


Abstract

Quantum many-body physics has been studied for many decades. A lot of intrigu-

ing phenomena have been observed and theories have been developed. Yet many

problems remain unsolved, which is largely due to a lack of general e�cient classical

computation method. One-dimensional (1D) systems have also drawn much atten-

tion over the past few decades. One reason is that many unique strongly correlated

quantum phenomena only appear in low dimensions. Another reason is that many

exact results can be obtained in 1D for cross benchmarking, such as the results from

Bethe Ansatz, Bosonization, Bose-Fermi mapping, etc. In addition, many numerical

methods, such as Matrix-Product-State based and Monte Carlo methods, work most

e�ciently in 1D. In recent years, 1D quantum gases have been realized in many cold

atom labs, providing experimental motivation for their studies.

One of the most mysterious assumptions about a system of identical quantum

particles is that the wavefunction must be symmetric (for bosons) or anti-symmetric

(for fermions). This means that no two fermions can occupy the same state, while

multiple occupancy is allowed for bosons. Bosons and fermions are therefore gener-

ally very di↵erent. But in 1D this distinction could become rather subtle, provided

that the bosonic multiple occupancy is suppressed, which can happen if strong re-

pulsion exists between them. However, when considering spin degrees of freedom,

things become more complicated. In this work, we develop a generalized Bose-Fermi

mapping theory, under which, the charge degrees of freedom is mapped to spinless

fermions, while the spin degrees of freedom to an e↵ective spin chain. This map-

ping works for arbitrary spin, arbitrary trapping potentials, arbitrary spin-dependent

interaction potential, and for either spinor bosons or fermions. In the strong inter-
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action limit, the wavefunction of the system can be represented by Strong Coupling

Ansatz Wavefunctions (SCAWs), which can be mapped to direct products of spinless

fermion wavefunctions and spin-chain wavefunctions. Using this mapping technique,

we study the dynamics and collective modes of the system. Furthermore, we develop

a very e�cient method to calculate the one-body density matrix, from which we can

calculate the momentum distribution of the system.
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1

Chapter 1

Introduction and Outline

1.1 Quantum Gases in One Dimension

Quantum many-body physics has been studied for a long time since the invention

of quantum mechanics. Many intriguing phenomenons have been observed in exper-

iments and many theories have been developed, ranging from superfluid, supercon-

ducting, Bose-Einstein condensate, to strongly correlated quantum gases and quan-

tum computing. However, quantum many-body problems are hard to solve, mainly

due to the fact that there is no e�cient classical computation method to directly solve

those systems, as computational resource required is usually exponential in system

size. On the other hand, in low dimensions, quantum many-body physics has drawn

much attention in the past decades. One of the reasons is that in low dimensions,

strongly correlated quantum e↵ects will play an important role. By contrast in higher

dimensions a lot of systems can be described by fermi liquid theory, which is a mean

field theory that approximates many-body systems by non-interacting fermions. Yet

another important reason is that many exact results can be obtained in low dimension,

which allows benchmarking of di↵erent theories. For example in one-dimension, some

translational invariant system can be solved by Bethe Ansatz method [3], Bose-Fermi

mapping [4] can be used to analyze systems at strong interacting region, low energy

e↵ective theories can be constructed by Bosonization [5], etc. And also many numer-

ical methods such as Matrix Product State (MPS) based methods (including Den-
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sity Matrix Renormalization Group (DMRG) and Time-Evolving Block Decimation

(TEBD)), and Variational Monte Carlo (VMC) methods can help to do benchmarks

or inspire new understandings for a system.

With the development of experimental techniques, the physics of quantum many-

body systems can be studied in ultra-cold atomic systems in a very clean way. Many

strongly correlated quantum many-body phenomenons have been observed. In exper-

iments, neutral atoms can be trapped by lasers, and if the trap has small aspect ratio

(very long cigar shapped), the atoms can be regarded as particles moving in a 1D

space. And by taking the internal level of the atoms into consideration, the particles

can have arbitrary e↵ective spins. Such systems are called spinor quantum gases. In

this thesis, we focus on 1D spinor gas. The atoms in cold atom system are dilute.

When considering the two-body scattering, if we are interested in low energy scale,

we need only consider the s-wave scattering length, which will lead to an e↵ective

delta function contact interaction. So we start from the following Hamiltonian for

dilute spinor quantum gases, in which there are only contact interactions.

H =
NX

i=1


�1

2

@2

@x2
i

+ V (xi)

�

| {z }
Hf

+ĝ
X

i<j

�(xi � xj)

| {z }
Hint

. (1.1)

Here we have set ~ = m = 1. Hf is a single particle free Hamiltonian and Hint is the

contact interaction term. ĝ is a matrix acting on the spin state of two particles. The

Hamiltonian 1.1 is general such that it is for arbitrary spins, arbitrary spin dependent

contact interactions, and arbitrary trapping potentials. There is no constraint on ĝ

except that it must be symmetric under permutation of two spins: Ei,j ĝEi,j = ĝ

(Ei,j is an exchange operator that swap two spins indexed by i and j, Appendix A),

because the Hamiltonian must be invariant under any permutation operators, since
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we are considering identical particles. The Hamiltonian 1.1 is the starting point of

our description of the system. For spinless Bosons, the Hamiltonian 1.1 becomes the

Lieb-Liniger model [6] and for spin-1/2 Fermions, it is the Gaudin-Yang model [7,8].

1.2 Bose-Fermi Mapping

One of the most mysterious assumptions about the quantum many-body world is

the identical particle assumption: If the system is composed of many particles of

the same kind, and if we use a many-body wavefunction to describe the state of the

system, it must be symmetric or anti-symmetric under permutation of the indices

of the particles. If the wavefunction is symmetric, the particles are Bosons, and the

symmetry allows Bosons to occupy the same spatial position. If the wavefunction is

anti-symmetric, the particles are Fermions, which prohibits Fermions from occupying

the same spatial position. Usually Bosons and Fermions are very di↵erent. However

in one-dimension, when double occupancy is suppressed, Bosons and Fermions can

be mapped to each other.

Under some special conditions the Hamiltonian 1.1 can be solved by Bethe Ansatz

[3, 9] method. But under general conditions, it cannot. The system can be studied

from another prespective, for non-interacting Bose or Fermi gases, the eigenstates are

easily solved that they are Slater permanents for Bosons and Slater determinants for

Fermions. As interaction increases, the system becomes more and more correlated.

For weak interaction, there are still approximation method such as e↵ective field

theories from Bosonization, or writing the Schrödinger equation into hydrodynamic

equation. For strong interaction, usually there is no good theoretical method to study

the properties of the system, only numerical methods such as DMRG (TEBD) works

well. But there are still many constraints for numerical methods. However, if further



4

increase the interaction to infinity, things sometimes become simpler. At infinite

interaction, there is a theory showing spinless Bosons can be mapped to spinless

Fermions [4, 10]. Since spinless Fermions do not feel any contact interaction, it is

much easier to solve, so Bose-Fermi mapping acts as an alternate e↵ective method

for solving infinite interaction systems. However, when considering spin degrees of

freedom, things become more complicated, the spin degrees of freedom will interplay

with Boson or Fermion statistics. In this thesis, we will generalize the spinless particle

Bose-Fermi mapping to spinor cases, and also extend beyond infinite interaction to

arbitrary finite interaction strength.

1.3 Numerical Methods

1.3.1 MPS based methods

There are many numerical methods to solve 1D strongly correlated quantum many-

body systems. Among them MPS based methods are powerful for numerically solving

most of the 1D systems. The MPS methods cut the system at every link, by flattening

the indices for physical spins1 to the left and right of the cut, the wavefunction can

be written into a matrix. After performing a singular value decomposition of this

matrix, where the singular values are just the square roots of the eigenvalues of

the density matrices of the left and right subsystems2, truncate the singular values

to a certain cuto↵. Performing this singular value truncation for every link, the

original wavefunction can be written into a MPS form, which largely (exponentially)

compresses the information of the original wavefunction. The MPS based methods by

1Or any other local degrees of freedom.

2It can be proved that the density matrices of the left and right subsystems have the same

eigenvalues.
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definition works for lattice systems, and it will work well if the entanglement spectrum

at every link of the system decays fast enough, thus a finite truncation is reasonable.

To use MPS methods on Hamiltonian 1.1, we discretize it into the following form:

Hs = �t
X

�,i

⇣
f †
i�
fi+1� + h.c.

⌘
+
X

i

µini +
X

i,↵,�,�,�

h↵�| Û |��i f †
i↵
f †
i�
fi�fi� , (1.2)

where f †
i�

and fi� are creation and annihilation operators on site i for spin �, ni =
P

�
f †
i�
fi� is the local density operator on site i. The parameters in Hamiltonian 1.2

is obtained by discretization

t =
1

2a2
, µi = V (ia) +

1

a2
, Û =

ĝ

2a
. (1.3)

MPS methods can be directly applied on Hamiltonain 1.2. We have studied both

ground states and dynamics, and found good agreements with theoretical results.

1.3.2 Variational Monte Carlo methods

Many quantum many-body systems can be solved by Variational Monte Carlo (VMC)

methods. The VMC method is quite general such that given a variational wavefunc-

tion, the parameters can be optimized by minimizing the energy functional stochasti-

cally. In the literature, variational wavefunctions are usually proposed through phys-

ical understandings of a particular system. For the 1D spinor quantum gases system,

we can use Strong Coupling Ansatz Wavefunctions (Chapter 4) as variational wave-

functions. On the other hand, recent Deep Learning has been very successful in many

areas. Those success involves representing multi-dimensional functions using Deep

Neural Networks (DNNs) with a huge number of parameters. One of the important

reasons for the success is the development of novel computer architectures [11] such

as GPUs that can perform computations for large neural networks in a distributed
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way. Another reason is the development of various DNN architectures with suitable

representational power and e�cient optimizing algorithms. The DNNs were able to

automatically learn features from multi-dimensional data, which can be understood

as a kind of machine intelligence. So it is natural to represent quantum many-body

wavefunctions using DNNs, which are essentially multi-dimensional functions, to see

what features DNNs can extract. In this thesis, we also explore using DNNs for solv-

ing spinor quantum gases. Especially at strong coupling region, the system can be

described by an inhomogeneous e↵ective spin-chain model. If the interaction is spin-

independent, it is an inhomogeneous SU(N) spin-chain model. With an o↵-policy

VMC algorithm, we are able to take advantage of the distributed hardwares and use

DNNs to represent the ground state of such spin-chain models.



7

Chapter 2

Generalized Bose-Fermi Mapping

Strongly interacting many-body systems exhibit rich physics, but in general pose as

tremendous theoretical challenges. Under certain circumstances, a system can be

mapped into another one much more amenable to theoretical study. The Bose-Fermi

mapping is one such example [4]. It maps a system of one dimensional (1D) spinless

bosons with infinite repulsive two-body contact interaction to a system of spinless

non-interacting fermions. The eigenstates are mapped by

 B(x1, x2, ..., xN) =
X

P2SN

P ( F (x1, x2, ..., xN)✓
1(x1, x2, ..., xN)) , (2.1)

where  F is the free Fermion wavefunction,  B is the corresponding hardcore Boson

wavefunction. ✓1 is a sector function (i.e., generalized Heaviside step function) of

spatial coordinates and can be written into the following form:

✓1 = ✓(x2 � x1)✓(x3 � x2) · · · ✓(xi � xi�1)✓(xi+1 � xi) · · · ✓(xN � xN�1) , (2.2)

whose value is one in spatial sector x1 < x2 < ... < xN , and zero in any other

spatial sectors. P is a permutation operator, for conventions of permutation operator

acting on spatial wavefunctions, see Appendix A. (�1)P is parity of the permutation

operator. The idea behind it is that for N identical particles, the wavefunction in

one spatial sector x1 < x2 < ... < xN contains complete information about the total

wave function. Due to the infinite interaction, the relative wave function between

two identical bosons must vanish when xi = xj, which mimics the quantum statistics
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between two identical fermions. Such system has been experimentally realized using

ultracold atoms [12–14]. This mapping for spinless particles at infinite interaction can

be easily generalized to spinful cases, which is summarized in Section 2.1, where the

Strong Coupling Ansatz Wavefunction (SCAW) is defined. This mapping was later

generalized to finite interaction strength by Cheon and Shegehara [15,16] who mapped

a system of s-wave contact interacting spinless bosons with interaction strength g to

a system of p-wave short-range interacting spinless fermions with interaction strengh

�1/g. This idea was further developed by Girardeau and Olshanii [17,18] who showed

that 1D spinor Fermi gas and Bose gas can be mapped into each other, where the

s-wave interaction (e.g., Vs) in one is mapped to the p-wave interaction (e.g., Vp) in

the other. This mapping can be understood as follows. The even relative spatial

wavefunction under Vs and the odd relative spatial wave function under Vp satisfy

exactly the same boundary condition: limxij!0+ g (xij) = 2 0(xij) . The key idea

behind this mapping is a single particle duality, which will be discussed in Section 2.2

in detail.

Motivated by these past works, in this chapter we present a di↵erent, but related,

mapping as follows: A 1D spinor gas, either Bosonic or Fermionic, interacting with

s-wave contact two-body interaction, can be mapped to the direct product of a spin-

less Fermi gas and a spin-chain system. In this dissertation, we call this later direct

product system Spin-Charge Separated Representation (SCSR). We emphasize that

this mapping is exact and valid for arbitrary values of g > 0. However, it is particu-

larly useful for strongly interacting systems with large g, for which the spatial wave

function of the mapped system is that of a weakly interacting p-wave spinless Fermi

gas, which can be calculated perturbatively. In Chapter 3, we will discuss the results

of the perturbation theory, from which e↵ective spin-chain models can be derived to
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describe the physics around infinite interaction.

2.1 Infinitely Interacting Spinor Quantum Gases

Before discussing the generalized Bose-Fermi mapping for finite interaction strength

for a spinor quantum gas with arbitrary spin, we first discuss the physics at infinite

interaction point, which serves as a basis for the analysis of large but finite interaction

strength. For spinor quantum gases at infinite contact interaction, any two particles

with any spins can not occupy a same spatial position. And since we are considering

contact interactions in Hamiltonian 1.1, any particle if it is not occupying a same

position with other particles, then it it not feeling any contact interaction, which

means it is moving freely. Now consider the spatial sector of ✓1, since the wavefunction

of identical particles should be either symmetric or anti-symmetric, the many-body

wavefunction in one spatial sector, for example ✓1, has the complete information

of the many-body wavefunction in other spatial sectors. This is true for arbitrary

spin cases, because after a permutation operator acting on the wavefunction, it will

inevitably change any set of spatial coordinates from one spatial sector to another.

At the boundary of this spatial sector ✓1, the wavefunction should vanish.

 (x1, x2, ..., xN)xi=xj = 0, 8i, j (2.3)

Within the boundary, the wavefunction should satisfy the free schrodinger equation.

Hf = E , (2.4)

Where Hf is the free Hamiltonian in Eq. (1.1). Eq. (2.3) and Eq. (2.4) forms the

boundary condition and eigen equation for the many-body problem in spatial sec-

tor ✓1. And they will uniquely decide any eigenfunction’s value in spatial sector ✓1,
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and hence will decide the whole eigenfunction. Now the question is how to solve

the eigenfunctions satisfying the eigen equation Eq. (2.4) and boundary condition

Eq. (2.3). Actually slater determinants constructed by the single particle eigenstates

of Hf is just designed for the solution, since they naturally satisfy the boundary con-

dition Eq. (2.3), and by definition they will also satisfy the eigen equation Eq. (2.4).

Actually for both spinless Bosons or Fermions under infinite interaction, slater de-

terminant is the solution of Eq. (2.3) and Eq. (2.4) in spatial sector ✓1. For spinless

Fermions, slater determinants are actually full eigenfunctions. For spinless Bosons

the full eigenfunctions are obtain by symmetrization of slater determinants as done

in Eq. (2.1).

When considering spins, we should extend the Hilbert space also including spins.

We first constrain Hf to be spin independent (For a discussion of spin-dependent

single particle terms, see Appendix F). For this case, we can write the eigenstates in

✓1 spatial sector in the following form.

 1 = '1(x1, x2, ..., xN)�(�1, �2, ..., �N). (2.5)

Where � is an arbitrary spin wavefunction, such that the spin state is represented

by |�i =
P

�1,�2,...,�N
�(�1, �2, ..., �N) |�1, �2, ..., �Ni. And '1 = '✓1 is a free fermion

eigenfunction (slater determinant) of Hf mentioned above in ✓1 spatial sector. For

the full wavefunction for infinitely interacting spinor gases in all spatial sectors, we

only need to do a symmetrization or anti-symmetrization.

 =
X

P2SN

(±)PP ( 1). (2.6)

Where the permutation operator P now acting on the indices of both spatial

coordinates (xi) and spin coordinates (�i), for our conventions about permutation



11

operators acting on spatial and spin wavefunctions, see Appendix A. (�1)P is the

parity of the permutation operator. In this thesis, Eq. (2.6) is called Strong Cou-

pling Ansatz Wavefunction (SCAW), although it represents the exact eigenstates for

infinitely interacting spinor quantum gases. We will discuss the properties of SCAW

in Chapter 4. It it easy to show that Eq. (2.6) is an eigenstate satisfying boundary

condition Eq. (2.3) and eigen equation Eq. (2.4), so it is an eigenfunction of the in-

finitely interacting spinor quantum gas (1.1). Note that SCAW in one spatial sector

such as ✓1 is a direct product form of spatial and spin wavefunctions, but for the

whole wavefunction, spatial and spin wavefunctions are entangled. Another note is

that since any spin state will allow Eq. (2.6) to be an eigenstate of the infinitely

interacting spinor quantum gas, the eigenstates have dN fold degeneracy1, where d is

the number of spin component for the spinor quantum gas.

2.2 A Single Particle Hamiltonian Duality

In the following sections of this chapter, we discuss the generalize Bose-Fermi map-

ping for arbitrary interaction strength. Before discussing the generalized Bose-Fermi

mapping theory for many particles, first consider a single particle Hamiltonian dual-

ity problem, which will play an essential role in the generalize Bose-Fermi mapping

theory for arbitrary cases. Consider the following single particle Hamiltonian, a par-

ticle moving in an arbitrary symmetric potential V (x) = V (�x) with a Dirac delta

function barrier.

He = �1

2

@2

@x2
+ V (x) + g�(x), , (2.7)

1Here we ignore spatial state degeneracy, for discussions about spatial state degeneracy, see

Section. 3.4.
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Note that since He has parity symmetry, the eigenstates can be separated into even

and odd subspaces. For odd eigenstates, the �(x) barrier potential has no e↵ect, so

we first focus on the nontrivial even eigenstates. This Hamiltonian can be solved by

using the boundary condition at the �(x) barrier:

�
0
(0+) = ��0

(0�) = g�(0), , (2.8)

where �
0
(x) is the derivative of �(x) over x, and the eigen equation on the left and

right of the barrier is 
�1

2

@2

@x2
+ V (x)

�
�(x) = E�(x). (2.9)

With the solution of Eq. (2.9) satisfying the boundary conditon Eq. (2.8), we can

obtain all the even eigenstates of Hamiltonian 2.7.

Now consider another single particle hamiltonian:

Ho = �1

2

@2

@x2
+ V (x)� 1

g

 
@

@x
�(x)

!
@

@x
, (2.10)

where
 
@

@x
and

!
@

@x
are di↵erential operators acting on the left and right wavefunctions,

they are meaningful only when calculating the matrix elements of the Hamiltonian.

Same as He, Ho also has parity symmetry. For even states, the p-wave singular

operator
 
@

@x
�(x)

!
@

@x
will have no e↵ects, since

!
@

@x
operators will transform an even state

to a odd state and �(x) will vanish it. Let �m(x) and �n(x) be two odd eigenstates

of Ho with eigenenergies Em and En, consider the following integral

Z 0+

0�
dx�m(x)

2

4�1

2

@2

@x2
+ V (x)� 1

g

 
@

@x
�(x)

!
@

@x

3

5�n(x) =

Z 0+

0�
dx�m(x)En�n(x) .

(2.11)

Using the fact that �m(x) and �n(x) are odd functions, together with integrate by

parts, the above integration can be simplified to

�m(0
+)�

0

n
(0)� 1

g
�

0

m
(0)�

0

n
(0) = 0, . (2.12)
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Note that �m,n may not continuous, but since �n(x) is odd, �
0
n
(0) is well defined as

�
0
n
(0) = �

0
n
(0+) = �

0
n
(0�). After factoring out the �

0
n
(0) term, we can arrive at a

similar boundary condition as Eq. (2.8),

�
0
(0) = g�(0+) = �g�(0�) , (2.13)

for any eigenstate �. Comparing with Eq. (2.8) and Eq. (2.13), for x > 0, the

boundary conditions are the same, for x < 0, they di↵er by a sign. This is because we

are considering the even eigenstates of He and the odd eigenstates of Ho, and they

dual to each other. And also to the left and right of the p-wave singular potential, �m,n

satisfy the same eigen equation 2.9, which means the eigenstates and eigenenergies

have one-to-one correspondence for He and Ho by

�o(x) = sign(x)�e(x). (2.14)

For odd eigenstates of He and even eigenstates of Ho, they are trivially dual to each

other, and Eq. (2.14) still holds.

