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Abstract

Ultra-cold quantum gases subjected to light-induced synthetic gauge potentials have

become an emergent field of theoretical and experimental studies. Because of the

novel application of two-photon Raman transitions, ultra-cold neutral atoms behave

like charged particles in magnetic field. The Raman coupling naturally gives rise to

an effective spin-orbit interaction which couples the atom’s center-of-mass motion to

its selected pseudo-spin degrees of freedom. Combined with unprecedented controlla-

bility of interactions, geometry, disorder strength, spectroscopy, and high resolution

measurement of momentum distribution, etc., we are truly in an exciting era of ful-

filling and going beyond Richard Feynman’s vision∗ of realizing quantum simulators

to better understand the quantum mechanical nature of the universe, manifested

immensely in the ultra-cold regimes.

In this dissertation, we present a collection of theoretical progresses made by the

doctoral candidate and his colleagues and collaborators. From the past few years

of work, we mainly address three aspects of the synthetic spin-orbit and light field

induced coupling in ultracold quantum gases: a) The ground-state physics of single-

particle system, two-body bound states, and many-body systems, all of which are

subjected to spin-orbit coupling originated from synthetic gauge potentials; b) The

symmetry breaking, topological phase transition and quench dynamics, which are

conveniently offered by the realized experimental setup; c) The proposal and impli-

cations of light field induced dynamical spin-orbit coupling for atoms inside optical

cavity. Our work represents an important advancement of theoretical understanding

to the active research frontier of ultra-cold atom physics with spin-orbit coupling.

∗See the footnote in Section 1.5 for more details
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Chapter 1

Introduction and Outline

1.1 The Birth of Ultra-low Temperature Physics

Born in Groningen, Netherlands, a Dutch physicist named Heike Kamerlingh Onnes

founded a very large cryogenics laboratory at University of Leiden in 1904. As a

member of the Royal Netherlands Academy of Arts and Sciences, he was a very

reputed figure in the scientific community. On July 10th. 1908, after following several

methodological steps in his cryogenic experiments, he was able to successfully liquefy

helium and lowered the temperature to -269 ◦C (4.2 ◦K). By further reducing the

pressure of liquid helium, he managed to achieve a temperature near -271.65 ◦C (1.5

◦K). These were the lowest possible temperatures ever achieved in the lab by human

kind at the time. It was only five years later, on December 11th. 1913, he was awarded

the Nobel Prize in Physics, “for his investigations on the properties of matter at low

temperatures which led, inter alia, to the production of liquid helium” [1]. In his

Nobel lecture, he noted “The Nernst heat theorem and, especially, Plancks quantum

theory and zero-point energy theory have made measurements at low temperatures

of prime interest to physicists” and “the density of the helium, which at first quickly

drops with the temperature, reaches a maximum at 2.2 ◦K approximately, and if one

goes down further even drops again. Such an extreme could possibly be connected

with the quantum theory. At any rate, closer examination of the equation of state

of the helium in relation to deviations from the law of corresponding states is very
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promising, as it is the critical temperature precisely of this gas which approaches

absolute zero so closely” [2].

Onnes did not stop the pursuit but rather kept focusing on the understanding

of ultra-low temperature physics. He further used liquefied helium-4 to cool down

mercury, and found that, at 4.2 ◦K, the resistivity of mercury metal abruptly dropped

to very small values beyond accurate experimental measurement. In other words, the

mercury became “superconducting”. Other metals such as Tin (50Sn) and Lead (82Pb)

all showed the same remarkable phenomenon, at 3.8 ◦K and 6 ◦K respectively. In a

nutshell, the discovery of zero-resistance of metal at ultra-low temperatures essentially

opened the door of studying superfluidity and superconductivity in an electron gas.

1.2 Quantum Statistics

We now know that every elementary particle can be divided into two categories:

Fermions and Bosons. These two types of particle each obey distinctively different

quantum statistics.

