurement averages over different tubes. One obvious concern is that

such an average may smear out the spin modulation. Although a full investigation of the

dynamics of coupled tubes lies outside of the scope of the current work, we comment that

this problem can be mitigated by allowing small inter-tube tunneling such that a quasi-1D

situation results. The BdG studies in both a 3D cigar-shaped trap as discussed in chapter 2

and coupled 1D tubes [102] have shown that the nodes of the order parameter (and hence

the spin peaks) tend to align along the radial direction. Thus the node signature would

not be smeared out by averaging. Apart from the pair-momentum distribution function

described in Chapter 3, other methods [90] have been proposed in the literature to detect

FFLO. However, they all rely on interferometric techniques requiring two fermionic super-

fluids, one of them being the FFLO state. Our proposal, in contrast, only requires the FFLO

cloud itself and hence is significantly simpler.
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On the other side, the numerical schemes we have built and implemented in this the-

sis can be readily extended to the studies of many scenarios for exploring the interesting

physics in ultracold quantum gases. The BdG equation has been employed as a powerful

tool to investigate imhomogenous superconducting states in condensed matter physics for

a long time and proved as a sophisticated method which has generated many signicant re-

sults, and its extension to cold atom systems is seamless. The parallel solver we developed

for BdG equations enable us to expand our research scope in a ready manner. For instance,

given a particle number N, we can study the 3D-1D dimensional crossover by increasing

trap aspect ratio α continuously until the system reaches the 1D regime eventually. A 3D

time-dependent BdG code can be used to study the expansion dynamics of coupled tubes

simulating the realistic experimental configuration. The TEBD method, as demonstrated

in Chapter 3, is a ’quasi-exact’ numerical algorithm for strongly interacting many-body

system in 1D especially suitable for simulating the dynamics. As we know, a lot of in-

teresting physics in ultracold quantum gases can be explored through the time-of-flight,

transport and quench processes, and the TEBD method thus is one of the most powerful

numerical tools for our future investigation of such 1D systems. Furthermore, we should

continue to utilize strategy combining the mean-field BdG studies with the TEBD scheme

for 1D systems. Although BdG approach, generally speaking, cannot deliver quantitatively

accurate results, as a mean-field method, it is computationally much more efficient than the

TEBD method and can provide additional insights. Within the BdG scheme, it is feasible

to construct a phase diagram by scanning the whole parameter space. Then we can employ
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the TEBD scheme to obtain the quantitatively reliable results under the guidance of such

phase diagram.
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Appendix A

Due to the assumption of contact interaction, the gap ∆ is a function of the center-

of-mass coordinate of the pair, R⃗. To discuss the regularization, it is more convenient to

re-introduce back the relative coordinate r⃗, with which the gap is defined as

∆(R⃗, r⃗) = ⟨ψ↑(R⃗ + r⃗/2)ψ↓(R⃗ − r⃗/2)⟩

which diverges as ∆(R⃗)
2πr when r → 0 [95]. To regularize Eq. (2.16), one simply subtracts off

the 1/r divergence to obtain the regularized equation [95]:

∆(R⃗)
g
=

∑
j

u j(R⃗)v∗j(R⃗) f (E j) −
∆

2πr
(1)

In practice, the convergene of the sum above is quite slow and we discuss here a numerically

efficient way of evaluating ∆(R⃗) to sufficient accuracy without undue effort. First an energy

cutoff Ec is used to break the sum of Eq. (2.16) into two pieces as ff.

∆(R⃗)
g
=

∑
E j<Ec

u j(R⃗)v∗j(R⃗) f (E j) +
∆c(R⃗)

g
− ∆(R⃗)

2πr
(2)

The second term ∆c(R⃗) is an approximation to the sum above the cutoff using the LDA

result for the pairing field [58] which can also be written as :

∆c(R⃗)
g

=
∆(R⃗)
(2π)3

∫ ∞

kc

d3k√
( k2

2 − µ(R⃗))2 + ∆2
(3)

where kc is the momentum cutoff related to Ec. This leads to a computationaly efficient

form of the gap equation:

∆(R⃗)

Ueff(R⃗)
=

∑
E j<Ec

u j(R⃗)v∗j(R⃗) f (E j). (4)
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Here we have employed the identity:

∫ ∞

0

dk⃗
(2π)3

eikr

k2

2

=
1

2πr
(5)

to subsume the LDA approximation of the gap (∆c) into an effective interaction defined by:

1

Ueff(R⃗)
=

1
g
−

∫ ∞

kc

d3k

 1√
( k2

2 − µ(R⃗))2 + ∆2
− 1

k2

2


 (6)
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