For the odd Hamiltonian Ho, there are some pathological behavior for the dif-

ferential operator @

@x
acting a discontinuous function �o(x), for now, simply regard

the di↵erentiation is acting at 0+ or 0�. We will discuss this with more detail in

Section 2.5. And a illustration of the duality of the �o and �e wavefunctions are

in Fig. 2.1. Here we want to mention that if define the derivatives at x = 0 as

@x=0 = @x=0+ = @x=0� , the duality between 2.7 and 2.10 can also be proved using

single particle Green’s function method (Appendix D).

2.3 Generalized Bose-Fermi Mapping for Two Particles

The single particle Hamiltonian duality in section 2.2 is a building block for the

generalized Bose-Fermi mapping theory for arbitrary cases. Before discussing many
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Figure 2.1 : The duality of the �o and �e single particle wavefunctions as discussed in
Section 2.2. For many-body wavefunctions, this duality corresponds to relative wave-
functions around the boundaries of the ✓1 spatial sector of original (anti-)symmetric
wavefunctions and that of spin-charge separated wavefunctions. Any anti-symmetric
spatial wavefunctions, although discontinuous at spatial boundaries, can be expanded
by slater determinants.

particle cases, first consider the case of two identical particles with arbitrary spin.

The first quantized Hamiltonian in the most general form is:

H =
X

i=1,2


�1

2

@2

@x2
i

+ V (xi)

�
+ ĝ�(x1 � x2). (2.15)

Where ĝ is the interaction matrix that acting on the spins states of two particles. By

diagonalizing ĝ, we can fix the spin states to an eigenstate of ĝ, which allows us to

substitute ĝ with the corresponding eigenvalue g. And the full wavefunction can be

written as

 (x1, x2, �1, �2) = �(x1, x2)�(�1, �2). (2.16)

Since it is a two identical particle system, the Hamiltonian 2.15 should be invariant

under permutation of the two particles. Since �(x1 � x2) is invariant under the

permutation, ĝ must also be invariant. Therefore � can have a fixed parity. If we

choose � with a fixed parity, �(x1, x2) can also have a fixed parity, since the full eigen
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wavefunction  can have a fixed parity.

First consider spinor Fermions, where  should be anti-symmetric. In this case,

only when � is symmetric, it can feel the delta function interaction, which means �

must be anti-symmetric. Due to the form of the Hamiltonian 2.15, we can separate

� into center of mass motion and relative motion.

�(x1, x2) = �c(
x1 + x2

2
)�r(x1 � x2), (2.17)

where the relative motion is governed by the relative Hamiltonian,

He

r
= 2

✓
�1

2

@2

@x2
+

g

2
�(x)

◆
. (2.18)

Using the single particle Hamiltonian duality discussed in Section 2.2, we can trans-

form the relative Hamiltonian 2.18 to Hamiltonian:

Ho

r
= 2

0

@�1

2

@2

@x2
� 2

g

 
@

@x
�(x)

!
@

@x

1

A . (2.19)

Note here g is an eigenvalue of ĝ with eigenstate � anti-symmetric. For symmetric �,

the relative spatial wavefunction �r is odd, the original relative Hamiltonian has no

delta barrier, for which we map the original relative Hamiltonian identically to the

new Hamiltonian. Put the above together, we can map the full two spinor fermions

Hamiltonian 2.15 to a Hamiltonian with Hilbert space constraint that no matter what

parity the spin state has, the spatial state has odd parity. The new Hamiltonian has

the following form:

H =
X

i=1,2


�1

2

@2

@x2
i

+ V (xi)

�
� 4P̂ a

ĝ

 
@

@x12
�(x12)

!
@

@x12
, (2.20)

where P̂ is the projection operator acting on the spin states of the spins, such that

P̂ a/ĝ is nonzero only when the spin state is anti-symmetric (odd parity). As discussed
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earlier, ĝ is permutation symmetric, so it will not couple spin states with di↵erent

parities. The bases for the Hilbert space of the mapped p-wave Hamiltonian 2.20 are

{'(x1, x2)�(�1, �2) |' 2 slater determinants,� 2 spin states} , (2.21)

where {'(x1, x2)} is the set of all slater determinants, and {�(�1, �2)} is the set

of spin states without any symmetry constraint. Note that the bases of Eq. (2.21)

correspond to SCAWs, for two particles. The properties of SCAWs will be discussed

in Chapter 4.

For spinor Bose gases, the mapping follows the same derivation as spinor Fermi

gases. The only di↵erence is in Eq. (2.20), the anti-symmetric spin projection operator

should change to symmetric spin projection operator P̂ s.

Finally, we rewrite Eq. (2.20) as

H =
X

i=1,2


�1

2

@2

@x2
i

+ V (xi)

�
� 4 · 2! · P̂ s,a

ĝ

 
@

@x12
�(x12)✓(x12)

!
@

@x12
. (2.22)

We have added an ✓1, which is valid since Eq. (2.22) acts on bases of Eq. (2.21), and

the derivative @'x1,x2/@x12 is continuous across x12 = 0. And we use this form for

later convenience of deriving the generalized Bose-Fermi mapping for many particles

in the Section 2.4.

2.4 Generalized Bose-Fermi Mapping for Many Particles

Now let’s formulate the generalized Bose-Fermi mapping for many identical particle

spinor quantum gases. The original contact s-wave interaction Hamiltonian 1.1 is

Hs = Hf + Vs, where Hf is the free Hamiltonian, and

Vs = ĝ
X

i<j

�(xij) , (2.23)
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is the contact s-wave interaction, where xij = xi�xj. Our motivation is to use slater

determinants only to describe the spatial degrees of freedom, i.e. we want to have a

new Hamiltonian that uses the direct product of slater determinants and spin-chain

wavefunctions

{'�|' 2 slater determinants,� 2 spin states}. (2.24)

as bases for the Hilbert space.

Note that the the bases of Eq. (2.24) have one-to-one mapping with the SCAWs

of Eq. (2.6), since they are identical in ✓1 spatial sector, which has the complete

information of the total wavefunction. However, in the SCAW, the spin state is only

meaningful in one spatial sector. In other spatial sectors, the spin states are di↵erent.

But we want to use only one well-defined spin state in a basis for the direct product

state.

We put our focus on one spatial sector ✓1. As discuss before, the delta function

contact interaction only introduces the boundary conditions of the eigenstates at

spatial sector boundaries. At the region away from those boundaries, the eigenstates

are governed by the free Hamiltonian Hf . So if we can have a new Hamiltonian with

a pseudo interaction potential acting on the Hilbert space of Eq. (2.24), such that its

eigenstates, at the boundary of one spatial sector ✓1, are one-to-one mapped to the

eigenstates of the original Hamiltonian 1.1, then the new Hamiltonian is equivalent

to the original Hamiltonian, since they have equivalent eigen systems.

Consider a one-dimensional (1D) spinor quantum gas with the N -body wave func-

tion

 (x1, x2, ..., xN , �1, �2, ..., �N) =
X

P

(±1)PP
�
 1(x1, x2, ..., xN , �1, �2, ..., �N)

�
,

(2.25)
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where P represents permutation(Appendix A), and  1 =  ✓1, with ✓1 being the gen-

eralized Heaviside step function defined at Eq 2.2. Equation (2.25) is a manifestation

of a special property of 1D system that the spatial domain of the wave function can

be separated into N ! disconnected subdomains labeled by various spatial orders, and

the wave function in one spatial sector (say,  1 as defined in spatial sector ✓1) has

the complete information of the total wave function, as the values of the wave func-

tion in di↵erent spatial sectors are related by permutation operation. Consider the

wavefunction in ✓1 spatial sector  1, we can always expand  1 into superposition of

direct products of spatial function and spin function

 1 =
X

�

�1
�
�� , (2.26)

and then for every spatial term �1
�
, since it is only nonzero in ✓1 spatial sector, we

can always anti-symmetrize it and then expand into slater determinants:

�1
�
= ✓1

X

P

(�1)PP�1
�

= ✓1
X

↵

A↵,�'↵

=
X

↵

A↵,�'
1
↵
.

(2.27)

Combining Eq. (2.26) and Eq. (2.27), we can obtain the expansion:

 1(x1, x2, ..., xN , �1, �2, ..., �N) =
X

↵,�

A↵� '
1
↵
(x1, x2, ..., xN)��(�1, �2, ..., �N) , (2.28)

where A↵� are superposition coe�cients, '’s are slater determinants and �’s are spin

wave functions. '1
↵
= '↵✓1 is the slater determinants in ✓1 spatial sector.

The expansion Eq. (2.28) means that we can expand any (anti-)symmetric many-

body spinor wavefunction into a superposition of SCAWs with a set of complete
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orthogonal slater determinants and a set of complete orthogonal spin states.

 =
X

↵,�

A↵�

X

P

(±)PP ('1
↵
��) . (2.29)

And note that any such SCAW can be one-to-one mapped to a direct product of

slater determinant and spin wavefunction, i.e. a basis in Eq. (2.24). This means we

can map any (anti-)symmetric spinor many-body wavefunction to a superposition of

direct products of slater determinants and spin wavefunctions.

We have shown that the states of an identical spinor quantum gas system can

be one-to-one mapped to (superposition)states of direct products of spatial and spin

states, i.e. Spin-Charge Separated Representation (SCSR). Now we want to map the

original Hamiltonian 1.1 to a new Hamiltonian acting on the SCSR.

Actually in Section 2.3, we have already obtained the new Hamiltonian for two

spinor particles in Eq. (2.22), which acts on the SCSR for two particles of Eq. (2.21).

Now we generalize this mapping to many-particles. Consider the boundaries of spatial

sector ✓1, every boundary corresponds to two particles with neighboring indices at

the same position, xi = xi+1. If we have a Hamiltonian acting on the SCSR that will

produce the same boundary condition in ✓1 sector as the original (anti-)symmetric

wavefunctions, then the Hamiltonian is the one we want to obtain. In fact, we can

ensure every boundary labeled by xi = xi+1 has the correct boundary condition

independently by applying the two particle mapping. However, we can not simply

add Eq. (2.22) together for every xi = xi+1, because every two particle boundary

individually can not ensure other particles in the ✓1 sector. Instead, we need to add

a long range sector constraint for every term. Putting everything together, we can

write down the full mapped potential term:

Vp = �
4N !P̂ s,a

i

ĝ

N�1X

i=1

 �
@ xi,i+1�(xi,i+1)✓

1�!@ xi,i+1 , (2.30)
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(anti-)symmetric representation spin-charge separated representation

Hilbert Space (anti-)symmetric  {x},{�} superpositions of '{x}�{�}

State
P

↵,�
A↵�

P
P
(±)PP ('↵��)

P
↵,�

A↵� '↵��

Hamiltonian Hf + ĝ
P

i<j
�(xij) Hf � 4N !P̂ s,a

i
ĝ

P
N�1
i=1

 �
@ i�(xi,i+1)✓1

�!
@ i

Table 2.1 : Mapping from the original (anti-)symmetric representation to the SCSR.
And @i is @xi,i+1 for short.

which is a p-wave pseudopotential, where xi,i+1 = xi� xi+1 and @xi,i+1 =
1
2@i�

1
2@i+1.

And the full mapped Hamiltonian is Hp = Hf + Vp, where Hf same as before is the

free Hamiltonian.

Note that the operators P̂ s,a

i
= (1 ± Ei,i+1)/2 are spin projection operators that

project out symmetric and antisymmetric spin states, respectively, where Eij is the

exchange operator that exchanges the ith and jth spins. If the original spinor gas is

bosonic (fermionic), one should take P̂ s

i
(P̂ a

i
). This mapping is possible as the parity

of the relative spatial wave function of two identical particles is directly linked to the

exchange symmetry of their spin wave function.

We summarize the main result of this section in Table 2.4. The generalized Bose-

Fermi mapping maps the original s-wave interacting spinor system into the SCSR.

The charge part is composed of spinless fermion wavefunctions (slater determinants).

The spin part is composed of spin wavefunctions.

Several points worth to mention, for the SCSR, at spatial sector boundaries, the

wavefunction is always zero. However, for the original (anti-)symmetric wavefunc-

tions, at spatial sector boundaries, the wavefunction could be non-zero. The contro-

versy is resolved by the fact that the p-wave pseudopotential Eq. (2.30) can introduce

discontinuous boundary conditions. At xi = xi+1 � 0+, the mapped wavefunction
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in the SCSR has the same value as the original (anti-)symmetric wavefunction at

xi = xi+1. A more intuitive example for the duality of relative wavefunctions is shown

in Fig. 2.1. Around a sector boundary of SCSRs, the relative wavefunction is odd,

but if the spatial wavefunction is discontinuous, it can correspond to an even relative

wavefunction in the original representation with non-zero values on the boundaries.

In a SCAW, for two particles, the parities of their relative spatial wavefunction and

that of the spin wavefunction around the sector boundaries are linked as the total

parity has be to odd (for fermions) or even (for bosons). In the SCSR, however, this

link is not present as the relative spatial wavefunction is always odd around sector

boundaries. The quantum statistics of the original system is taken care of by the spin

parity project operator P̂ s,a

i
in the mapped p-wave pseudopotential Vp.

2.5 Regularization of P-Wave Pseudopotential

As discussed at the end of Section 2.4, in the SCSR, the relative spatial wavefunction

can be discontinuous, as a more illustrative figure in Fig. 2.1. So the di↵erential

operators in the p-wave pseudopotential 2.30 is ill defined at the sector boundary.

In Section 2.2, we defined the derivative operator infinitely close to the boundary.

However, in practice this will introduce some di�culties, since we usually need to use

a truncated set of bases in the SCSR to do some practical calculation.2 For example,

we can use a truncated set of slater determinants as spatial bases, or discretize the

continuous model to a lattice model. For those methods, there is a notion of shortest

distance, which relates to the energy scale for the truncation of the bases. So there

2For perturbation calculations, since there is no wavefunction discontinuity, there is no such

problem. And also for some method, such as Green’s function method (Appendix D), the ‘infinitely

close to boundary’ definition of the derivative operators can be directly incorporated.
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is a question how to incorporate the ‘infinitely close to boundary’ definition of the

derivative operators into the truncated bases methods. In this thesis, we call it

regularization for the p-wave pseudopotential in mimic of the regularization in high

energy physics.

Here we give one example of the regularization for discretization methods. Con-

sider if we want to discretize the SCSR and Hamiltonian Hp = Hf + Vp, where Vp is

in Eq. (2.30). The lattice model can be written as:

Hp = �t
X

�,i

⇣
a†
i�
ai+1� + a†

i+1�ai�
⌘
+
X

i

µini +
X

i,↵,�,�,�

h↵�| B̂ |��i a†
i↵
ai�a

†
i+1�ai+1� ,

(2.31)

where a’s are now hardcore fermion operators. ni =
P

�
a†
i�
ai� is the local density

operator. The parameters are related with the continuous model by

t =
1

2a2
, µi = V (ia) +

1

a2
, B̂ = � 2

a3
1

ĝ + 2
a
� Ea

. (2.32)

Note that in the relation of B̂ and ĝ, there is a counter term 2/a � Ea, where a is

the lattice constant. This counter term is obtained by comparing the eigenstates of

relative motion of two particles for the discretized s-wave model Eq. (1.2) and p-wave

model Eq (2.31) in every spin channel, for the derivation for the spinless Fermion case

see [19].



23

Chapter 3

E↵ective Spin-Chain Models

In this section, we focus on the strongly interacting region of 1D spinor quantum

gases. To be specific, we start from the spinor quantum gases Hamiltonian 1.1, and

assume the interaction matrix can be factored out by a very large magnitude ĝ = gˆ̃g,

where g is large scaler and ˆ̃g is a matrix that is finite and invertible. Without in-

teraction, the ground state of 1D system can be easily obtained. For Bose gases,

particles with the same spin are on the same lowest energy state. For Fermi gases,

particles with the same spin form a Dirac Fermi sea. And particles with di↵erent

spins can be regarded as distinguishable particles. The problem has essentially no

more di�culty from single-particle problems. For weak interaction, some e↵ective low

energy theories can be constructed. For example mean-field theories (Gross-Pitaevskii

equations [20]) approximates the many-body wavefunctions with direct product wave-

functions, hydrodynamic equations [21] writes the many-body Schrödinger equation

into hydrodynamic di↵erential equations, Bosonization [5] constructes low energy ef-

fective field theories around Fermi surface, which is also a 1D counterparts of Fermi

liquid theories in higher dimensions, and so on. As interaction strength increases,

many methods will become invalid, and the ground state wavefunctions become more

strongly correlated and more complicated. Strongly correlated quantum many-body

problems are well-known to be hard to solve.

On the other hand, if the interaction strength further increases towards infinity,

under certain cases, things become easier. In Chapter 2, it has been show that we
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can map Hamiltonian 1.1 to a p-wave interacting Hamiltonian with the interaction

strength inversed. This allows us to construct perturbation theory using the mapped

p-wave pseudopotential as perturbation term.

In the following sections in this chapter, we first discuss the perturbation theory

results for a single charge branch. A emergent spin-chain model can be understood

as super-exchange process of neighboring particles. One can intuitively understand

the emergence of the super-exchange term as follows [22]. At g = 1, particles are

impenetrable in 1D and they cannot exchange positions with their neighbors. Away

from g =1, there will be small but finite probability that two neighboring particles

can exchange positions, which gives rise to the e↵ective super-exchange interaction.

The e↵ective spin-chain Hamiltonian takes a form of a non-translational-invariant

Sutherland model [23]. For spin-1/2 Fermions, the exchange operator can be written

in terms of spin operators, and the Sutherland model reduces to the Heisenberg model.

It immediately follows that the ground state of spin-1/2 Fermions is a Heisenberg

anti-ferromagnetic (AFM) state in the strongly repulsive limit, and a ferromagnetic

(FM) state in the strongly attractive limit (we exclude the tightly bound molecular

states on the attractive side, i.e., we consider the upper branch of the system). We

investigate the properties of such a system and demonstrate experimental signatures

that allow us to distinguish the AFM and the FM states. using both the e↵ective

model and several unbiased methods, and show that the former is indeed valid in the

strongly interacting regime.

The main advantages of the e↵ective model are two fold. First, from a conceptual

point of view, the e↵ective model provides new insights to the quantum magnetic

properties of strongly interacting particles in 1D. Second, from a practical point of

view, the e↵ective model is much easier to handle in comparison to unbiased meth-



25

ods. As a result, the e↵ective model allows us to deal with more particle numbers

and to investigate the dynamics to longer time scales. To this end, we benchmark

our e↵ective model against several unbiased methods and show that the former is

indeed valid in the strongly interacting regime. These benchmark calculations also

demonstrate that calculations based on the e↵ective model are much more e�cient

and take much less time than those based on unbiased methods.

3.1 Single Branch E↵ective Spin-Chain Models

Consider the trapped spinor gas with N total atoms governed by Hamiltonian 1.1.

Although our theory is valid for arbitrary V , we will focus on harmonic trapping

potential V (x) = x2/2, which not only is the most experimentally relevant, but also

possesses special symmetry properties that we will exploit later. We have adopted a

dimensionless unit system where ~ = m = ! = 1, with m and ! being the atomic

mass and the trap frequency, respectively. The interaction Hamiltonian of the mapped

system is given by Vp in Eq. (2.30).

For large g, we work on this mapped system, and treat Vp as a perturbation to

the free Hamiltonian Hf . The unperturbed system is simply an ideal Fermi gas,

whose ground state is formed by putting one atom in each of the lowest N single-

body states, as schematically shown in Fig. 3.1(a), with energy E(0) = N2/2, and the

ground state wave function is a Slater determinant which we denote as '0. In the

context of the original spinor system, this corresponds to the Tonks-Girardeau (TG)

limit with g = 1, for which the ground state possess spin degeneracy as its energy

is completely independent of the spin configuration. For large but finite g (Here we

focus on the case with repulsive interaction, i.e., g > 0, although the spin-chain model

is also valid for the upper branch in the strongly attractive regime.), to first order in
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Figure 3.1 : (color online) Schematic representation of the ground state (a), the first
excited state (b), and the second excited states (c) of an ideal spinless Fermi gas.

Vp (i.e., in 1/g), we can readily derive an e↵ective Hamiltonian:

H(0)
sc = E(0) + h'0|Vp|'i = E(0) � 1

g

N�1X

i=1

C(0)
i

(1± Ei,i+1) , (3.1)

with the coe�cients C(0)
i

given by

C(0)
i

= 2N !

Z
dx1...dxN |@i'0|2 �(xi � xi+1)✓

1 . (3.2)

This is the inhomogeneous spin-chain Hamiltonian for a 1D strongly interacting quan-

tum gas, where E0 is the first order ground state energy. In Eq. (3.1) plus sign means

the original gas is Bosonic and minus sign means it is Fermionic.

3.2 Applications of Single Branch Spin-Chain Models

The e↵ective spin-chain model discussed in Section 3.1 holds for spinor quantum

gases with arbitrary spins, arbitrary (permutation symmetric) interaction matrix ĝ,
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and Bosonic or Fermionic statistics. In this section, we discuss a special case of

spin-1/2 Fermi gases. The exchange operator can be written in terms of the spin

operators:

Ei,j = (1 + ~�i · ~�j)/2 , (3.3)

where ~�i are the Pauli spin matrices for the i’th atom. With Eq. (3.3) we can rewrite

the e↵ective spin-chain Hamiltonian 3.1 for Fermions as

He↵ = �1

g

N�1X

i=1

Ci(1� ~�i · ~�i+1)/2 , (3.4)

which takes the form of the non-translational-invariant Heisenberg model with Ci/(2g)

plays the role of the super exchange coe�cient between the i’th and the (i + 1)’th

spin. The e↵ective spin-spin interaction is ferromagnetic (FM) for g < 0, and anti-

ferromagnetic (AFM) for g > 0. Note that as the number of atoms in each spin

species are individually conserved, the spin configuration for the FM state here can

be written as (S�)N# |"" · · · "i and is fully symmetric, with S� =
P

i
��
i
/2 being the

total spin lowering operator.

3.2.1 Energy Spectrum of 3 Strongly Interacting Spin-1/2 Fermions.

To benchmark the spin-chain model, we show in Fig. 3.2(a) the low energy spectrum

of a three-body system. Similar benchmarks were also performed in Refs. [24,25]. In

this work, we focus on spin-1/2 Fermions, and label the two spin species as " and

#. The external potential is chosen to be a harmonic potential with frequency !.

In our calculation, we take ~ = m = ! = 1, and the observables are normalized to

dimensionless values: x ⇠ x/
p
~/(m!), p ⇠ p/

p
~m!, and E ⇠ E/~!. The main

figure of Fig. 3.2(a) is obtained by the unbiased Green’s function method based on

the original many-body Hamiltonian 1.1 [26]. For more details about using Green’s
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Figure 3.2 : (Color online) Energy spectrum of the relative motion as a function of 1/g
for three Fermions with (N", N#) = (1, 2), without (a) and with (b) the spin-dependent
magnetic gradient. For (b), we have G = 0.05. The main figures are obtained using
the Green’s function method (Appendix D). The red dotted lines in negative g area
represent the tightly bound molecular states. The inset figures show the comparison
between the spectrum obtained from the Green’s function method (dots) and that
from the e↵ective spin-chain model (solid lines) near 1/g = 0. In all the figures
presented in this paper, we have adopted the trap units with ~ = m = ! = 1.
Consequently, the energy E is in units of ~!, and the interaction strength g is in
units of

p
~3!/m.

function method for solving few-body spinor quantum gas systems, see Appendix D.

In the inset, we compare this exact spectrum (dots) with the spectrum obtained from

the spin-chain Hamiltonian He↵ (solid lines). As one can see, in the strong interaction

regime with 1/|g|⌧ 1, the spin-chain model faithfully reproduces the exact spectrum

of the upper branch when the tightly bound molecular states on the attractive (g < 0)

side are ignored. We can gain some insights into the spectrum of He↵ by noting that

the eigenvalues of the exchange operator Ei,i+1 are ±1. Therefore, for g > 0, the

spectrum of He↵ has a lower bound of �(2/g)
P

N�1
i=1 Ci (corresponding to a fully anti-

symmetric spin configuration with Ei,i+1 = �1 for any i), and an upper bound of

0 (corresponding to a fully symmetric spin configuration with Ei,i+1 = 1 for any i).
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We remark that the fully anti-symmetric spin configuration can only be realized for

2s+1 � N . For not too small N , this requires a Fermionic species with large spin s.

Recent cold atom experiments have witnessed realization of high spin Fermi gases in

alkali-earth atoms [27–30]. For g < 0, the spectrum is inverted and bound between

0 and |2/g|
P

N�1
i=1 Ci. From Eq. (3.4), we know the e↵ective spin-spin interaction is

ferromagnetic (FM) for g < 0, and anti-ferromagnetic (AFM) for g > 0. We therefore

label the corresponding ground state FM for g < 0 and AFM for g > 0, as shown

in the inset of Fig. 3.2(a), which is consistent with the Bethe ansatz result for the

homogeneous case [31, 32].

3.2.2 Density Profiles in Real and Momentum Spaces

In cold atom experiments, density profiles in real and momentum spaces can be

directly measured, which serve as an e↵ective tool to study the state of the quantum

gases system. Let us now examine in detail the density profiles in both real and

momentum spaces for the ground state of He↵ . To find the density profiles in both

real and momentum spaces, let us first introduce the one-body density matrix element

for spinor quantum gases system defined as

⇢�0�(x
0, x) =

X

�2...�N

Z
dx2, ..., dxN  

⇤(x0, x2, ..., �
0, �2, ...) (x, x2, ..., �, �2, ...) , (3.5)

from which the real-space and momentum space density profiles can be calculated as

⇢�(x) = N⇢�,�(x, x) ,

⇢�(p) =
N

2⇡

Z
dx

Z
dx0 e�ip(x�x

0)⇢�,�(x
0, x) .

In Appendix E, we provide the details of calculating the one-body density matrix

element given a SCAW of Eq. (2.6).
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In Fig. 3.3, we present the density profiles for N = 2 spin-1/2 Fermions with

(N", N#) = (1, 1). For this two-body problem, exact analytic solutions for arbitrary

interacton strength g can be found [33]. Results displayed in Fig. 3.3 are obtained

from the exact method. As a result, we are not limited to large |g|. Note that

the FM state corresponds to a fully symmetric spin configuration �, and its density

profiles, which are g-independent, are identical to a system of N spinless Fermions.

More specifically, ⇢�(x) = (N�/N)
P

N�1
i=0 |�i(x)|2, where �i(x) is the ith eigen-wave

function of the single particle Hamiltonian; and ⇢�(p) decays as exp(�p2) in the large

p limit.

The AFM state, on the other hand, possesses a fully anti-symmetric spin con-

figuration and its density profiles are sensitive to the value of g. As 1/g ! 0, the

real-space density profile of the AFM state approaches that of the FM state, whereas

the momentum space density profile remains distinct for these two states. Hence, in

the strongly interaction limit, the density profiles for the AFM and the FM states

are indistinguishable in real space, but distinguishable in momentum space. This

statement remains true for N > 2.

As a further example, we consider a system of (N", N#) = (4, 4) spin-1/2 Fermions

in the strongly interacting limit. In Fig. 3.4 we show the momentum space density

profiles. The black dashed line corresponds to the momentum distribution of the

FM state (which is the same as the momentum distribution of N spinless Fermions),

and the red solid line to that of the AFM state. The AFM state has a nonzero Tan

contact K, and in the large momentum limit, we have ⇢(p) = K/(2⇡p4) [34]. This is

confirmed by our numerics as shown in the inset of Fig. 3.4. For comparison, we also

show the momentum distribution of a fully anti-symmetric spin state, which coincides

with the momentum distribution of N spinless Bosons in the Tonks-Girardeau limit.
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Figure 3.3 : (Color online) Real space density profiles (upper panel) and momentum
space density profiles (lower panel) for (N", N#) = (1, 1) versus 1/g for AFM (red
solid lines) and FM (black dotted lines) states. In our trap units, position x is units
of

p
~/(m!), the real space density ⇢(x) is in units of

p
m!/~, the momentum p is

in units of
p
~m!, and the momentum space density ⇢(p) is in units of 1/

p
~m!.
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As we mentioned earlier, the fully anti-symmetric spin state is only possible when

2s + 1 � N [35]. We emphasize again that these di↵erent states have identical

real space density profile, but can be distinguished from their distinctive momentum

distribution.

3.2.3 Response to Spin-Dependent Magnetic Gradient

The form of the spin-chain e↵ective Hamiltonian He↵ makes it clear that a quantum

phase transition is induced as 1/g is tuned across zero, which can be achieved using

the technique of confinement induced resonance [36, 37]. In practice, however, more

e↵ort is required to observe this phase transition. The AFM ground state for g > 0

can be straightforwardly prepared. Such is not the case for the FM state on the

attractive side with g < 0. This is due to the fact that, for g < 0, there exist many

bound molecular states with lower energies than the FM state, as can be seen from

Fig. 3.2(a). If one simply prepare the system on the attractive side, these molecular

states, not the FM state, will be realized. Hence to create the FM state, one needs to

start from the AFM state on the repulsive side and adiabatically tune the interaction

strength to the attractive side. However, the spin states are protected by symmetry:

If we start from the AFM state and tune 1/g across zero, the system will remain as an

AFM state and realize a Fermionic super-Tonks-Girardeau state [38, 39], as there is

no coupling between the AFM and the FM states. To overcome this problem, we need

to add a spin symmetry breaking term. One possibility is to add a spin-dependent

gradient term. We will consider in detail how to realize the FM state in the next

section. Here we first investigate how the AFM and the FM states respond to such a

gradient term.

To this end, we introduce a weak spin-dependent magnetic gradient which adds
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Figure 3.4 : (Color online) Momentum distribution for (N", N#) = (4, 4). The black
dashed curve is for the fully spin symmetric FM state, which has the same momentum
distribution as N spinless Fermions. The red solid curve is for the AFM state. The
blue dash-dotted curve is for the fully spin anti-symmetric state, which has the same
momentum distribution as N spinless Tonks-Girardeau Bosons. The inset shows
the momentum distribution for the AFM state in the large momentum limit, in
comparison to the theoretical prediction K/(2⇡p4) (green dotted curve), where K
is Tan contact.
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a term �G
P

i
xi�z

i
to the Hamiltonian (1.1), where G, which we will take to be

non-negative, characterizes the magnitude of the magnetic gradient. The e↵ective

spin-chain Hamiltonian will be modified correspondingly as

He↵ = �1

g

N�1X

i=1

Ci(1� ~�i · ~�i+1)/2�G
NX

i=1

Di�
z

i
, (3.6)

where Di = N !
R
xi|'A|2✓1

Q
N

j=1 dxj represents the position of the ith atom. For

more details about how to calculate Di coe�cients and a general discussion about

magnetic gradients, see Appendix F. In Fig. 3.2(b), we plot the energy spectrum for

a three particle system in the presence of weak spin gradient, obtained from both the

Green’s function method and the e↵ective model. Again we see excellent agreement

in the strongly interacting regime. Comparing the insets of Fig. 3.2(a) and (b), one

can easily see that the gradient term lifts the spin degeneracy at 1/g = 0, and the

ground state is now separated from excited states by a finite gap, which facilitates

the adiabatic preparation of the FM state to be discussed later.

The spin gradient tends to separate the two spin species [40]. To quantify this

e↵ect, we define

� =
1

N

NX

i=1

hxi�
z

i
i , (3.7)

which measures the center-of-mass separation between the two spin species. Here the

expectation value is taken with respect to the ground state of the e↵ective Hamiltonian

(3.6). In the absence of the gradient (G = 0), � = 0 for both the FM and the AFM

states. Under the e↵ective spin-chain model, � is a function of Gg only.

As a first example, we again consider a two particle system with (N", N#) = (1, 1).

For this simple system, Hamiltonian (3.6) can be easily diagonalized, and � has an
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analytic expression:

� =

r
2

⇡

h
2G|g|+

p
1 + 4(G|g|)2

i2
� 1

h
2G|g|+

p
1 + 4(G|g|)2

i2
+ 1

.

Note that since � only depends on |g|, we conclude that the FM and the AFM

state respond identically to the gradient in the two-body case. We plot � as a

function of G|g| in Fig. 3.5(a). In the figure, we also plot the result obtained from

an exact solution using the Green’s function method with g = ±20, which are in

good agreement with the e↵ective model. The details of this solution can be found

in Appendix D.

By contrast, for N > 2, the ground states for g > 0 and g < 0 will response

di↵erently to the gradient. In Fig. 3.5(b) and (c), we plot � as a function of G|g|

for the cases (N", N#) = (1, 2) and (2,2), respectively. The dashed and solid curves

correspond to the ground state of negative and positive g, respectively. In general, the

ground state on the attractive side will have a stronger response. To benchmark the

e↵ective model, we studied this problem using the Time-Evolving Block Decimation

(TEBD) method [41–44]. In TEBD, a many-body wave function is represented by

a Matrix-Product state (MPS), which approximates a many-body wave function by

making a truncation of the entanglement spectrum. For 1D gaped system, whose

entanglement is short-ranged, the truncation error is well controlled, and the TEBD

method therefore represents an unbiased method and has been implemented widely

to study 1D systems. The symbols in Fig. 3.5(c) are the TEBD results for positive

g. One can see that for large g, the results obtained from TEBD and the e↵ective

model agree with each other very well.

To further quantify the response to the gradient and show the di↵erence be-

tween the AFM and the FM states, we define the magnetic gradient susceptibility as
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1/|g|(d�/dG)G=0, and the following relation can be readily derived:

1

|g|
d�

dG

���
G=0

=
2

|g|N2

X

n 6=0

���h0|
P

N

i=1 xi�z

i
|ni

���
2

En � E0
, (3.8)

where |ni represents the nth eigenstate of the spin-chain Hamiltonian with G = 0, and

En is the corresponding eigen-energy. |0i represents the ground state, which is the

AFM (FM) state for positive (negative) g. In Fig. 3.5(d) we plot this susceptibility as

a function of the total particle number N for the case with N" = N# = N/2. One can

see that, as long as N > 2, the FM state possesses a larger susceptibility, i.e., is more

prone to spin segregation under the gradient, than the AFM state. Furthermore, the

susceptibility for the FM state grows rather rapidly as N increases, whereas that for

the AFM state is not very sensitive to N .

3.2.4 Adiabatic Preparation of Ferromagnetic State

In the previous section, we suggested a method of applying weak spin-dependent

magnetic gradient to approach the FM state in experiment. Here we will discuss the

method in detail. The experimental protocol is in the following: (1) The system is ini-

tially prepared in the ground state with strong repulsion (g > 0) and a relatively large

magnetic gradient. In the example presented in Fig. 3.6, we choose the initial values

1/g = 0.01 and G = 0.1. (2) From t = 0 to T1, G is fixed at the initial value while

the interaction strength is tuned to the attractive side as 1/g(t) = 0.01 cos(⇡t/T1),

which can be achieved with confinement-induced-resonance method. (3) Finally, from

t = T1 to T1 + T2, g is fixed at its value at T1, while the gradient strength G is slowly

turned o↵. We vary G such that the instantaneous spin separation � follows the form

�(t) = �[G(t)] = �(T1) cos
2


⇡(t� T1)

2T2

�
. (3.9)
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Figure 3.5 : (Color online) Separation between the two spin species as a function
of G|g| for (a) (N", N#) = (1, 1), (b) (N", N#) = (1, 2), (c) (N", N#) = (2, 2). The
black dashed curves are for the ground state with negative g, and the red solid curves
are for the ground state with positive g. The symbols in (a) are obtained from the
analytic solution detailed in Appendix D. The symbols in (c) are TEBD results. (d)

The susceptibility d�
|g|dG

���
G=0

as functions of N for N" = N# = N/2. In our trap units,

� is in units of
p

~/(m!), and Gg in units of ~2!2.
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The experimentally controlled parameters are plotted in Fig. 3.6(a) for T1 = 20Tho

and T2 = 280Tho, where Tho = 2⇡/! is the harmonic trap period.

In Fig. 3.6(b) we display the evolution of the spin separation parameter � in

an example system with (N", N#) = (2, 2), T1 = 20Tho, and T1 + T2 = 100Tho,

200Tho, and 300Tho. The dashed curves represent the targeted instantaneous value as

shown in Eq. (3.9); while the solid curves are obtained by solving the time-dependent

Schrödinger equation under the e↵ective Hamiltonian He↵ . As expected, the larger

the T2, the better agreement between the solid and dashed curves. In the inset, we

also show the fidelity, which is the overlap between the calculated wave function from

evolving the Schrödinger equation and the instantaneous ground state wave function

given the values of g and G at the moment, for the case T1 + T2 = 300Tho. One

can see that an FM state can be realized with very high fidelity. For a shorter total

evolution time with T1 + T2 = 100Tho, we still obtain a fidelity higher than 94%.

Although we have proposed to use a spin-dependent magnetic gradient to break

the spin symmetry and facilitate the adiabatic preparation of the FM state, in reality

any spin symmetry breaking term can do the job. Experimentally, this means one

needs to introduce some perturbation to the system to which the two atomic spin

states will respond di↵erently. A possibility is to apply an o↵-resonant light with

proper polarization such that it induces di↵erent light shift to di↵erent atomic spin

states. This idea has been recently implemented to create spin-dependent optical

lattices for cold atoms [45,46].

Finally, we comment on the stability of the FM state. Due to presence of the

tightly bound molecular states on the attractive side, the FM can only be metastable.

In 2009, Haller et al. realized such a metastable state in a system of spinless Bosons

[12], and the resulting state is the so called super Tonks-Girardeau (sTG) gas. In that
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experiment, a typical lifetime of about 100 ms is found. We expect the lifetime of the

FM state in a spin-1/2 Fermi gas should be longer than the bosonic sTG gas. This is

because the low-lying molecular states for Fermions must be spin singlet. Therefore

the spin symmetric FM state will be protected by spin symmetry against decaying

into the molecular states.

3.2.5 Quench Dynamics without Spatial Degrees of Freedom

In Fig. 3.7 we present another example. Here we consider a quench dynamics in which

the system is initially prepared in the ground state with 1/g = 0.01 and G = 0.05.

At t = 0, the spin gradient is suddenly turned o↵ and the evolution of the center-

of-mass separation between the two spin species � is calculated by solving the time-

dependent Schrödinger equation. We solve the Schrödinger equaton using both the

e↵ective spin-chain model governed by He↵ , and the TEBD method governed by the

original many-body Hamiltonian. As can be seen from Fig. 3.7, the e↵ective model

nicely reproduces the TEBD result. We therefore demonstrated that the spin-chain

model can be applied to study the dynamics of the system. This example also serves

to showcase the advantages of the e↵ective model in the dynamical situation: due

to its smaller Hilbert space, it can capture much longer time scale behavior of the

system. Furthermore, it takes a few days to obtain the TEBD result as displayed in

Fig. 3.7, in comparison to a few tens of seconds for the spin-chain result.

3.3 Multi-Branch Spin-Chain Models

In single-branch spin-chain models, the charge (spatial) degrees of freedom is fixed to

a certain free fermion eigenstate (slater determinant) of the free Hamiltonian Hf in

Eq. (1.1), the spin degrees of freedom is governed by an e↵ective spin-chain model.
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Figure 3.6 : (Color online) Adiabatic preparation of the FM state. At t = 0, the
system is prepared in the ground state with 1/g = 0.01 and G = 0.1. (a) The
value of experimentally controlled parameters 1/g(t) and G(t) for a total adiabatic
evolution time 300Tho. (b) The solid lines represent�(t) obtained by solving the time-
dependent Schrödinger equation under the e↵ective Hamiltonian He↵ . The dashed
lines represent Eq. (3.9), which is the �(t) of the instantaneous ground state for the
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lated, 100Tho,200Tho, and 300Tho. The inset shows the fidelity of the adiabatically
prepared state for the total evolution time 300Tho.
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The perturbation theory is constructed around the infinite interaction point. So when

the interaction strength is away from the infinite interaction point, the system may

be not able to be described by an e↵ective spin-chain model, the charge degrees of

freedom and spin degrees of freedom may be coupled with each other. In this section,

we still discuss under perturbation theory, but take into account the charge degrees

of freedom. We develop a multi-branch spin-chain model through the generalized

Bose-Fermi mapping for spinor quantum gases. Then we analyze the role of charge

degrees of freedom around infinite interaction by calculating the system’s response to

a perturbation that will couple spin and charge degrees of freedom.

With the generalized Bose-Fermi mapping for spinor quantum gases, we can map

both spinor Bose and Fermi gases to spin-charge separated representation governed

by the Hamiltonian Hp = Hf+Vp, where Vp is the p-wave interaction Eq. (2.30). This

mapping transform the interaction strength to its inverse, so is very useful for strong

interactions. In this section, we focus on strong interaction again, but comparing

with Section 3.1, we consider a more complete picture such that we also introduce

the charge degrees of freedom in the perturbation theory.

Previous works have established that the spin-chain model represented by Hamil-

tonian 3.1 describes rather accurately many of the ground state properties of the

original strongly interacting spinor gas to order 1/g. In order to provide a more

complete description of the system, and in particular of the dynamical properties

of the system, we now extend the calculation to include excited eigenstates of the

unperturbed Hamiltonian Hf to construct a multi-branch spin-chain model.

The excited eigenstates of the non-interacting system governed by Hf can be

easily constructed. The first excited state, with wave function denoted as '1 and

represented in Fig. 3.1(b), is obtained by promoting the atom at the Fermi level
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in the ground state '0 to the next single-particle state. For harmonic traps with

equal spacing single-particle energy levels, the second excited state, as represented

in Fig. 3.1(c), is two-fold degenerate with wave functions denoted as '2a and '2b,

respectively. We can now carry out a similar first-order perturbation calculation and

construct the corresponding spin-chain Hamiltonian for each excited manifold. For

example, for the first excited state, we obtain the following spin-chain Hamiltonian:

H(1)
sc = E(1) � 1

g

N�1X

i=1

C(1)
i

(1± Ei,i+1) , (3.10)

where E(i) = E(0) + i is the energy of the ith excited state of the ideal Fermi gas,

and the coe�cients C(1)
i

are given by Eq. (3.2) with '0 replaced by '1. Similarly, the

spin-chain Hamiltonian for the second excited manifold can be written as

H(2)
sc = E(2) � 1

g

N�1X

i=1

C(2)
i

(1± Ei,i+1) , (3.11)

where, due to the two-fold degeneracy of this manifold, C(2)
i

is a 2⇥ 2 matrix whose

elements are given by

⇣
C(2)

i

⌘

↵�

= 2N !

Z
dx1...dxN @i'↵�(xi � xi+1)✓

1@i'� , (3.12)

with ↵, � = 2a, 2b. Strictly speaking, Hamiltonian 3.11 is no longer a pure spin

Hamiltonian, as we now have two spatial wave functions '2a,2b, which leads to a

spin-orbit coupling between the spatial and the spin sectors.

In principle, one can construct the e↵ective Hamiltonian for any other excited

manifold in a similar manner as long as we plug in the corresponding Slater deter-

minant(s) to evaluate the coe�cients Ci. In the following sections, we will show that

the special symmetry properties of harmonic trapping potential allows us to write

down the spin-chain model for low-lying excited manifolds from that of the ground
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state spin-chain Hamiltonian (3.1) without any extra calculations. This also provides

significant insights into the low-lying collective excitation modes for harmonically

trapped spinor quantum gases.

3.4 Applications of Multi-Branch Spin-Chain Models

In this section, we show several applications of the multi-branch spin-chain model for

spin-1/2 fermions in a harmonic trap. Those include how the multi-branch spin-chain

model can help analyzing the symmetry properties of the harmonic trap, breathing

modes, and quench dynamics with spatial degree of freedom.

3.4.1 SO(2, 1) Symmetry for fermions in Harmonic Trap

Consider first an ideal gas of harmonically trappedN spinless fermions under Hamilto-

nian Hf . The center-of-mass (COM) motion can be separated from the relative inter-

nal motion. The COM dipole mode can be excited by the operator Q† = (K�iP )/
p
2,

where K and P correspond to the COM position and momentum operators, respec-

tively. (For the detailed definition and properties of these operators, see Appendix B.)

On the other hand, one can also construct an operator B† which excites a breath-

ing mode which is an excitation in the internal motion. We can further define the

internal Hamiltonian as H i
f
= Hf � {Q,Q†}/(2N), which together with B and B†

form a closed SO(2,1) algebra [47–50]. The internal states can then be classified into

irreducible representations of this SO(2,1) algebra. The first excited state '1, repre-

sented by Fig. 3.1(b), represents the lowest COM dipole excitation and is generated

from the ground state '0 (Fig. 3.1(a)) by applying Q† once, i.e., '1 = Q† '0. Whereas

the second excited manifold can be generated from the ground state in two di↵erent
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ways:

'Q = (Q†)2 '0 , 'B = B† '0 , (3.13)

where 'Q represents the second COM dipole excitation and 'B the first internal

breathing excitation. 'Q and 'B have the same energy and are in fact linear super-

positions of '2a and '2b represented by Fig. 3.1(c). By repeatedly applying Q† and

B† to the ground state, we can generate two families of excited states correspond to

the COM dipole excitations and internal breathing excitations, respectively. In our

dimensionless units, the nth COM dipole mode (Q†)n '0 has excitation frequency n,

and the nth internal breathing mode (B†)n '0 has excitation frequency 2n.

For the mapping we discussed earlier, the charge degrees of freedom of a strongly

interacting harmonically trapped spinor gas is mapped to a spinless Fermi gas in-

teracting with the p-wave pseudo-potential Vp given in Eq. (2.30). Since Vp only

a↵ects in the internal degrees of freedom, the separation of the COM motion and

internal motion discussed above remains valid. An immediate conclusion one can

draw is that Vp would not a↵ect the energies of the COM dipole states generated

by Q† as [Vp, Q†] = 0. Consequently, the COM dipole excitation frequencies are not

shifted by the interaction. This is simply the manifestation of the Kohn-Sham the-

orem for a system of harmonically trapped particles. A direct consequence of this is

that the coe�cients in the spin-chain Hamiltonian H(1)
sc for the first excited state (see

Eq. (3.10)) are the same as the corresponding coe�cients in H(0)
sc for the ground state

(see Eq. (3.1)), i.e., C(1)
i

= C(0)
i

. Hence the two spin-chain Hamiltonians, H(1)
sc and

H(0)
sc , only di↵er by a constant shift of E(1) � E(0) = 1, which is the frequency of the

lowest COM dipole mode.

Now let us turn to the second excited manifold which contains two degenerate

states 'Q and 'B defined in Eq. (3.13). Due to the fact that Q† is a COM operator,
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and both B† and Vp a↵ect only the internal motion, the interaction does not couple

'Q and 'B. As a result, we can write down the e↵ective spin-chain Hamiltonians for

these two states separately:

HQ,B

sc = E(2) � 1

g

N�1X

i=1

C(Q,B)
i

(1± Ei,i+1) . (3.14)

Furthermore, for the same reason that C(1)
i

= C(0)
i

, we also have C(Q)
i

= C(0)
i

. Hence

H(Q)
sc and H(0)

sc also di↵er only by a constant shift of E(2) � E(0) = 2, which is the

frequency of the second COM dipole mode. Quite amazingly, there also exists a

simple relation between CB

i
and C(0)

i
which can be proved using a recursion relation

for the SO(2,1) algebra [25,50](See Appendix B for more discussion):

CB

i

C(0)
i

= 1 +
3

2(N2 � 1)
, (3.15)

which means that H(B)
sc and H(0)

sc , apart from a constant shift of E(2)�E(0) = 2, only

di↵er by a constant factor given in Eq. (3.15). The energy di↵erence between the

ground states of H(B)
sc and H(0)

sc , which gives the frequency of the lowest breathing

mode !B, is therefore

!B = 2 +
3

2(N2 � 1)
Eg , (3.16)

where Eg = hH(0)
sc i�E(0) is the ground state energy of the spin-chain HamiltonianH(0)

sc

measured with respect to E(0). Hence, unlike the COM dipole mode, the breathing

mode frequency receives an interaction-dependent shift away from the non-interacting

value of 2. In the strongly interaction regime, this shift �!B ⌘ !B � 2 / 1/g and

vanishes exactly in the TG limit of g =1.

3.4.2 Collective Modes

Let us now take a further look at the breathing mode, which is the first collective

excitation mode whose frequency !B, given in Eq. (3.16), has a nontrivial interaction
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dependence. !B is completely determined by the ground state energy of the spin-

chain Hamiltonian H(0)
sc . For a system of spinor Bose gas with arbitrary spin and

arbitrary population distribution among spin components, it is quite obvious that the

ground state of H(0)
sc is obtained by arranging the atoms into a fully spin symmetric

configuration such that hEi,i+1i = 1, and correspondingly the ground state energy is

given by

Eboson
g

= �2

g

N�1X

i=1

C(0)
i

, (3.17)

which, for a given trapping potential, only depends on the total number of atoms N .

Under the local density approximation (LDA), we can obtain semi-analytic expres-

sions for C(0)
i

, from which, we can show(For more details see Appendix C) that, for

N � 1

Eboson
g

= �1

g

128
p
2

45⇡2
N5/2 ⇡ �1

g
0.408N5/2 , (3.18)

which is consistent with the result obtained previously for spinless bosons near the

TG limit [39, 51, 52]. Correspondingly, the interaction-induced shift of the breathing

mode frequency is

�!boson
B

=
3

2(N2 � 1)
Eboson

g
⇡ �1

g

64
p
2

15⇡2
N1/2 . (3.19)

The fermionic case is more complicated. For a spin-s Fermi gas with a fully spin

antisymmetric configuration, its ground state energy is the same as in the bosonic

case, given by Eq. (3.17), as the two systems possess the same spatial wave function.

This spin configuration, however, can only occur if the number of spin components

2s + 1 � N and no more than 1 fermions occupy the same spin component [35].

Otherwise the fully spin antisymmetric configuration cannot be reached and thus the

ground state energy Efermion
g

for a spinor Fermi gas satisfies Eboson
g

 Efermion
g

 0.
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Figure 3.8 : (color online) Ground state energy (a, b) and breathing mode frequency
shift (c, d) as functions of N . In (a) and (c), we present results for bosons and
spin-1/2 fermions with various N"/N . In (b) and (d), we present results for bosons,
and fermions with di↵erent spin s and equal population in each spin component.
For bosons, the ground state energy and the breathing mode frequency shift are
independent of spin. The black solid lines represent the analytic LDA results for
bosons given in Eqs. (3.18) and (3.19).
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In Fig. 3.8(a), we plot the spin-chain ground state energy Eg as functions of total

atom number N , with the corresponding breathing mode frequency shift �!B plotted

in Fig. 3.8(c). The symbols are obtained by numerically calculate the coe�cients C(0)
i

and then diagonalize the spin-chain Hamiltonian H(0)
sc . The red dots are the results for

bosons. We also plot the analytical results based on LDA (Eqs. (3.18) and (3.19)) as

black solid lines. As one can see, the LDA results agree very well with the numerical

results even for small N . Other symbols in the figure correspond to Eg and �!B for

spin-1/2 Fermi gas with di↵erent population distribution in the two spin components.

In Fig. 3.8(b) and (d), we plot respectively Eg and �!B as functions of N for Fermi

gases with di↵erent spin s and equal population in each spin component. As one can

see, for fixed N , as s increases, the fermionic results approach the bosonic ones. As

2s+1 � N , the two results matches exactly. This behavior has been recently seen in

the experiment [30].

3.4.3 Quench dynamics with Spatial Degrees of Freedom

Finally, we demonstrate the application of multi-branch spin-chain model to sim-

ulate the dynamics of the system. To this end, we consider a spin-1/2 Fermi gas

(N" = N# = 2) initially prepared in a harmonic trap subject to a spin-dependent

magnetic gradient that separates the COM position of the two spin components, see

the inset in Fig. 3.9. The presence of the magnetic gradient will modify the spin-

chain Hamiltonian accordingly (See Appendix F). At t = 0, the magnetic gradient is

quenched to zero and we plot the COM separation between the two spin components,

�, in Fig. 3.9 as a function of time. This situation is examined in Section 3.2.5 us-

ing the single-branch spin-chain Hamiltonian H(0)
sc , benchmarked with the numerically

unbiased TEBD calculation. These are reproduced in Fig. 3.9 as green dotted line and
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Figure 3.9 : (color online) Evolution of the spin separation after a sudden quench of
the spin-dependent magnetic gradient for a harmonically trapped spin-1/2 Fermi gas
with N" = N# = 2 and g = 100. The green dotted line is obtain from the ground

state spin-chain model under Hamiltonian H(0)
sc . The blue dashed line, shifted down

by 0.05 for clarity, is obtained from the multi-branch spin-chain model by including
8 excited branches. The red solie line is the TEBD result. The inset shows the initial
density profiles for spin-up (dashed line) and spin-down (solid line) components.
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red solid line, respectively. For the short time scale we plotted, � decreases in time.

The single-branch spin-chain result captures this behavior, but could not produce the

small-amplitude oscillations that can be clearly seen in the TEBD simulation. The

blue dashed line (shifted for clarity) is obtained by the multi-branch spin-chain sim-

ulation, in which we included 8 excited branches. The multi-branch spin-chain result

shows excellent agreement with the TEBD calculation. Further analysis shows that

the small-amplitude oscillation is mainly due to the coupling to the lowest breathing

mode which can only be captured if the second excited manifold is included in the

spin-chain model.

3.5 Advantages of the E↵ective Spin-Chain Models

We have shown here, for large interaction strength |g|, the original Hamiltonian 1.1

can be map into a spin-chain model governed the by the e↵ective Hamiltonian He↵

in the form of Eq. (3.1), Eq. (3.10) or Eq. (3.11) which is expected to completely

describe the physics of the upper branch in the strongly interacting regime. The

great advantage of the e↵ective model is that (1) it provides valuable insights into

the quantum magnetic properties of strongly interacting one dimensional quantum

gases, and (2) it is much easier and more e�cient to solve in comparison to the original

many-body Hamiltonian. We have benchmarked the static properties of the e↵ective

model with several unbiased methods (see Fig. 3.2 and Fig. 3.5).

As we have mentioned earlier, several other groups have obtained the same spin-

chain e↵ective Hamiltonian using a variational method [24,25,53,54]. Our perturba-

tional approach [22] is originally inspired by the similar technique used to construct

e↵ective spin models from Hubbard Hamiltonian in the large-U limit. Using this

technique, the super-exchange interaction arises naturally. The Hubbard Hamilto-
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nian describes lattice systems. Our work thus broadens this approach to a continuum

model. From the perturbation calculation presented in this work, we may readily

obtain many-body wave functions accurate to order 1/g. Furthermore, it is in prin-

ciple possible to extend the perturbation approach to higher orders to obtain more

accurate results. These features will be exploited in the future to study more detailed

properties of the system.

Another great advantage of the spin-chain model is its wide applicability [53].

The e↵ective Hamiltonians 3.1, 3.10, 3.11 are valid for spinful Bosons or Fermions.

The coe�cients Ci, as given in Eq. (3.2), only depend on the total number of atoms

and the external trapping potential, and are independent of whether the particles

are Bosons or Fermions, nor are they dependent on the single particle spin s. The

formalism to derive the e↵ective Hamiltonian is independent of particle numbers N .

Hence it works for any N .

3.6 Super-Exchange Interactions in Lattice Models

In the derivation of the spin-chain model Eq. (3.1, 3.10, 3.11) in above sections,

we used the continuous models. As we have mentioned earlier, our perturbational

approach is inspired by the similar technique used to construct e↵ective spin models

from Hubbard Hamiltonian in the large-U limit. The Hamiltonian for 1D Fermi

Hubbard model is:

H = �t
NX

i=1,�

(c†
i,�
ci+1,� + h.c.+ Vini) + U

NX

i=1

ni,"ni,#. (3.20)

Where c†
i,�
(ci,�) are Fermionic creation(annihilation) operators on site i for spin �,

ni,� = c†
i,�
ci,� is the local spin density operator, and ni =

P
�
ni,� is the local density

operator. It is helpful to point out here that by discretizing the continuous Hamilto-
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nian 1.1, we can obtain a discretized form for the continuous model, which has the

same form as Eq. (3.20) with a conversion of model parameters between continuous

and discretized model as in Eq. (1.3).

For the lattice Hubbard model Eq. (3.20), at strong coupling region U ! 1, an

e↵ective t-J model [55], can be derived

Ht�J = �t
X

i,�

(a†
i,�
ai+1,� + h.c.+ Vini) +

2t2

U

X

i


~Si
~Si+1 �

1

4
nini+1

�

+
t2

U

X

i,�

h
a†
i,�
ni+1,�ai+2,� � a†

i,�
a†
i+1,�̄ai+1.�ai+2,�̄

i
,

(3.21)

where a†
i,�

= c†
i,�
(1 � ni,�̄) is the projected Fermion operator, i.e. hard core Fermion

operator, where �̄ = �� is the opposite of spin �. These hard core Fermion operators

will ensure that the Hilbert space of the t�J model does not include double occupancy

states. And ~Si are local spin operators in second quantized form.

~Si =
X

↵,�

~S↵,�a
†
i,↵
ai,�. (3.22)

Where ~S↵,� = 1
2~�↵,� is the matrix elements of Pauli matrices. And ni =

P
�
ni,�

is the local density operator. The first term in Eq. (3.21) is the hopping term, the

second term is the super-exchange interaction for two sites, and the third term is

the super-exchange interaction for three sites. For Hubbard model at half-filling,

the number of particles equals to the number of sites. In this case, for hardcore

Fermions, the first and third term will vanish. This means the spatial degrees of

freedom will vanish, and only the spin degrees of freedom remains. The second term

is a spin Hamiltonian, which is just the Heisenberg model with nearest neighbor

interaction. Here we want to mention that the t-J model and the discretized p-wave

Hamiltonian 2.31 are consistent at large interaction and small lattice constant, but

the discretized p-wave Hamiltonian can be used for arbitrary interaction strength,
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since it is regularized by a counter term.

We expect the same results as in Section 3.1 and 3.4 will be obtained by first dis-

cretizing the continuous model of Eq. (1.1) and then apply the technique of obtaining

the t � J model on the discretized model. Actually, we can use perturbation theory

on the t-J model to obtain an e↵ective spin-chain model, especially when there is a

large charge gap due to the trapping potential Vini. When t2/U is very small, first

diagonalize the kinetic term, and an eigenfunction can be written as

 (i1, �1, ..., iN , �N) = '(i1, i2..., iN)� , (3.23)

where

'(i1, i2..., iN) = det

2

66666664

'0
i1

'0
i2

· · · '0
iN

'1
i1

. . .

...
. . .

'N�1
i1

'N�1
iN

3

77777775

, (3.24)

where '(i1, i2..., iN) is a slater determinant with 'm

i
being single particle eigenstates

of the free Hamiltonian. Eq. (3.23) can be regarded as a SCAW for lattice models.

We write it into a direct product form, because for lattice Fermion models we label

the direct product basis as

|i1�1, i2�2, ..., iN�Ni = a†
i1,�1

a†
i1,�1

· · · a†
iN ,�N

|0i (3.25)

with spatial indices only in one spatial sector i0 < i1 < ... < iN�1. Same as continuous

case, � is a spin wavefunction. Here we also first ignore charge state degeneracies. In

first order perturbation in t2/U , We can obtain the e↵ective spin-chain model for the

lattice model as

Heff = � t2

U

N�1X

l=1

Cl(1� El,l+1) , (3.26)
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with the coupling coe�cients calculated by

Cl = h'|
LX

j=1

�Pj�1
i=1 ni,l�1

h
2njnj+1 � a†

j+2nj+1aj � a†
j�1njaj+1

i
|'i , (3.27)

where ' is the spatial wavefunction defined in Eq. (3.24). �Pj�1
i=1 ni,l�1 projects the

state that there are l � 1 particles on the left of site j to ensure consistency with the

spin-chain system with respect to site l and l + 1. And the spin labels of a†
j
and aj

are eliminated since they only act on spatial states.

Similarly, we can also obtain the spin-charge separated form of one-body density

matrix, ⇢�0,�(x0, x) =
1
N
h | a†

x0,�0ax� | i for lattice SCAWs (3.23):

⇢�0,�(x
0, x) =

X

m,n

⇢mn(x
0, x)Smn(�

0, �) , (3.28)

which has the same form as continuous models. The sectored spatial OBDM is now

a multi-dimensional sectored summation

⇢mn(x
0, x) =

1

N

X

�mn

'⇤(i2, ..., im, x
0, im+1, ..., iN)'(i2, ..., in, x, in+1..., iN) , (3.29)

where

�mn = i2 < .... < im < x0 < ... < in < x... < iN . (3.30)

and Smn(�0, �) has the same form as continuous models. The techniques used for

calculating OBDM for continuous models in Chapter 4 also applies here.

Here we want to mention that the coupling constants in the spin-chain model

are essential quantities in the e↵ective spin-chain theory. They involves sector multi-

dimensional integral for continuous models or summation for lattice models. The

comparison of the continuous spinor quantum gas model and lattice Hubbard shows

the spin-chain models arise from super-exchange interaction, thus it is naturally re-

lated to the itinerant quantum magnetism phenomenon.
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There is also a spacial property for the continuous model, note that when dis-

cretizing the continuous model to lattice models, we need to specify a very small

lattice constant, if we tune the lattice constant towards zero, the result lattice model

will have filling goes to zero, the probability of double occupancy will go to zero. As

a result, it is possible to map any continuous spinor quantum gas model to a hard

core spinor gas model, which corresponds to the generalized Bose-Fermi mapping in

Chapter 2.
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Chapter 4

Strong Coupling Ansatz Wavefunctions

In this chapter, we discuss more properties of the Strong Coupling Ansatz Wavefunc-

tions (SCAWs) first discussed in Section 2.1, Eq. (2.6). We rewrite the full form of

SCAW in the following:

 ',�(x1, ...xN , �1, ...�N) =
X

P2SN

(±1)PP ('1(x1, ...xN)�(�1, ...�N)). (4.1)

Where '1 = '✓1 is an arbitrary spatial function only nonzero in ✓1 spatial sector

define in Eq. (2.2). ' can be an arbitrary anti-symmetric function.  ',� is the (anti-

)symmetric many-body wavefunction. For Bosons, plus sign is selected, while for

Fermions, minus sign is selected. Thus the full wavefunction is symmetric for Bosons

and anti-symmetric for Fermions. As discussed in Section 2.4, a SCAW can be mapped

to a direct product of a spinless fermion wavefunction and a spin wavefunction:

 ',� $ '⌦ � , (4.2)

which is the foundation of the generalized Bose-Fermi mapping from the original

(anti-)symmetric representation to the SCSR, and more details are in Chapter 2.

We organize this chapter as follows. We first provide an e�cient way of calculat-

ing One-Body Density Matrices (OBDMs) in Section 4.1 and hence the momentum

distribution, for the case when the spatial wavefunction ' is a slater determinant.

We discuss translational invariant systems in Section 4.2, and show a relation of mo-

mentum distribution of spinor quantum gases and that of spinless anyon gases. We
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discuss trapped systems in Section 4.3, where an more e�cient way of calculating

OBDMs for harmonic traps is provided. Finally in Section 4.4 we show that the

momentum distribution of a single impurity moving in a background of strongly in-

teracting spinless bosons, which was measured in a recent experiment [56], mimics

that of a hard-core spinless anyon with a time-dependent statistical parameter.

4.1 One-Body Density Matrix and Hardcore Anyons

In this section we develop a technique to calculate the OBDM and the momentum

distribution for a SCAW. This technique relies on a remarkable connection between

the OBDM of the spinor gases and that of a spinless 1D hard-core anyon gases. It

allows us to e�ciently calculate the OBDM of the spinor system with particle numbers

much larger than what was previously possible.

Given the OBDM, we can easily calculate the momentum distribution of the spinor

system. Interestingly it is also related to the momentum distribution of the hard-core

anyon gas. Our study not only provides a practical method for the calculation of the

OBDM, but also provides significant new insights into the properties of 1D strongly

interacting spinor quantum gases.

The expectation value of any single particle operators for spinor quantum gases

system can be expressed in terms of OBDM.

h | Ô | i = Tr
h
Ô⇢̂

i
, (4.3)

Consider a spinor quantum gas with N atoms. The explicit form for a strong

coupling ansatz wave function with a single spatial wave function ' (often referred to

as the charge state in literature, which describes the particles distribution in position

space) is written as Eq. (4.1). The corresponding OBDM associated with the many-
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body wave function  is defined as

⇢(x0, x; �0, �) = N
X

�1,...,�N�1

Z
dx1...dxN�1 

⇤(x1, ..., xN�1, x
0; �1, ..., �N�1, �

0)

· (x1, ..., xN�1, x; �1, ..., �N�1, �) .

(4.4)

Substituting Eq. (4.1) into Eq. (4.4), we have

⇢(x0, x; �0, �) =
X

�1···�N�1

Z
dx1 · · · dxN�1'

0⇤'
X

P 0P

✓0P
0
✓P ⌦ (P 0�0†)(P�) , (4.5)

where we have used the short-hand notation

'0 = '(x1, ..., xN�1, x0) ,' = '(x1, ..., xN�1, x) ,

�0 = �(�1, ..., �N�1, �0) ,� = �(�1, ..., �N�1, �) .

To evaluate the above equation, we need to order x0 and x with respect to x1, ..., xN�1.

For example, assuming x0 < x, we can take x0 2 (xm�1, xm) and x 2 (xn�1, xn) with

m  n, and denote this ordering configuration as �m,n, in which

�m,n : x1 < ... < xm�1 < x0 < xm < ... < xn�1 < x < xn < ... < xN�1 . (4.6)

Once the ordering of x0 and x are fixed, all permutations on 1 · · ·N � 1 will lead to

the same integral value, because these kind of permutations does not change either

✓0P
0
✓P or (P 0�0†)(P�) . According to this observation, the OBDM (4.5) can be written

as [22, 57](For a detailed derivation, see Appendix E)

⇢(x0, x; �0, �) =
NX

m,n=1

⇢m,n(x
0, x)Sm,n(�

0, �) . (4.7)

Equation (4.7) takes a kind of “spin-charge” separated form: The spatial part

⇢m,n(x
0, x) =(�1)n�mN !

Z

�m,n

dx1...dxN�1 '
0⇤ ' , (4.8)
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depends only on the charge state '. The information on the spin degrees of freedom

is carried by the spin correlation function(Appendix E)

Sm,n(�
0, �) = (±1)m�n h�|S�

0
,�

m
(m · · ·n)|�i , (4.9)

(again, ±1 for bosonic and fermionic gases, respectively) where S�
0
,�

m
is a local SU(N)

generator (S�
0
,� |�i = |�0i) on site m, and (m · · ·n) is a loop permutation operator

that permutes the indices in the wavefunction by m! m+1,m+1! m+2, ..., n�

1 ! n, n ! m(Appendix A). In the above, we have assumed that m  n. The

case with m � n can be obtained using the identity ⇢m,n(x0, x) = ⇢n,m(x, x0) and

Sm,n(�0, �) = Sn,m(�, �0).

The di�culty of evaluating the OBDM lies in the fact that Eq. (4.8) involves an

(N � 1)-dimensional integral. With sophisticated numerical techniques, one may be

able to carry out such an integral up to ⇠ N = 20 [57]. Here we develop a new

method to evaluate ⇢m,n(x0, x), which relies on its discrete Fourier transform given

by:

⇢m,n(x
0, x) = N�2

X

,0

⇢
0
,(x0, x) ei⇡

0
m e�i⇡n , (4.10)

where  and 0 take a discrete set of values 2k/N with N consecutive integers k, and

⇢
0
,(x0, x) = N

Z
dx1...dxN�1

N�1Y

j=1

A
0⇤(xj � x0)A(xj � x)'0⇤ ' , (4.11)

where A(xi � xj) ⌘ ei⇡(1�)✓(xi�xj), with ✓(x) being the Heaviside step function.

Remarkably,

 (x1, ..., xN) =

"
Y

i<j

A(xj � xi)

#
'(x1, ..., xN) , (4.12)

is the wave function of N hard-core spinless anyons [58,59] with statistical parameter

 (we use the convention in Ref. [60–62]), whose OBDM, ⇢(x0, x) ⌘ ⇢,(x0, x), is

given exactly by Eq. (4.11) with 0 = . The case with  = 0 and 1 correspond to the



61

hard-core spinless bosons and the ideal spinless fermions, respectively. By defining a

similar Fourier transform for the spin correlation function

S
0
, = N�2

NX

m,n=1

Sm,ne
i⇡

0
me�i⇡n ,

we can rewrite Eq. (4.7), the OBDM of a strongly interacting spinor quantum gas, as

⇢(x0, x; �0, �) =
X

0,

⇢
0
,(x0, x)S

0
,(�0, �) . (4.13)

There has been an extensive study of the properties of 1D hard-core spinless anyon

gases [58–82] (and the references therein). In particular, their OBDM and momen-

tum distributions have been calculated. We can take advantage of these results to

evaluate Eq. (4.13) in a very e�cient way. In the following, we present two examples,

one concerns a homogeneous system with translational invariance and the other a

harmonically trapped system. And for both of these two cases, we consider ' as the

ground state slater determinant.

4.2 Translational Invariant System

For a translational invariant system with length L (periodic boundary condition is

assumed), the OBDM ⇢(x0, x; �0, �) depends only on y ⌘ x � x0, and Eqs. (4.7) and

(4.13) are reduced to

⇢(y; �0, �) =
N�1X

r=0

⇢r(y)Sr(�
0, �)

=
X



⇢(y)S(�0, �) , (4.14)

where r in the first line is understood as n�m, so from Eq. (4.9) we have Sr(�0, �) =

(±1)r h�|S�
0
,�

m
(m...m+ r)|�i which is independent of m, and in the second line S =

N�1
P

N�1
r=0 Sre�i⇡r only depends on spin. To ensure the boundary condition, we
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need to impose the selection rule (1...N)� = (⌥1)N�1� on the spin state � with ⌥1

for bosonic and fermionic gases, respectively. After Fourier transform with respect

to y, the corresponding momentum distribution for the spinor quantum gas can be

obtained as

⇢�(p) =
X



⇢(p)S(�, �) , (4.15)

where ⇢(p) is the momentum distribution for the hard-core anyon system. Note that

⇢ and S are periodic in  with period 2. Hence we may restrict  in the range

[�1, 1].

The OBDM for the homogeneous hard-core anyon gas, ⇢(y), has an analytic ex-

pression in the form of the Toeplitz determinant [60–62]. Its momentum distribution,

⇢(p), is investigated in Ref. [62]. It is shown that ⇢(p) is peaked at p = ~kF , where

kF = N⇡/L is the Fermi momentum, for  2 (�1, 1). Whereas for  = ±1, the system

becomes an ideal spinless Fermi gas whose momentum distribution is characterized

by the Fermi sea. Examples of ⇢(p) for N = 201 are shown in Fig. 4.2(c).

To find the OBDM and the momentum distribution of a spinor gas, all we need to

do is to calculate the spin correlation functions Sr(�0, �) or S(�0, �) and plug it into

Eqs. (4.14) and (4.15). For 1D system, Matrix Product State (MPS) is a representa-

tion that e�ciently captures the bipartite entanglement, and many powerful methods

based on this representation such as Density Matrix Renormalization Group (DMRG)

and Time-Evolving Block Decimation (TEBD) have been developed to calculate the

ground state and the time evolution. We calculate the ground state Sr(�0, �) using

the infinite system size TEBD (iTEBD) method [83, 84]. We first calculate the A,

B tensors (two sites in one unit cell), which are building blocks in Matrix Product

States (MPS), using iTEBD. Note that Sr(�0, �) is the correlation function containing

a loop permutation operator (m...m + r), so we use the tensor contraction geome-
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Figure 4.1 : (color online) The tensor contraction geometry for calculating Sr(�0, �)
for an even r case. A and B tensors, which are building blocks in MPS (two sites in
a unit cell), are calculated using the iTEBD method. Note that for a finite periodic
boundary condition system, we also need to contract the remaining tensors outside
the correlation range m to m+ r. Starting from the mth site with either A tensor or
B tensor gives the same result.

try schematically shown in Fig. 4.1 to calculate Sr(�0, �), and then take the Fourier

transform to obtain S(�0, �).

As examples, we consider a spin-1/2 and a spin-1 Fermi gases with spin indepen-

dent interaction with N = 201. The corresponding spin-chain models in the strong

interaction limit are the SU(2) and the SU(3) Sutherland models, respectively [23].

The spin correlation functions Sr =
P

�
Sr(�, �) and S =

P
�
S(�, �) are plot-

ted in Fig. 4.2(a) and (b), respectively. The total momentum distribution functions

⇢(p) =
P

�
⇢�(p) for the spinor gas are shown in Fig. 4.2(d). The spinor quantum gas
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in strongly repulsive regime has been studied within the context of spin-incoherent

Luttinger liquid [85], and the ground state momentum distribution for SU(2) case

has been studied in Ref. [86–88], the result in Fig. 4.2(d) can be compared with Fig.

3 in Ref. [86] which is for a lattice system and for up to 32 sites with a quarter filling

(note that their definition of kF di↵ers from ours by a factor of 2). Here we want to

mention that a sophisticated method developed in Ref. [88] can be used to e�ciently

calculate ⇢(p) for homogeneous spin-1/2 fermions, but our method is more flexible

and much more general as it deals with bosonic or fermionic systems with arbitrary

spin.

4.3 Trapped System

For trapped systems, the OBDM is calculated using Eq. (4.13), where ⇢
0
,(x0, x) is

defined with Eq. (4.11). Unlike in the homogeneous system, we now need both the

diagonal elements with  = 0 and the o↵-diagonal elements with  6= 0, the latter of

which can be regarded as a straightforward generalization of the OBDM of a spinless

anyon gas. For the case that ' is a slater determinant composed of single particle

wave functions �j(x) with j = 1, 2, ..., N simply being labels, which means we can

separate the coordinate x as

'(x1, ..., xN�1, x)

=
1p
N !

X

P

(�1)PP (�1(x1)�2(x2)...�N�1(xN�1)�N(x))

=
1p
N !

NX

n=1

(�1)N�n�n(x)det
⇥
�x1,...,xN�1

1,...,n�1,n+1,...,N

⇤
,

(4.16)

similarly for '⇤(x1, ..., xN�1, x0). We need to substitute them into Eq. (4.11). First

combine the fully symmetric direct product function
Q

N�1
j=1 A(xj � x) with



65

-0.5 0 0.5
κ

0

5

10

S
κ

-2 0 2
p/h̄kF

0

0.5

1

1.5

2
ρ
(p
)

s=1/2
s=1

-1 0 1
p/h̄kF

0

5

10

15

20

ρ
κ
(p
)

0 50 100
-1

0

1

2

3

S
r

(a)

(c) (d)

(b)

r

s=1
s=1

s=1/2

s=1/2

1.0

0.2

0.4

0.6

0.8

−0.4

−0.2

−0.6

−0.8

κ = 0.0

Figure 4.2 : (color online) Spin correlation function and momentum distribution of
translational invariant system. (a) Sr calculated by iTEBD for an infinite chain.
(b) S obtained by Fourier transform of Sr with r up to 10000. (c) Momentum
distribution of hard-core anyon gas ⇢(p) for N=201. (d) Momentum distribution
(summed over all spin components) of the spinor gases for N=201 particles. Note
that in Eq. (4.15), ⇢(p) and S are not generally real valued as in (b)(c), but we
can rearrange ⇢r(y) and Sr to make them real. For a system with periodic boundary
condition, for odd (even) N , ⇢(p) and S are only purely real (imaginary) when
 = 2m/(N � 1) with integer m. In Eq. (4.15), we use  = 2m/N . But we can
redefine ⇢(p) and S to make them real by rearranging ⇢r(y) and Sr to make them
mirror symmetric about y = 0 and r = 0. For small number of particles, this leads
to small oscillations in ⇢(p) and S(no e↵ect on ⇢(p)). But these oscillations tend to
vanish in the thermodynamic limit.
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det
⇥
�x1,...,xN�1

1,...,n�1,n+1,...,N

⇤
to form a new determinant

N�1Y

j=1

A(xj � x)det
⇥
�x1,...,xN�1

1,...,n�1,n+1,...,N

⇤

=det
⇥
(A(x) � �)x1,...,xN�1

1,...,n�1,n+1,...,N

⇤
,

(4.17)

where A(x) � � means using A(t� x)�k(t) as basis of the slater determinant. Next

using the identity
Z

dx1...dxN�1det
h
(A

0⇤(x0) � �)x1,...xN�1

1,...,m�1,m+1,...,N

i

· det
⇥
(A(x) � �)x1,...xN�1

1,...,n�1,n+1,...,N

⇤

=(N � 1)! det
h
�̂(m,n)

i
,

(4.18)

which can be easily proved, where (m,n) stands for minor, which is the determinant

of a matrix after deleting its mth row and nth column, and the matrix �̂ depends on

0,, x0, x, with its elements given by

�̂
0
,

k,l
(x0, x) =

Z 1

�1
dtA

0⇤(t� x0)A(t� x)�⇤
k
(t)�l(t) , (4.19)

where �k,l are single-particle wave functions and k, l = 1, 2, ..., N . Finally putting

Eqs. (4.16) ⇠ (4.18) together, Eq. (4.11) can be written into a form with only minors

of a determinant:

⇢
0
,(x0, x) =

X

m,n

(�1)m�n�⇤
m
(x0)�n(x)det

h
�̂(m,n)

i
. (4.20)

The expression Eq. (4.3) is much simpler than the previous formulas for OBDM as

reported in Ref. [57], which rely on the calculation of Taylor coe�cients of matrix

determinants using sophisticated methods [2, 57, 89–91].

4.3.1 Harmonically Trapped System

For the most experimentally relevant harmonically trapped systems, an even simpler

form of the OBDM can be obtained as follows. Note that wave function ' of a har-
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monically trapped spinless fermion can be written into a Vandermonde determinant

form:

'(x1, ..., xN) =
1p
N !

det
⇥
�x1,...,xN
0,1,...,N�1

⇤

=C1/2
N

NY

j=1

e�x
2
j/2

Y

1j<kN

(xj � xk) ,
(4.21)

where �x1,...,xN
0,1,...,N�1 means the slater determinant uses single particle harmonic oscillator

wave functions �k(x)(k = 0, 1, ..., N � 1) as basis. And

CN =
2N(N�1)/2

⇡N/2
hQ

N

n=1 n!
i (4.22)

is a normalization constant. This leads to

'(x1, ..., xN�1, x) = C1/2
N

e�x
2
/2

N�1Y

j=1

(xj � x)
N�1Y

j=1

e�x
2
j/2

Y

1j<kN�1

(xj � xk) , (4.23)

which after substituting into Eq. (4.11), and using the N � 1 version of Eq. (4.21),

we have

⇢
0
,(x0, x)

=NCNe
�x02+x2

2

Z
dx1...dxN�1

N�1Y

j=1

A
0⇤(xj � x0)(xj � x0)A(xj � x)(xj � x)

·
Y

1j<kN�1

(xj � xk)
2
N�1Y

j=1

e�x
2
j

=
NCNe�

x02+x2

2

CN�1(N � 1)!

Z
dx1...dxN�1

N�1Y

j=1

A
0⇤(xj � x0)(xj � x0)A(xj � x)(xj � x)

·
�
det

⇥
�x1,...,xN�1

0,1,...,N�2)
⇤�2

.

(4.24)

Now by using a similar procedure as in arbitrary trapping potential case that leads to

Eq. (4.3), we can combine the product of
Q

N�1
j=1 A

0⇤(xj�x0)(xj�x0)A(xj�x)(xj�x)

into the square of a determinant to form a square of a new determinant, and then
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carry out the (N � 1)-dimensional integral. Finally we arrive at the following:

⇢
0
,(x0, x) =

e�(x
02+x

2)/2

⇡1/2
det

⇣
B̂
⌘
, (4.25)

where the elements of the matrix B̂ are

B̂
0
,

k,l
(x0, x) = 2/

p
(k + 1)(l + 1)

⇥
Z 1

�1
dtA

0⇤(t� x0)A(t� x)(t� x0)(t� x)�⇤
k
(t)�l(t),

(4.26)

where �k,l are single particle eigen wave functions of harmonic oscillator, and k, l =

0, 1, ..., N � 2.

The OBDM of a harmonically trapped hard-core spinless anyon gas ⇢(x0, x) =

⇢,(x0, x) have been investigated previously [78–80] (for hard-core spinless Bose gas,

see Ref. [81, 82]).

4.4 Impurity in a Tonks-Girardeau Gas

As a concrete example, we consider a recent experiment [56] where Bloch oscillation

of a single impurity atom moving in the background of a strongly interacting spinless

Bose gas (i.e., the Tonks-Girardeau gas) is observed. Here, we explain this phe-

nomenon using the strong coupling ansatz with the spin-chain model theory, which

is a di↵erent perspective from previous theoretical studies [92–95].

We model the system as a spin-1/2 Bose gas with atomic mass m, confined in a

harmonic trap with trapping potential !, with one spin-# atom as the impurity and

(N � 1) spin-" atoms as the background. Strong repulsive interaction exists between

the background atoms, and also between the background and the impurity atoms. In

this strong interaction regime, we can write down a spin-chain model. However, for

this particular system with one single impurity, we can model the dynamics of the

impurity atom as if it hops on an e↵ective lattice under the influence of a constant
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force F . It can be easily proved that the Hilbert space of this one atom hopping

model and that of the spin-chain model governed by Hamiltonian 3.1 with one spin

impurity are equivalent. The Hamiltonian of the one atom hopping model takes the

following form (setting ~ = m = ! = 1)

Hsc =�
⇡p
2N�i

N�1X

j=1

Cj

h
c†
j
cj+1 + h.c.

i

+


1

⇡

p
2N

�3
F

N�1X

j=1

Djnj ,

(4.27)

where �i = mgi/~2n1D is the dimensionless interaction constant, with n1D =
p
2N/⇡

the density at trap center, and gi the contact interaction strength between the im-

purity and the background atoms.1 Hsc is a single-atom Hamiltonian. c†
j
and cj are

creation and annihilation operators for this single atom, and nj = c†
j
cj are local den-

sity operators. The first line of (4.27) represents the kinetic term and the second line

the force term. The coupling coe�cients Cj can be calculated using a special local

density approximation method.2 The force on the impurity is modeled as a magnetic

gradient and represented by the second line in (4.27) where F = mF/~2n3
1D and

Dj = Cj�1 � Cj (assuming C0 = CN = 0) [91].

We take the initial spin state to be the ground state of Hamiltonian (4.27) in the

absence of the force term, which subsequently evolves in time under the full Hamilto-

1 The exchange between two background atoms only contributes a constant energy shift, which

can be ignored. This is why the interaction strength between the background atoms do not appear

in the Hamiltonian (4.27).

2 Ci can be very well approximated by a local density approximation(LDA) method as reported

in Ref. [91]. In [57], Ci has been calculated up to N = 60 particles by an exact method, an method

similar to those used in [2, 89, 90]. And we have checked that the relative di↵erence between LDA

results and those reported in [57] tend to vanish as N ! 1. And we also want to note here that

Ref. [25] gives a very simple approximated expression Cj / j(N � j) with great accuracy.
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nian (4.27). With the instantaneous spin state obtained by solving the Schrödinger

equation 3, and using the method outlined above, we can calculate the momentum

distribution of the impurity spin which we plot on the left panel of Fig. 4.3. The initial

momentum distribution is peaked at p = 0 as expected. This peak moves towards the

Fermi point ~kF as the impurity is under the influence of the force. When the peak

reaches ~kF , it disappears and re-emerges at the other Fermi point �~kF . Thus the

impurity atom carries out the Bloch oscillation. Our calculation agrees qualitatively

with the experiment of Ref. [56].

Another interesting aspect of this experiment is that the measured momentum

distribution of the impurity atom is approximately the momentum distribution of a

hard-core anyon gas with a time-dependent statistical parameter . To see this, let us

ignore the trapping potential, which is not essential for the Bloch oscillation dynamics,

and assume that the system is homogeneous for simplicity. In this case, the initial

spin state has exactly zero momentum with S = �,0/N . If �i is su�ciently large,

we may ignore the hopping term, i.e., the first line of Hamiltonian (4.27). Under this

approximation, the spin correlation function evolves simply as S(t) = �,F t/~kF /N .

According to Eq. (4.15), the momentum distribution of the impurity atom at time t

is thus given by

⇢(p, t) =
1

N
⇢Ft/~kF (p) ,

3Here we assume that the charge state of the system is frozen, which is given by the ground state

Slater determinant of N spinless fermions in the harmonic trap. When the interaction strength �i is

not very large and/or the force term is too large, this assumption becomes invalid and the dynamics

may couple di↵erent charge manifolds. This situation, which better describes the experiment of

Ref. [56], can be modeled using the multi-branch spin-chain model developed in our previous work

[91]
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which is exactly the momentum distribution of a hard-core anyon gas with a time-

dependent statistical parameter  = Ft/~kF . On the right panel of Fig. 4.3, we

replotted the momentum distribution of the impurity atom obtained above at several

di↵erent times (solid lines), and compared them with the momentum distribution of a

homogeneous hard-core anyon gas with its density given by n1D, particle number N ,

and  = Ft/~kF (dash-dotted lines). Good qualitative agreement can be seen. The

main di↵erence is that the distribution of the trapped impurity atom has a rounded

peak, which can be mainly attributed to the e↵ect of the trapping potential.
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Figure 4.3 : (color online) Left panel: evolution of the momentum distribution of the
impurity atom. Here we take N = 60, �i = 12, and F = 1. tF = ~/EF = 1/N ,
and kF = n1D⇡ =

p
2N is the Fermi momentum. All quantities are expressed in the

dimensionless unit system defined by ~ = m = ! = 1. Right panel: the solid lines
replot the momentum distribution of the impurity atom from the left panel at four
di↵erent times; the dash-dotted line is the momentum distribution of a homogeneous
hard-core anyon gas, ⇢(p)/N , with statistical parameter  = Ft/~kF . The anyon gas
consists N particles confined in a region with length L (periodic boundary condition
is assumed) such that its density is given by N/L = n1D.
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Chapter 5

Numerical Methods

In one-dimension, several numerical methods have given good precision results, such

as Matrix Product State (MPS) bases methods including DMRG, TEBD, and Monte

Carlo based methods including Variational Monte Carlo (VMC). In this section, we

will discuss the numerical methods used for solving 1D spinor quantum gases and

related systems.

5.1 Matrix Product States

MPS based methods are powerful in 1D and works especially well when the entan-

glement spectrum decays fast. This happens when the system has a finite energy

gap at thermodynamic limit. When the entanglement spectrum decays slower than

exponential, results with good precision can also be obtained through interpolation.

In this section, we will discuss MPS based method for 1D continuous models.

5.1.1 MPS for Continuous Models

For continuous models, we first discretize them as in Eq. (1.2), then write the op-

erators into Matrix Product Operators, and perform imaginary time evolution on a

MPS. The parameters in the MPS are then optimized in the imaginary time evolution

process. The ground state can be obtained in this way. After obtaining the ground

state, we can do real time evolution on the ground state to study its dynamics. The

results for few spin-1/2 Fermions are in Fig. 3.7.
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5.1.2 iTEBD for Loop Permutation Correlation

Infinite size TEBD (iTEBD) can be used for calculating infinite system size transla-

tional invariant system. Two tensors are optimized in an alternative way, and corre-

lation functions such as loop correlation operators can be calculated by contracting

several replication of the two tensors, an example is in Fig. 4.1.

5.2 Variational Monte Carlo and Deep Learning

Recently Deep Learning (DL) has been very successful in many areas such as Com-

puter Vision (CV), Natural Language Processing (NLP), Reinforcement Learning

(RL) and other Artificial Intelligence applications. This is largely due to an integra-

tion of representational power of state-of-the-art designed deep network architectures,

scalable learning algorithms and novel computer architectures [11] such as GPUs.

In physics, one of the most powerful numerical methods to solve quantum many-

body problems is the Variational Monte Carlo (VMC) method. In VMC, a variational

wavefunction is proposed to approximate the ground state (or low energy excited

states), which is usually based on physical insights. And stochastic optimization is

performed to minimize the energy functional. The energy functional and its deriva-

tives involve a multi-dimensional integral (or summation) which can not be evaluated

directly. So stochastic approximations for those quantities is performed by sampling

state configurations using the Markov-Chain Monte Carlo (MCMC) method. Similar

to a DL method for the image classification problem, where an image is the input into

a neural network and the probability of the image being a certain class is the output, a

quantum many-body state configuration is the input into a variational wavefunction,

the output is the wavefunction value. Both of the two problems are about using a
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Deep Neural Network (DNN) to approximate another function to be studied. So con-

sidering the success of various DNN architectures in Computer Vision, it is naturally

to develop DNN architectures for approximating quantum many-body wavefunctions.

And also by utilizing the current novel computer architectures, the e�ciency of the

algorithm will be dramatically improved.

Another advantage of developing neural network architectures is that previously

in VMC algorithm, the variational wavefunctions are often proposed by physical in-

sights about the system. If we can find some DNN architectures that are very general

to approximate many kinds of wavefunctions, we will say there is some kind of ma-

chine intelligence that automatically solves certain aspects of quantum many-body

problems. Also from those network architectures, we may also learn some new in-

sights about the quantum many-body systems. Just as we can lean some insights

from mean field theories.

Comparing with supervised learning for image classification, the VMC algorithm

is more similar to the policy gradient method in RL, where a total reward value as

a functional of a multi-dimensional policy function is minimized through stochastic

sampling. However, the nature of Markov-Chain process makes the VMC algorithm

not straightforward to be parallelized, thus not straightforward to run on the novel

distributed computer architectures. To overcome this, we first do MCMC sampling

of the states, then use an O↵-Policy algorithm to update the parameters in the model

with the sampled states and their local variables.

In this section, we first discuss the O↵-Policy VMC algorithm that can utilize

the current distributed computing architectures, such as GPUs. Then discuss various

network architectures. And then the results of the O↵-Policy VMC algorithm on

SU(N) spin chains with multi-layer convolutional neural networks.
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5.2.1 O↵-Policy Variational Monte Carlo Algorithm

In Variational Monte Carlo(VMC) algorithm, the energy functional

E =
h |H | i
h | i (5.1)

is minimized in a stochastic way, such that the derivatives of E over parameters w in

the variational wavefunction  is approximated by

@wE ⇡ 2Re
⇥
E · @wln � E · @wln 

⇤
, (5.2)

where the statistical average of an operator is defined as an average over all the

sampled states

O =
1

M

X

s

Os , (5.3)

where M is the number of samples, s is usually sampled using a Markov-Chain that

following probability proportional to  ⇤
s
 s, Os is the local variable defined as

Os =

P
s0 Os,s0 s0

 s

, (5.4)

where Os,s0 is the matrix elements of operator O. So that E =
P

s
Es/M where Es =

P
s0 Hs,s0 s0/ s , @wln =

P
s
@wln s/M , and E · @wln =

P
s
Es@wln s/M . Es

and @wln s are called local energy and local derivative, respectively. After obtained

an approximation Eq. (5.2), gradient based optimization algorithm can be used to

update the parameters in the variational wavefunction  , for example using Gradient

Descent algorithm

w  w � ↵@wE , (5.5)

where ↵ acts as the learning rate. In traditional VMC algorithm, the parameter is

updated iteratively. In every iteration step, M states are sampled, and Eq. (5.2) is

evaluated using those sampled states, then using Eq. (5.5), parameters are updated,
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then next iteration begins. This means in every iteration parameters are only updated

once. The traditional VMC is e�cient because previously most of the variational

wavefunctions are somewhat simple. In the Markov Chain update, usually local flips

or swaps are performed, and the ratio of wavefunctions after and before the update

can usually be calculated very e�ciently. This makes the traditional VMC algorithm

e�cient in every iteration step, so many iterations can be performed to allow the

algorithm converge. However, if we want to use DNNs as variational wavefunction,

due to the complex architecture of DNNs, the Markov Chain sampling can not be

performed e�ciently, even if only using local updates, and also a single Markov Chain

can not be calculated in parallel, which makes the sampling in every iteration step

ine�cient. And if we choose a small learning rate ↵, every iteration step only updates

the parameters a little bit, so the algorithm takes long time to converge.

On the other hand, inspired by the O↵-Policy method in the policy gradient

algorithm in Reinforcement Learning, we can actually update the parameters many

times with one set of samples. However, we can not simply use Eq. (5.3) for every

optimization step, because after one step of updating parameters, the wavefunction

changed, and by definition we can only use Eq. (5.3) when the probability distribution

of states  ⇤
s
 s. Instead, we use an importance sampling method to calculate the

statistical average in Eq. (5.3) using states under a di↵erent distribution from  2.

O =
C

M

X

i

| si |2

| 0
si
|2Osi , (5.6)

where C is a normalization factor, because we assume the variational wavefunctions

are not normalized. Formally,

C =

P
s
| 0

s
|2P

s
| s|2

, (5.7)

i.e. the ratio of the normalization for  0 and  . Note that the summation is over
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all states, which is exponentially many for quantum many-body problems. Here we

need to deal with the undefined normalization for  and  0. We simply assume the

following identity, and from which can approximate C.

C

M

X

i

| si |2

| 0
si
|2 = 1 (5.8)

In summary, the importance sampling method for VMC algorithm has the fol-

lowing steps. Randomly initialize model parameters in the variational wavefunction.

Sample a batch of states using the current wavefunction,  0. Iteratively do the fol-

lowing until algorithm converge. Calculate local energies and local derivatives for

the sampled states. Calculate the expectation values in Eq. (5.3) using importance

sampling Eq. (5.6) Update model parameters using Eq. (5.5)

Note that in the above algorithm, the local derivatives can be calculated by using

auto di↵erentiation in the current deep learning framework. For example in Tensor-

flow [96], we can define an e↵ective loss function of the following form

L = E · ln � E · ln (5.9)

where the gradient can only flow back through ln . So in every O↵-Policy updating

of the model parameters, the computation is similar to that of supervised learning

optimization.

Fig. 5.1 shows a comparison of the iteration steps needed for the traditional VMC

algorithm and the O↵-Policy VMC algorithm to obtain a good energy. The number

of optimization steps equals one means only update parameter once per iteration,

which corresponds to traditional VMC algorithm. The O↵-Policy algorithm uses

much fewer steps to converge a good energy. And we would like to comment here

that on CPU, the O↵-Policy VMC algorithm does not have obvious speed up, but

using GPU Eq. (5.2) can be computed much more e�cient than using CPU, thus the
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Figure 5.1 : (color online) Comparison of energy versus interaction step curves in the
training process for di↵erent number of optimization steps (Noptimize) in every itera-
tion. The system is a 60 sites SU(2) homogeneous spin-chain. We use 8 convolutional
layers, and every layer has 8 filters with kernel size 3. Noptimize = 1 corresponds to
traditional VMC algorithm, i.e. update parameter only once in every iteration.

O↵-Policy VMC will be much faster than traditional VMC on GPUs. In experiments,

we observed at least one order of magnitude speed up using a Nvidia K80 GPU with

11G memory.

5.2.2 Neural Network Architectures

With the O↵-Policy VMC algorithm running on distributed computing architecture

hardwares such as GPUs, it is possible to train a DNN to represent quantum many-

body wavefunctions given the Hamiltonian only. In this section, we review the neural

network architectures for this purpose.
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(Convolutional) Restricted Boltzmann Machines

Restricted Boltzmann Machine (RBM) has been first used in VMC algorithm in Ref.

[97]. The RBM is a graphical model, and is a special case of the general Boltzmann

Machine. The Boltzmann Machine is composed of a number of nodes, for clarity

we assume each node has only binary values, 1 and -1. The probability of a given

configuration, a assignment of the binary values to nodes, is given by

P (~s) =
1

Ze�
P

i<j Wijsisj�
P

i bisi (5.10)

where Z =
P

~s
e�

P
i<j Wijsisj�

P
i bisi is the partition function acts as a normalization.

Wij are the weights (or coupling) that connecting node i and j, bi is the bias (or on site

potential) on node i. The form of the Boltzmann Machine probability distribution

over state configurations is the same as the classical Ising models. This distribution

has been served as variational functions to approximation some probability distribu-

tions.

The Restricted Boltzmann Machine has one more constraint that it is a bipartite

Boltzmann Machine. The nodes can be separated into two groups, the visible nodes

~v and the hidden nodes ~h. There is no direct weight that link two nodes within a

same group. So the probability distribution can be written as

P (~v,~h) =
1

Ze�
P

i,j Wijvihj�
P

i aivi�
P

j bjhj (5.11)

i is the index for the visible node and j is the index for the hidden node. As usual Z is

the partition function. Many RBM has been stacked together and form a deep model,

which is the one of the first deep learning models used in computer vision area [98].

And novel sampling methods are also provided such as contrastive divergence algo-

rithm [99]. For approximating quantum many-body wavefunctions, the hidden nodes
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are integrated out, the remaining function of the visible nodes is thus

 (~v) = e�
P

i aivi
Y

j

2cosh

"
X

i

Wijvi + bj

#
(5.12)

Where ~v is now a state configuration.

Later it turns out that multi-layer convolutional neural networks can lead better

results for many tasks. In this section we also consider convolutional RBM, which is

the connection edge between the visible and hidden layer is of a convolutional form.

P (~v,~h)
1

Ze�
P

i aivi�
P

j bjhj�
P

i

Pb�/2c
k=�b�/2c Wkivi+khi , (5.13)

where Wk is only a filter of size � (for notation simplicity, � is an odd integer). For

clarity, in Eq. (5.13), we assume the number of visible and hidden nodes are the same.

And the wavefunction by tracing o↵ ~h is

 (~v) =
1

Ze�
P

i aivi
Y

i

2cosh

2

4
b�/2cX

k=�b�/2c

Wkivi+k + bi

3

5 (5.14)

And we can further let the number of hidden nodes equals to ↵ (an integer) times the

number of visible nodes, and put every ↵ hidden nodes into a group, and also impose

translational symmetry on ai and bj, then the above Eq. (5.14) can be written into a

convolutional form with multiple filters

 (~v) =
1

Ze�a
P

i vi
Y

i

↵Y

f=1

2cosh

2

4
b�/2cX

k=�b�/2c

W f

k
vi+k + bf

3

5 , (5.15)

where f is the index of filters, and a = ai, W
f

k
= W f

ki
, bf = bf

i
due to translational

symmetry. The translational symmetric network architecture in Ref. [97] corresponds

to the convolutional RBM with kernel size � equals to the system size, i.e. the fully

connected case.
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(Convolutional) Neural Networks

The convolutional RBM Eq. (5.15) contains a product of cosh functions. However, if

we take the logarithmic of the wavefunction

ln = lnZ� a
X

i

vi +
X

i

↵X

f=1

�

0

@
b�/2cX

k=�b�/2c

W f

k
vi+k + bf

1

A (5.16)

where �(x) = ln(2cosh(x)). The first term is a constant, the second term is a linear

transform of the input state configuration, the last term is actually a one hidden layer

convolutional neural network with activation function �(x), and also the weights of

the hidden units to output is fixed to one, and there is no bias for the output. The

activation function looks similar to the Rectified Linear unit (ReLu) function, but is

symmetric and smooth around origin. However, according to the universal represen-

tation theory, many activation functions can have similar representation power, thus

activation function may be not crucial. In this section, we use convolutional neural

networks (CNN) to approximate many-body wavefunctions. One reason to use CNNs

is that the Hamiltonians we are considering usually only have local interactions. And

many systems whose groundstates have correlation functions decay very fast with

respect to distance.

Fully Convolutional Neural Networks

In this work we explore the most simple and general network architectures, multi-

layer neural networks with Rectified Linear Units (ReLU) activations, which has been

used in computer vision studies and are proved to be e↵ective. Since most quantum

many-body systems contains only local interactions, CNNs are natural to use. In

variational studies of quantum many-body wavefunctions, one of the simplest classes

of variational wavefunctions is the mean field wavefunction. For spin system, mean
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field wavefunctions are direct products of local spin wavefunctions  (�1, �2, ..., �N) =
Q

N

i=1 �(�i). If we take a logrithim of the mean field wavefunction, we can obtain

ln (�1, �2, ..., �N) =
NX

i=1

ln�(�i) , (5.17)

which can be regarded as a CNN with one hidden layer and kernel size 1. Then the

feature maps of the hidden layer is reduce summed along the spatial dimension. We

would like to keep this feature of mean field wavefunction even we are considering

multi layer CNNs. So from the last hidden layer to the output, we perform a reduce

sum along the spatial dimension, and then a small fully connected network to ob-

tain the output. So the network is a Fully Connected Network (FCN). To simplify

the study, we keep every CNN layer having the same kernel size, number of output

channels. The number of input channels are the same except for the first CNN layer,

whose number of input channels is decided by the encoding of input state. In this

work, we consider two kinds of state encodings, value encoding and one-hot encoding.

In value encoding, we use the values of local spins directly. In one-hot encoding, we

encode the local spin states into a boolean vector. For example, the |1i state of a

spin-1 local spin is encoded as (0, 1, 0). In Fig. 5.2, we show the architectures of the

network. Each magenta rectangular object corresponds to a convolutional filter with

ReLu activation function. The number of channels of the input tensor is decided by

the state encoding.

5.2.3 Imaginary Phases of Wavefunctions

The most general form is to use neural networks to approximate both the real and

imaginary phases of the wavefunction

 = ex+iy (5.18)
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Figure 5.2 : (color online) Fully Convolutional Neural Network (FCNN) Architecture.

where two networks or a single network with two outputs should be used to approxi-

mate x and y, respectively.

When using two networks(or one network with two outputs) for representing x

and y in Eq. (5.18), the stochastic approximation of the derivatives of the energy

functional with respect to model parameters can be written as

@wE = 2Re
h
Er · @wx� Er · @wx+H i · @wy

i
, (5.19)

where the local energies

H i

s
=

X

s0

Hss0e
xs0�xscos(ys0 � ys) ,

Hr

s
=

X

s0

Hss0e
xs0�xssin(ys0 � ys) ,

(5.20)

are the real and imaginary part of the local energy. For the case that we don’t

know the phase of the wavefunction, y should be optimized together with x, which is
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numerically hard. However, when we know the exact phase of a wavefunction, only x

need to be optimized. In the following, we only consider the case when we know the

phase of the wavefunction.

5.2.4 One-Dimensional SU(N) Spin-Chains

In this section, we consider the following SU(N) symmetric model with site dependent

couplings

H =
X

i

CiP̂i,i+1 , (5.21)

where P̂i,i+1 is the spin exchange operator that P̂i,i+1 |↵, �i = |�,↵i. We consider

periodic boundary condition. Ci are some site dependent couplings. For Homogeneous

cases Ci = C, Eq. (5.21) can be exactly solved using Bethe Ansatz [23]. We use the

O↵-Policy VMC with multi-layer Convolutional Neural Network to solve this model.

The ground state wavefunction of the Hamiltonian 5.21 is not positive definite.

However, we can do a unitary transformation to make the wavefunction positive

definite. When exchange two di↵erent spins, change a sign of the exchange operator,

i.e. change P̂ to ˆ̃P that

ˆ̃P |↵, �i =

8
>><

>>:

|�,↵i ↵ = �

� |�,↵i ↵ 6= �

(5.22)

if we change the P̂ operator to ˆ̃P , the Hamiltonian 5.21 will have the exact same

eigen spectrum, but the ground state wavefunction is positive definite.

First consider translational invariant cases, where Bethe Ansatz exact solutions

are available. Bethe Ansatz can solve the energy spectrum e�ciently, but it is hard

to calculate wavefunction values or correlation functions. Variational wavefunctions

such as DNN can e�cient calculate the wavefunction values at any given state, or
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calculate any physical measurables through sampling a batch of states. In this section,

we explore multi-layer FCNNs with di↵erent numbers of sites N , numbers of spin

components S, numbers of layers L, numbers of filters F and kernel sizes K.

5.2.5 Ground State Energy

Fig. 5.3 shows the results of di↵erent number of spin components with N = 60.

Fig. 5.3(a)(b) uses value state encoding. For example a S = 3 system, the spin states

can be labeled as 0, 1, 2, and they are encoded into values �1/2, 0, 1/2. In Fig. 5.3(a),

we use single hidden layer networks and keep number of filters fixed, increasing the

kernel size, the energy results gets better. But for larger spin, the results are not so

good (actually unstable). In Fig. 5.3(b), we keep the number of filters and kernel

sizes fixed, increasing the number of layers, the energy results also get better and will

eventually better than single hidden layer results. But for larger spin, it still shows

saturation. But as can be seen from the inset figure of Fig. 5.3(b), the energy results

can be improved by increasing the number of filters or the kernel size. The results

in Fig. 5.3(a)(b) shows when using value encoding of of spin states, DNNs will give

better results than shallow NNs.

However, we can use di↵erent encodings of a spin state, which will keep the FCNN

architecture of the network. Fig. 5.3(c)(d) use one-hot state encoding. For ex-

ample, the spin states 0, 1, 2 of a S = 3 system are encoded into boolean vectors

(1, 0, 0), (0, 1, 0), (0, 0, 1). As can be seen in Fig. 5.3(c), even single layer network

will give good results comparing with multi-layers with value encoding. And as in

Fig. 5.3(d), multi-layer network with one-hot encoding can also give good results.

And the results can also be further improved by increasing the number of filters or

kernel size.
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(d) (e) (f)

(a) (b) (c)

Figure 5.3 : (color online) The ground state energies and variances for di↵erent
network architectures and state encodings. (a)(b)(c) are for state value encoding.
(d)(e)(f) are for state one-hot encoding. (c)(e) are the energy variances.
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5.2.6 Loop Permutation Correlation Functions

The states of a strongly interacting spinor Fermi gases [100] can be described by a

strong coupling ansatz wavefunction [22,25,91,101,102]. Its one-body density matrix

can be written into a summation of spin-charge direct product form [22,101,102]:

⇢(x0, x) =
NX

m,n=1

⇢m,n(x
0, x)Sm,n , (5.23)

where the spin part is a spin loop permutation correlation function,

Sm,n(�
0, �) = (�1)m�n h�|(m · · ·n)|�i , (5.24)

where (m · · ·n) is a loop permutation operator that permutes the indices in the wave-

function by m ! m + 1,m + 1 ! m + 2, ..., n � 1 ! n, n ! m. In this section, we

consider translational invariant system, so we can define Sr = Sm,m+r. Fig. 5.4(a)

shows the loop permutation correlation functions Sr of FCNN wavefunctions for a

N = 60 systems [103]. Fig. 5.4(b) shows the discrete Fourier transform of Sr. As can

be seen, the Sr and Sk results can consistent with previous studies. The peak in Sk

at ±1/S suggests the singularities of momentum distributions of strongly interacting

spinor Fermi gases at kF/S [86, 101], where kF = n⇡ is the Fermi momentum, and n

is the particle density.

5.2.7 Transfer Learning

The network architecture is a fully convolutional neural network, which allows us the

use the same set of parameters for di↵erent system size. This is the way transfer

learning does. In Fig. (5.5), we first train a CNN on system size 40, SU(2), then used

the trained parameter as initialization parameter to train on system size 100, SU(2).

We found that comparing with random initialization for system size 100, SU(2), using
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(a) (b)

Figure 5.4 : (color online) Loop permutation correlation functions (a) for Sr and (b)
for Sk.

parameters trained on system size 40, SU(2) will initially has much lower energy. And

also in experiment, we found the training process is stable than random initialization,

which may due to for small system size, the Markov Chain sampling will run for a

larger ratio of the whole Hilbert space, and thus the parameters are less likely to

overfit on a small ratio of the whole Hilbert space, which is often the case when

system size is larger.
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Figure 5.5 : (color online) Transfer learning, first train a network on system size 40
SU(2) spin-chain, then use the parameters as initialization for system size 100, SU(2).
Comparing with random initialization, transfer learning will have much lower initial
energy, and also be more stable.
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Chapter 6

Summary

In this dissertation, we studied the spinor quantum gases system starting from Hamil-

tonian 1.1. By establishing a generalized Bose-Fermi mapping theory, we map the

original symmetric (Bosons) or anti-symmetric (Fermions) system to a direct prod-

uct system of spinless Fermions and spin chain, using the Spin-Charge Separated

Representation (SCSR). By doing so, we can obtain a p-wave pseudopotential with

interaction strength the inverse of the original s-wave contact interaction strength.

So it is convenient to study the physics at large interaction. By doing perturbation

theory on the mapped p-wave pseudopotential, we can obtain e↵ective spin-chain

models describing the spin degrees of freedom of the spinor quantum gases at large

interaction. By extending the single-branch spin chain model to multi-branch spin-

chain model, we can incorporate spatial degrees of freedom into the spin-chain models,

which allows us to study the dynamics and collective excitations more precisely. We

also studied the properties of the Strongly Coupling Ansatz Wavefunctions (SCAWs),

including One-Body Density Matrix (OBDM) and momentum distribution. Through

relating the OBDM of spinor gases to that of hardcore anyon gases, we obtained a

very e�cient method for calculating the OBDM and thus momentum distributions.
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Chapter 7

Epilogue

Quantum many-body physics has been studied for a long time, but still many things

to be understood. Many of them are related to the structure of quantum many-body

wavefunctions. Some systems can be solved exactly using certain form of wavefunc-

tions such as Bethe Ansatz, but many others can not. In this work, we studied the

generalized Bose-Fermi mapping, studied Strong Coupling Ansatz Wavefunctions, re-

lated it with spin-charge separation, obtained e↵ective spin-chain models which can

help to better understand the wavefunction structures of spinor quantum gases at

large interaction. Through studying the OBDM of spinor quantum gases, we found

a relation of it with that of spinless hardcore anyon gases. On the other hand, varia-

tional wavefunctions could be an e↵ective way to study the structure of the quantum

many-body wavefunctions. For example, the success of mean field theories shows the

system can be described by mean field wavefunctions. If there is some way that can

produce variational wavefunctions automatically, it may help us to gain new under-

standings of the quantum many-body systems. This is just the spirit of Deep Learning

Artificial Intelligence, in which deep neural networks are used for representing com-

plex multi-dimension functions, and features are automatically extracted from one

layer to the next layer. In this dissertation, we developed an VMC algorithm with

O↵-Policy optimization that allows training deep neural networks for representing

quantum many-body wavefunctions. It helps exploring deep neural networks as new

kinds of variational wavefunctions for quantum many-body systems.



93

Appendix A

Conventions for Permutation Operators

This appendix contains the convention about the permutation operators and its action

on spatial and spin wave functions. A permutation operator P can be expressed as
0

B@
1 2 · · · N

P1 P2 · · · PN

1

CA , (A.1)

which means that the original particle index i, after the permutation, is changed into

Pi. The action of the permutation operator P on a spatial wave function is defined

by

P  (x1, x2 · · · xN) =  (xP1 , xP2 · · · xPN ) . (A.2)

Similarly its action on a spin wave function is defined by

P �(�1, �2 · · · �N) = �(�P1 , �P2 · · · �PN ) , (A.3)

where �i stands for the spin state for ith particle. The spin wave function � is a

rank-N SU(n) tensor with n = 2s+ 1, if all the particles are spin-s particles.

A general spin state can be written as superposition of basis tensors (or spin Fock

states). A basis tensor |f1f2 · · · fNi means the i’th spin is in fi state, and can be

written as:

|f1f2 · · · fNi =
X

�1,...,�N

��1f1��2f2 · · · ��NfN |�1�2 · · · �Ni , (A.4)
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i.e. its wavefunction is a product of delta symbols. By definition, the permutation

operator acting on a spin state by permuting the indices of its wavefunction, so acting

on a spin basis yields

P |f1f2 · · · fNi $ P ��1f1��2f2 · · · ��NfN

= ��P1f1
��P2f2

· · · ��PN
fN

= ��1fP�1
1

��2fP�1
2

· · · ��Nf
P�1
N

$ |f
P

�1
1
f
P

�1
2

· · · f
P

�1
N
i ,

(A.5)

i.e. the indices change on basis is inverse to that on wavefucntion.

We denote Ei,j as the exchange permutation operator, which simply exchanges

indices i$ j:

Ei,j |f1 · · · fi · · · fj · · · fNi = |f1 · · · fj · · · fi · · · fNi . (A.6)

We also denote the symbol (m · · ·n) as a loop permutation operator, which, if

m  n, permutes the indices of the wavefunction forwardly
0

B@
1 · · · m m+ 1 · · · n� 1 n · · ·N

1 · · · m+ 1 m+ 2 · · · n m · · ·N

1

CA , (A.7)

and if m � n, permutes the indices of the wavefunction backwardly
0

B@
1 · · · n n+ 1 · · · m� 1 m · · ·N

1 · · · m n · · · m� 2 m� 1 · · ·N

1

CA . (A.8)

Note under a same permutation operator, the indices change of a spin basis is in-

verse to the indices change of its spin wavefunction (A.5). So the loop permutation

operator’s action on a spin basis is, for exmaple, m  n,

(m · · ·n) |f1 · · · fmfm+1 · · · fn�1fn · · · fNi

= |f1 · · · fnfm · · · fn�2fn�1 · · · fNi .
(A.9)
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Appendix B

Multi-Branch Spin-Chain Model Recursion
Relation from SO(2,1) Algebra

In this appendix, we discuss the SO(2, 1) algebra for spinless fermions in Harmonic

trap. The spinless fermion wavefunctions can be constructed by generators of the

SO(2, 1) algebra. And also the p-wave pseudopotential Vp (Eq. (2.30)) shows some

symmetries with those generators. Combining those we derive a recursion relation for

the spin-chain models in di↵erent branches (Section 3.3). We use the same convention

as in [49]. The generators for the center-of-mass (COM) harmonic oscillator algebra

and the SO(2,1) algebra can be made of generators from Schrödinger algebra, for

which all the commutation relations are known [49]. The operators we use include

K =

Z
dxxn(x) , P =

Z
dxj(x) (B.1)

H = �1

2

Z
dx †(x)@2 (x) , C =

Z
dx

x2

2
n(x) , D =

Z
dx xj(x) (B.2)

where j(x) = � i

2( 
†(x)@ (x)�@ †(x) (x)) is the current density. Here K represents

the COM coordinate, P the total momentum, H the kinetic energy, C the trapping

potential, and D the generator for scaling transformation. Again we have used the

trap units with ~ = m = ! = 1. We can define COM ladder operators (without

normalization) Q and Q†, and COM Hamiltonian Hc
0 as

Q =
K + iPp

2
, Q† =

K � iPp
2

, Hc
0 =

{Q,Q†}
2N

. (B.3)

These three operators form a harmonic oscillator algebra for the COM motion.
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The operators for the relative motion can be constructed as:

B =
1

2
[H � C + iD]� Q2

2N
, (B.4)

B† =
1

2
[H � C + iD]� Q†2

2N
, (B.5)

H i
0 = H + C �Hc

0 , (B.6)

which form a closed SO(2,1) algebra as they obey the following commutation relations:

[H i
0, B] = �2B , [H i

0, B
†] = 2B† , [B,B†] = H i

0 . (B.7)

These three operators only act on the internal degree of freedom. As a result, the

internal degrees of freedom can be classified into irreducible representations (IRs) of

this SO(2,1) algebra. Each IR is a tower of states with energy level spacing 2. Together

with the COM harmonic algebra, we can construct several lowest excited manifolds

by acting Q† and B† on the ground state manifold. The five lowest manifolds are

listed in Table B.1.

degeneracy charge states

5 Q†4 |0i Q†2B† |0i B†2 |0i Q† |↵i |�i

3 Q†3 |0i Q†B† |0i |↵i

2 Q†2 |0i B† |0i

1 Q† |0i

1 |0i

Table B.1 : Several lowest manifolds constructed by acting ladder operators Q† and
B† on the ground state. |0i stands for the ground state. |↵i and |�i stand for the
beginning states of other SO(2,1) towers.

We know that the fourth manifold is three-fold degenerate, but from Q† and B†

we can only construct two states. So we need to introduce a new state denoted as
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|↵i having the property Q |↵i = B |↵i = 0. This is where another SO(2,1) IR tower

begins. Similarly we need to introduce |�i for the fifth excited manifold. The basis

of each manifold can be constructed in this way by acting Q† and B† on lower states

and introducing beginning states for new towers.

When we want to write down the first order perturbation of Vp in the nth manifold,

we may need to calculate matrix elements whose most general form is

h↵0,�|QpBmVpB†nQ†q |�0,�0ip
h↵0,�|QpBmB†mQ†p |↵0,�i h�0,�0|QqBnB†nQ†q |�0,�0i

(B.8)

where � and �0 stands for two spin states. ↵0 and �0 stands for two arbitrary beginning

states of two SO(2,1) IR towers and also with no COM excitation. They are excited

by B† and Q† to the energy of the manifold we are considering. Since we are doing

first order perturbation, the relation of E↵0 + p+ 2m = E�0 + q + 2n must be hold.

Equation (B.8) can be simplified as follows. Since Q commute with Vp and B,

Eq. (B.8) is only nonzero when p = q and Q operators in the numerator and denom-

inator are canceled. So we only need to consider

Hsc,↵0�0,mn =
h↵0,�|BmVpB†n |�0,�0ip

h↵0,�|BmB†m |↵0,�i h�0,�0|BnB†n |�0,�0i
(B.9)

where E↵0 + 2m = E�0 + 2n must be hold. It is possible that ↵ 6= � and Hsc,↵�,mn

nonzero, under this case Vp will couple di↵erent charge states. In the first four mani-

folds listed in Table B.1, we do not need to consider this as it can be straightforwardly

shown that matrix elements of Vp between two di↵erent states within the same man-

ifold all vanish. However, this is no longer true for the fifth and higher manifolds

since h�|VpB†2 |0i in general is nonzero. If we are only concerned with the first 4

manifolds, we can further simplify Eq. (B.9) to

Hsc,m =
h0,�|BmVpB†m |0,�0i
h0,�|BmB†m |0,�0i (B.10)
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where 0 stands for the charge ground state. Equation (B.10) can be written into a

recursion relation [50] by using the known commutation relations of operators in the

Schrödinger algebra [49]. Since all we use to derive this recursion relation is using

commutation relations among the operators defined in Eqs. (B.1) and (B.2), as well

as Vp, and their action on the charge degree of freedom, in the following we suppress

the spin states � and �0. By switching B and Vp twice and denoting h...i = h0|...|0i,

we can arrive at

Hsc,m =

⌦
BmHpB†m↵

hBmB†mi

=

⌦
Bm�1(HpB + [B,Hp])B†m↵

hBmB†mi

= Hsc,m�1 +

⌦
Bm�1[B,Hp]B†m↵

hBmB†mi

= Hsc,m�1 +

⌦
Bm�1(B†[B,Hp] + [[B,Hp], B†])B†m�1↵

hBmB†mi

= Hsc,m�1 +

⌦
Bm�1B†m�1↵2

hBm�2B†m�2i hBmB†mi [Hsc,m�1 �Hsc,m�2]

+

⌦
Bm�1[[B,Hp], B†]B†m�1↵

hBmB†mi

(B.11)

Let us next consider the last term. Since Q commutes with Vp and B, we can ignore

all the Q parts in B [see Eq. (B.4)]. Consider the commutator [B,Hp]. First let us

prove [C, Vp] = 0. Since Vp is in first quantized form, we also use the first quantized

form of C, with which we have

[C,Hp] =

"
NX

i=1

1

2
x2
i
,�4N !

g

N�1X

i=1

 �
@ i�(xi � xi+1)✓

1�!@ i ⌦ P̂ s,a

i

#
(B.12)

In this expression, note that each term in the spatial part of Vp only acts on relative

coordinate xii+1 = xi � xi+1, and C can also be separated into one part containing

relative coordinates xii+1 and another part containing the COM coordinate
P

xi/N .
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The nonzero contribution can only come from the commutator

h
x2,
 �
@ �(x)✓(x)

�!
@
i
= 2x�(x)✓(x)

�!
@ �

 �
@ �(x)✓(x)2x , (B.13)

which is 0 since x�(x) = 0. Here we have also ignored the regularization point

splitting in @�, since in the derivation of the recursion formula, we only need to

consider continuous wavefunctions. Therefore we have proved that

[C,Hp] = 0 . (B.14)

Next we consider Vp’s scaling dimension. Since Vp is made of two spatial derivatives

and a delta function (also a ✓ function whose scaling dimension is 0), it has scaling

dimension 3, which means

[D, Vp] = i�VpVp, �Vp = 3 . (B.15)

Using Eqs. (B.14) and (B.15), the commutator [B,Hp] can be written as

[B,Hp] =
1

2
[H,Hp] +

1

2
�HpHp . (B.16)

Now consider its commutation relation with B†

⇥
[B,Hp] , B

†⇤

=
1

4

⇥
[H,Hp] +�HpHp, H � C + iD

⇤

=
1

4

⇥
[H,Hp] +�HpHp, Hosc

⇤
� 1

2
[[H,Hp] , C] +

1

4
[[H,Hp] , iD] +

1

4
�2

Hp
Hp .

(B.17)

In the second step we have used [C, Vp] = 0 and [D, Vp] = i�VpVp. And we introduce

Hosc = H + C which is the harmonic oscillator Hamiltonian. Using Jacobi identity

followed by the commutation relations [C,H] = iD, [D,H] = 2iH, [C, Vp] = 0 and
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[D, Vp] = i�VpVp, the second and third terms of Eq. (B.17) can be written as

[[H,Hp] , C] =� [[Hp, C] , H]� [[C,H] , Hp]

=� [iD,Hp] = �VpVp ,

[[H,Hp] , iD] =� [[Hp, iD] , H]� [[iD,H] , Hp]

=�
⇥
�HpHp, H

⇤
+ [2H,Hp]

=�
⇥
�HpHp, Hosc

⇤
+ [2Hosc, Hp] .

(B.18)

Since we are going to calculate h0|Bm�1[[B,Hp], B†]B†m�1 |0i and B†m�1 |0i is an

eigenstate of Hosc, all the terms which are commutators with Hosc vainsh. Only the

second and forth term in Eq. (B.17) remain. Finally the last term in Eq. (B.11) can

be written as

⌦
Bm�1[[B,Hp], B†]B†m�1↵

hBmB†mi =
1

4
�Hp(�Hp � 2)

⌦
Bm�1B†m�1↵

hBmB†mi Hsc,m�1 (B.19)

The normalization can also be easily evaluated by using [B,B†] = H i
0, from which we

have

Sm =

⌦
Bm+1B†m+1

↵

hBmB†mi = (m+ 1)(m+ E i
0) . (B.20)

where E i
0 = N2/2 � 1/2 is the ground state internal energy. Putting Eqs. (B.11),

(B.19), and (B.20) together, a recursion relation is obtained

Hsc,m �Hsc,m�1 =
(m� 1)(m� 2 + E i

0)

m(m� 1 + E i
0)

[Hsc,m�1 �Hsc,m�2]

+
1

4

�Hp(�Hp � 2)

m(m� 1 + E i
0)
Hsc,m�1 .

(B.21)

The spin chain Hamiltonian for the first excited manifold and for the dipole state of

the second excited manifold, which correspond to m = 0, are the same as ground

state spin chain Hamiltonian (when a constant shift is neglected):

H(1)
sc = H(Q)

sc = Hsc,0 = H(0)
sc . (B.22)
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The spin chain Hamiltonian for breathing state of the second excited manifold, which

corresponds to m = 1, is proportional to the ground state spin chain Hamiltonian:

H(B)
sc = Hsc,1 =


1 +

3

2(N2 � 1)

�
Hsc,0 =


1 +

3

2(N2 � 1)

�
H(0)

sc . (B.23)

We stress here that we cannot obtain a similar recursion formula like Eq. (B.21) for

the most general matrix elements Hsc,↵0�0,mn (Eq.(B.9)) for arbitrary ↵0 and �0 case.

This is because Vp may couple di↵erent charge states within the same manifold and

the eigenstates of the perturbative spin chain model will no longer be a direct product

state of spatial and spin wave function. To study the entanglement properties of spin

and charge is an interesting problem.
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Appendix C

Methods for Calculating Coupling Coe�cients

The expression for coupling coe�cients in e↵ective spin-chain models of Eq. (3.2) and

Eq. (3.12) involves multi-dimensional integrals usually without closed form solutions.

In this Appendix, we provide methods for calculating those coupling coe�cients across

various level of approximations.

C.1 Harmonic Conjecture

For Particles in a harmonic trap, there is a Harmonic Conjecture [25] for approximat-

ing the coupling coe�cients C(0)
i

for the e↵ective spin-chain model in ground state

branch Eq. (3.2).

C(0)
i

= K
�(i�N/2)2 +N2/4

N(N � 1)/2
, (C.1)

where K is the Tan contact for the AFM state corresponding to (N", N#) = (N�1, 1).

In Fig. C.1, we plot the exactly calculated C(0)
i

using Monte Carlo integral for N = 8

and 13 (symbols), in comparison with the above expression (lines), and find good

agreement. Hence, at least for harmonic trapped systems, once we know the Tan

contact, all the C(0)
i

coe�cients can be obtained approximately using Eq. (C.1). We

can see that the Harmonic Conjecture can e�ciently capture the values of C(0)
i

to a

somewhat good precision. In Section C.3, we provide a more precise approximation

for C(0)
i

using Local Density Approximation.
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Figure C.1 : (color online) Dimensionless coe�cients C(0)
i

forN = 8 and 13, calculated
using the Monte Carlo integral method (Veges Algorithm [1]). The solid lines are
obtained using the Harmonic Conjecture approximate expression (C.1).
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C.2 Monte Carlo Integral

The form of Eq. (3.2) and Eq. (3.12) involves multi-dimensional integral, so Monte

Carlo integral is naturally a good numerical method to calculate those coe�cients.

Examples of N = 8 and 13 are shown in Fig. C.1. However, Monte Carlo method

intrinsically has high variance for larger number of particles. Coordinate transfor-

mation may help to some extent. Another issue is for coupling coe�cients in higher

branch spin-chain models Eq. (3.12), the integrand involves excited state wavefunc-

tions which are fast oscillating. Monte Carlo method will have low performance for

calculating those fast oscillating integrals.

C.3 Local Density Approximation

C.3.1 General Trapping Potential

When the average particle spacing is much smaller than the characteristic length of the

variation of the trapping potential, locally the particles feel they are in a homogeneous

system. This usually happens when trapping potential is slow varying, or the density

of particles is high. In this case, Local Density Approximation(LDA) may be used to

obtain a good approximation for the coupling coe�cients C(0)
i

in ground state branch

spin-chain models. For a infinite homogeneous system, C(0)
i

= C(0) is a single constant

and has the following form

C(0) =
⇡2

3
n3
TG , (C.2)

where nTG is the density of the Tonks-Girardeau gas, which is also the density of

spinless fermions with same particle number as the total particle number of the spinor

gas. From Eq. (C.2), we can see the coupling coe�cients is proportional to the density

cube. For a inhomogeneous system that LDA is applicable, the density is a function
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of spatial coordinate x. We assume the following expression for the local coupling

coe�cients:

C(0)
i

=
⇡2

3
n3
TG(yi), i = 1, 2, ..., N � 1 , (C.3)

The expression Eq. (C.3) is inspired by [24, 31, 104, 105], but a key point is that the

coupling coe�cients at index i, which is for the spin exchange for particle i and i+1,

is evaluated using the density at position yi. The physical meaning of yi is the average

location for the ‘boundary’ between particle i and i+1. With this meaning, combining

with the Tonks-Girardeau density profile nTG(x), the yi are naturally defined as
Z

yi

�1
dx nTG(x) = i , (C.4)

which is the average boundary of the ith and (i + 1)th particle. From Eq. (C.4) we

can solve yi, and after substitute yi into Eq. (C.3), we can obtain the local coupling

coe�cients C(0)
i

.

C.3.2 Harmonic Trapping Potential

For harmonic trapped system, nTG(x) =
1
⇡

p
2N � x2 is the Tonks-Girardeau density

profile which is the same as the density profile of a spinless Fermi gas. nTG(x)

is nonzero only within range [�
p
2N,
p
2N ]. Eq. (C.4) can be exactly integrated.

Equations. (C.3) and (C.4) are equivalent to

C(0)
i

=
1

3⇡
(2N)3/2 sin3

⇣↵i

2

⌘
, (C.5)

where ↵i is the solution of equation

↵i � 2⇡
i

N
= sin(↵i) . (C.6)

The comparison with the exact C(0)
i

calculated by a similar method as calculating

⇢(i)(z) in [2] is shown in Fig. C.2, from which we see that even for very few particles

the LDA results agree with the exact values very well.
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Figure C.2 : (color online) The red dots represent results from the LDA approximation

for C(0)
i

using Eqs. (C.5) and (C.6). The blue solid lines are exact integral of C(0)
i

by a
method similar to calculating ⇢(i)(z) in [2]. The comparison are for particle numbers
run from 2 (bottom) to 15 (top).
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C.3.3 Thermodynamic Limit

For repulsively interacting bosons the ground state energy is

Eboson
g

= �2

g

N�1X

i=1

C(0)
i

. (C.7)

Taking N ! 1, using the LDA result Eq. (C.5) for C(0)
i

, and converting the sum

into an integral:

Eboson
g

⇡ �1

g

(2N)5/2

3⇡

Z 1

0

d� sin3


↵(�)

2

�

= �1

g

128
p
2

45⇡2
N5/2 ⇡ �1

g
0.408N5/2 , (C.8)

where � = i/N 2 (0, 1). This result is consistent with the previous result obtained

for spinless bosons near the TG limit [39,51,52], which gives another indication that

our LDA approximation for C(0)
i

is excellent.

C.4 Using One-Body Density Matrix

We can also take advantage the result of Section 4.1 by using a relation of the coupling

coe�cients and the expansion of ⇢m,m±1(x, y) at small distance x ⇡ y. Finally we

would like to point out there are also other methods [90] for calculating the local

exchange coe�cients Ci with various computational complexities.
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Appendix D

Green’s Function Methods for Few Spinor
Particles.

Green’s function method can be used for solving the Hamiltonian Eq. (1.1) up to a

few particles [26]. Consider a Schrödinger equation

(Ĥ0 + V̂ ) | i = E | i , (D.1)

where Ĥ0 and V̂ can be regarded as unperturbated Hamiltonian and perturbation

Hamiltonian, respectively. The eigenstates and eigenenergies of Ĥ0 can be easily

calculated. If we can obtain the form of

1

E � Ĥ0

, (D.2)

then we can write down the following equation for the eigenstate | i

| i = 1

E � Ĥ0

V̂ | i . (D.3)

Equation D.3 is actually the Lippmann-Schwinger equation, which is an integral equa-

tion. Sometimes, if V̂ has a special form, Eq. (D.3) can be simplified. Take a single

particle with a delta function barier V (x) = g�(x) as an example, if we write Eq. (D.3)

into spatial coordinate form

 (x0) =

Z 1

�1
dx hx0| 1

E � Ĥ0

|xiV (x) (x)

=G(E; x0, 0)g (0),

(D.4)



109

where G(E; x0, 0) = hx0| 1
E�Ĥ0

|xi is the Green’s function. Note that in Eq. (D.4),

the special form of delta function barrier V (x) = g�(x) reduce the integral by one

dimension. In later sections, we will see if we use Green’s function method to solve

few particle system governed by Hamiltonian Eq. (1.1), the delta function contact

interaction will always reduce the integral in the Lippmann-Schwinger equation by

one dimension.

D.1 Green’s Function Method for Two Particles

The Hamiltonian of two particles in a one dimensional harmonic trap with a spin

dependent magnetic gradient is

H = �1

2

@2

@x2
1

� 1

2

@2

@x2
2

+
1

2
x2
1 +

1

2
x2
2 + g�(x1 � x2)�Gx1�

z

1 �Gx2�
z

2 . (D.5)

In the absence of the magnetic gradient (i.e., G = 0), there exists an exact solution

to the problem [33]. Here we generalize this solution in the presence of the magnetic

gradient. To this end, we make a transformation of operators by making spatial and

spin coordinates operators into Jacobi coordinates:

X1 =
x1 � x2p

2
, X2 =

x1 + x2p
2

, S1 =
�z

1 � �z

2p
2

, S2 =
�z

1 + �z

2p
2

. (D.6)

The transformation rules of other operators such as @/@x can be obtained from them.

The Hamiltonian can be separated into the center-of-mass motion part and the rela-

tive motion part:

H = �1

2

@2

@X2
2

+
1

2
X2

2 �GS2X2 �
1

2

@2

@X2
1

+
1

2
X2

1 �GS1X1 +
gp
2
�(X1) . (D.7)

For center-of-mass motion, it is a simple harmonic oscillator with center shifted by

GS2. For relative motion, it is a simple harmonic oscillator with center shifted by
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GS1 plus a �-function potential at the origin. We can first let particle 1 to be spin

up and particle 2 to be spin down, then anti-symmetrize the wave function in the

end. In this case, S2 = 0 and S1 =
p
2 are fixed. The eigen wave functions for

the center-of-mass motion are still simple harmonic oscillator eigen-functions. What

matters is the relative motion part. After a coordinate shift X1 � GS1 ! X1, The

relative motion Hamiltonian can be written as

Hrel = �
1

2

@2

@X2
1

+
1

2
X2

1 +
gp
2
�(X1 +GS1) , (D.8)

which includes a simple harmonic oscillator part and a �-function source term. For

this relative Hamiltonian, use the one-body Green’s function

G(E;X1, X
0
1) =

1X

i=0

1

E � Ei

�i(X1)�
⇤
i
(X 01) , (D.9)

where Ei = i+1/2 and �i are the single particle harmonic oscillator eigen-energies and

eigen-wave functions, respectively. The corresponding Lippmann-Schwinger equation

for the relative wavefunction is given by

'(X1) =

Z
dX1G(E;X1, X

0
1)

gp
2
�(X1 +GS1)'(X

0
1)

=
gp
2
G(E;X1,�GS1)'(�GS1) .

(D.10)

We just got the expression for the relative wave function, where '(�GS1) is a constant

can be determined by normalization of '(X1). And the relative energy must satisfy

G(E;�GS1,�GS1) =

p
2

g
. (D.11)

Note that, when G = 0, the Green’s function method fails at E = Ei, and for E 6= Ei

the left hand side of Eq. (D.11) has an analytical form [33]. Actually the solution of

fully symmetric spin wave function (necessarily assoticated with fully anti-symmetric

spatial wave function) which has E = Ei should be complemented to the Green’s
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function solution. However, for G 6= 0, there is no such pathological behavior for the

Green’s function method. Also to be noted is that for one E, there could be only one

1/g for which Eq. (D.11) is satisfied. This means, for relative motion, there could be

only one bound state. However, this is no longer true for three particles, because the

Lippmann-Schwinger equation for three particles is an integral equation and there

can exist infinitely many bound states for three particles’ relative motion.

Finally, substitute back X1 ! X1 � GS1, after anti-symmetrization, the total

wavefunction for two fermions is given by

1p
2
 cm(X2)

h
'(X1 �G

p
2) |"#i � '(�X1 �G

p
2) |#"i

i
. (D.12)

The center-of-mass separation between the two spins, � = hx1�z

1 + x2�z

2i /2, can be

calculated as

� =
1p
2

Z
dX1X1 |'(X1)|2 +G , (D.13)

where '(X1) is decided by Eq. (D.10), which dependents on G and E, where E

is dependent on G and 1/g by Eq. (D.11). The first term in Eq. (D.13) is from

interplay between the interaction and the magnetic gradient, while the second term

in Eq. (D.13) is due to the harmonic trap shift induced by the magnetic gradient.

D.2 Green’s Function Method for Three Particles

For three particles, consider spin-independent interaction.

H =
3X

i=1

✓
�1

2

@2

@x2
i

+
1

2
x2
i
�Gxi�

z

i

◆
+ g

X

i<j

�(xi � xj) . (D.14)

After defining the Jacobi coordinates

X1 =
x2 � x3p

2
, X2 =

x2 + x3 � 2x1p
6

, X3 =
x1 + x2 + x3p

3
,

Sz

1 =
�z

2 � �z

3p
2

, Sz

2 =
�z

2 + �z

3 � 2�z

1p
6

, Sz

3 =
�z

1 + �z

2 + �z

3p
3

,

(D.15)
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to separating the center of mass motion and relative motion, the Hamiltonian(D.14)

can be written as

H =� 1

2

3X

i=1


@2

@X2
i

� (Xi �GSz

i
)2
�
+ g

r
2

3
�(

1p
3
X1 +X2)

+g

r
2

3
�(

1p
3
X1 �X2) + g

r
1

2
�(X1)�

3

2
G2 .

(D.16)

first assume �z

1 = 1, �z

2 = �1, and �z

3 = �1, then symmetrize the wavefunction at the

end. This means Sz

1 = 0, Sz

2 = � 4p
6
, and Sz

3 = � 1p
3
. We can further make a shift of

coordinates such that every particle feels the same trapping potential as for the two

particle case. And note if the eigenfunction has symmetry '(X1, X2) = �'(�X1, X2),

we can drop the �(X1) term. The relative Hamiltonian now becomes

Hrel =�
1

2


@2

@X2
1

�X2
1

�
� 1

2


@2

@X2
2

�X2
2

�

+g
p
2�(
p
3X2 � 2

p
2G+X1) + g

p
2�(
p
3X2 � 2

p
2G�X1)

(D.17)

We can use Green’s function method to solve this two degree of freedom Hamiltonian.

The Lippmann-Schwinger equation after integrating out the delta function interac-

tions now can be written into a linear integral equation.

'(
p
3X2 � 2

p
2G,X2) = g

p
2

Z
dX 02K(X2, X

0
2)'(
p
3X 02 � 2

p
2G,X 02) , (D.18)

where the kernel is

K(X2, X
0
2) =G(

p
3X2 � 2

p
2G,X2;

p
3X

0

2 � 2
p
2G,X

0

2)

�G(
p
3X2 � 2

p
2G,X2;�

p
3X

0

2 + 2
p
2G,X

0

2) ,
(D.19)

where the two body Green’s function is defined as

G(X1, X2;X
0

1, X
0

2) =
X

i,j

1

E � Eij

�i(X1)�i(X
0

1)�j(X2)�j(X
0

2) , (D.20)

which can be calculated e�ciently with great precision for harmonic trapped system.
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Appendix E

One-Body Density Matrix of Strong Coupling
Ansatz Wavefunction

In this appendix, we consider the One-Body Density Matrix(OBDM) for Strong Cou-

pling Ansatz Wavefunctions Eq. (4.1). A SCAW is one-to-one mapped to a direct

product of spatial and spin wavefunctions, correspondingly, we want to obtain some

spin-charge separated form for its OBDM. Given a many-body wave function  , the

one-body density matrix is defined as:

⇢�0�(x
0, x) =

X

�2···�N

Z
dx2 · · · dxN  

⇤(x0, x2 · · · xN , �
0, �2 · · · �N)

· (x, x2 . . . xN , �, �2 · · · �N) .

(E.1)

Consider Fermionic system first, the wave function takes the form of Eq. (4.1),

 =
X

P

(�1)PP
⇥
'✓1 ⌦ �

⇤
= '

X

P

⇥
✓P ⌦ �

⇤
, (E.2)

where ✓P = P✓(For permutation operator acting on spatial and spin wavefunctions,

see Appendix A) is the sector function (generalized step function) for the sector labled

by permutation operator P , the one-body density matrix can be written as

⇢�0�(x
0, x) =

X

�2···�N

Z
dx2 · · · dxN'

0⇤'
X

P 0P

✓0P
0
✓P ⌦ (P 0�0⇤)(P�) , (E.3)

where we define

' = '(x, x2 · · · xN), '0⇤ = '⇤(x0, x2 · · · xN)

✓P = P✓(x, x2 · · · xN), ✓
0P 0

= P 0✓(x0, x2 · · · xN)

� = �(�, �2 · · · �N), �0⇤ = �⇤(�0, �2 · · · �N)

(E.4)
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for short. A permutation P can be written as P2...N · (1 · · ·m), where (1 · · ·m) is

the loop permutation operator between indices 1 and m defined in Appendix A, and

P2...N is a permutation operator acting on indices 2, 3 · · ·N . This means first move

particle 1 to positionm by a loop permutation, and then permute the remaining N�1

particles. Similarly, P 0 can be written as P 0 = P 02...N · (1 · · ·n). The summation over

P 0 and P can then be written into another form:

⇢�0�(x
0, x) =

X

�2···�N

Z
dx2 · · · dxN'

0⇤'
X

m,n

X

P
0
2...N ,

P2...N

✓0P
0
2...N ·(1···m)✓P2...N ·(1···n)

⌦ [P 02...N · (1 · · ·m)�0⇤] [P2...N · (1 · · ·n)�]

=
X

�2···�N

Z
dx2 · · · dxN'

0⇤'
X

mn

X

P2...N

✓0P2...N ·(1···m)✓P2...N ·(1···n)

⌦ [P2...N · (1 · · ·m)�0⇤] [P2...N · (1 · · ·n)�]

=
X

mn

(N � 1)!

Z
dx2 · · · dxN'

0⇤'✓0(1···m)✓(1···n)

⌦
X

�2···�N

[(1 · · ·m)�0⇤] [(1 · · ·n)�] .

(E.5)

The second equal sign follows the fact that if P 02...N 6= P2...N ,

✓
0
P

0
2...N (x2 · · · xm, x

0 · · · xN)✓
P2...N (x2 · · · xn, x · · · xN) = 0 , (E.6)

and the third equal sign uses the fact that
P

�2···�N

R
dx2 · · · dxN is invariant under

P2...N . So the one-body density matrix can be separated into a spatial part and a

spin part

⇢�0�(x
0, x) =

X

m,n

⇢m,n(x
0, x)Sm,n(�

0, �) , (E.7)

where the spatial part

⇢m,n(x
0, x) = (�1)(m�n)(N � 1)!

Z
dx2 · · · dxN '

0⇤' ✓0(1···m)✓(1···n)

= (�1)(m�n)(N � 1)!

Z

�mn

dx2 · · · dxN '
0⇤' ,

(E.8)
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is simply the one-body density matrix of a system of spinless fermions for the spatial

sector �mn = x2 < x3 · · · xm < x0 · · · xn < x · · · xN (m < n, for example). And the

spin part

Sm,n(�
0, �) = (�1)(m�n)

X

�2···�N

[(1 · · ·m)�⇤] [(1 · · ·n)�]

= (�1)(m�n) h�|c†
m
(�0)(m · · ·n)cn(�)|�i ,

(E.9)

where (m · · ·n) is the loop permutation operator(Appendix A), and c†
m
(�) can be

regarded as fermion (or hard core boson) creation operators, which is just a formal

symbol to select out the spin states. The matrix element of c†
m
(�0)(m · · ·n)cn(�)

between two spin bases |f 01f 02 · · · f 0Ni and |f1f2 · · · fNi is

hf 01 · · · f 0N | c†m(�0)(m · · ·n)cn(�) |f1f2 · · · fNi

= hf 01 · · · f 0N | c†m(�0) |f1 · · · fm · · · 0 · · · fNi �fn,�

= hf 01 · · · f 0N | c†m(�0) |f1 · · · 0fm· · · fn�1 · · · fNi �fn,�

= hf 01 · · · f 0N |f1 · · · �0fm· · · fn�1 · · · fNi �fn,�

=�f 0
m,�0�f 0

m+1,fm
�f 0

m+2,fm+1 · · · �f 0
n,fn�1�fn,� ,

(E.10)

where on the second and third line ‘0’ is a placeholder for a spin ‘annihilated’ by cn(�)

Note that we have added a (�1)(m�n) sign in front of the spatial part of the OBDM

rhom,n(x0, x). This is to guarantee that if ' is strictly positive in spatial sector ✓1,

⇢m,n(x0, x) is strictly positive for any m and n. For Bosons, simply change the spin

part of the OBDM to bosonic one by SB

m,n
= (�1)m�nSF

m,n
.
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Appendix F

Magnetic Gradient Term in Spin-Chain Model

When adding some single-particle terms into the original Hamiltonian, we need to

calculate some other geometric constants. For example, if we consider the presence

of a spin-dependent magnetic gradient, then the total Hamiltonian is given by

H =
NX

i=1

⇥
�@2

i
/2 + V (xi)�Gxi�

z

i

⇤
+ g

X

i<j

�(xij) , (F.1)

where G is the strength of the magnetic gradient. The corresponding spin chain

Hamiltonian for the ground manifold(See Section 3.3) now takes the form

H(0)
sc = E(0) � 1

g

N�1X

i=1

C(0)
i

(1± Ei,i+1)�G
NX

i=1

D(0)
i
�z

i
, (F.2)

where

D(0)
i

= N !

Z
dx1...dxN xi|'0|2✓1, i = 1, 2, ..., N (F.3)

Here we would like to note an interesting relation between C(0)
i

and D(0)
i

for a

harmonically trapped system. D(0)
i

has a physical meaning of the average position of

i’th particle, which naturally leads to a LDA expression:

D(0)
i

=

Z
yi

yi�1

dx xnTG(x) = C(0)
i�1 � C(0)

i
, (F.4)

where the physical meaning of yi is the average boundary between particle i and

i + 1(Eq. (C.4)). This relation can even be numerically proven to be true for exact

C(0)
i

and D(0)
i

for arbitrary particle numbers N without envoking the LDA.
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