Fermions, such as electrons, cannot all occupy the same quantum state but rather

need to arrange themselves in different quantum states, dictated by the Pauli exclusion

principle. More formally, systems containing N identical particles which are totally

antisymmetrical are said to satisfy Fermi-Dirac statistics:

Pi,j|N identical fermions〉 = −|N identical fermions〉, (1.1)

Fermi-Dirac statistics: 〈Ni〉 =
gi

e(εi−µ)/kBT + 1
. (1.2)

where Pi,j is the permutation operator that interchanges the ith and the jth particle

with i and j being arbitrary; 〈Ni〉 denotes the expected number of particles with energy

εi, gi is the degeneracy of energy level i (in other words, the number of states with
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energy εi), chemical potential µ is obtained from the particle normalization condition

∑
i〈Ni〉 = N where N is the fixed total number of particles, kB refers to Boltzmann

constant and finally T denotes equilibrium temperature the ensemble of particles are

at. Precisely because of the total antisymmetrical nature of fermions, a state like

|ψ〉1|ψ〉2 which is symmetrical under exchange of particle 1 and 2, is not possible for

a fermions. The Pauli exclusion principle holds keys to solve many puzzles in the

microscopic and even macroscopic world, and it is not an overstatement to say the

principle paved ways to study atomic and molecular physics, as well as chemistry. In

other words, when combined with the spin-statistics theorem, the spin of electrons

results in the Pauli exclusion principle, which in turn underlies the periodic table of

chemical elements.

Bosons, however, are totally symmetrical under the interchange of any pair and

satisfy the so-called Bose-Einstein statistics:

Pi,j|N identical bosons〉 = +|N identical bosons〉, (1.3)

Bose-Einstein statistics: 〈Ni〉 =
gi

e(εi−µ)/kBT − 1
. (1.4)

with the requirement of εi > µ and same notations used in Eq.1.2. A system made up

of bosons, such as liquid helium-4, exhibits a tendency for all particles to get down

to the same ground state (lowest possible eigen-energy solved from Schrödinger’s

equation) at extremely low temperatures. What Onnes and others did not realize at

the time was that he was actually the first one to achieve Bose-Einstein condensation

when liquid helium-4, being bosons obviously, is cryogenically cooled and vaporized at

saturation pressure. To put it quantitatively, a typical density of liquid helium-4 has

density of n = 1022cm−3. Assuming a uniform gas of helium atoms in 3-dimensions

being very weakly interacting, the only energy scale that can be formed from relevant
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quantities of particle mass m, number density n, and the Planck constant 2π~, is

~
2n2/3/m. Dividing this energy by the Boltzmann constant kB, we get an estimate

of superfluidity transition temperature ~
2n2/3

mkB
≈ 3◦K, which is strikingly close to the

famous λ-point temperature 2.17◦K. From another perspective, by re-arranging terms

a little bit, one can figure out that the critical temperature is only reached when the

spacing between particles in 3-dimensions n−1/3 becomes closely comparable to the

thermal de Broglie wavelength
√

2π~2

mkBT
.

In layman’s term, bosons are very sociable and they love to be in the same state,

to the extent that tens of millions of bosonic atoms are routinely produced to hold

“hands” and behave more or less like one giant atom in the recent experiments for

alkali metals, such as 23Na and 87Rb. Fermions, on the other hand, are not at all

sociable and they avoid each other to make sure they are not in the same quantum

state.

It is important to note that, in space of three or more dimensions, fundamental

particles and composite particles do not have a mixed symmetry. In 2-dimensional

systems, however, quasiparticles can be observed that actually obey statistics ranging

continuously between Bose-Einstein statistics and Fermi-Dirac statistics, as was first

shown by Jon Magne Leinaas and Jan Myrheim of the University of Oslo in 1977 [3].

The operation of exchanging two identical particles may cause a global phase shift

but still do not affect observables. This type of quasi-particles that only occur in

2-dimensional systems are called anyon. Anyons are generally classified as abelian

or non-abelian. While the detected abelian anyons played a major role of explaining

fractional quantum Hall effect, the non-abelian anyons are yet to be detected definitely

in experiments and remain as an active area of research.
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1.3 Quantum Spin

What is spin in quantum mechanics?

Spin is an intrinsic form of angular momentum, first inferred from observations

such as the Stern-Gerlach experiment in which particles are observed to possess angu-

lar momentum that cannot be accounted for by orbital angular momentum alone [4].

In some ways, spin is much like a vector defined in Hilbert space; it has a definite

magnitude, and it has a “direction” (but quantization makes this “direction” different

from the direction of an ordinary mathematical vector). All elementary particles of a

given kind have the same magnitude of spin angular momentum, which is indicated

by assigning the particle a spin quantum number [5].

This internal degree of freedom has no classical counterpart. In contrast, a quan-

tum particle’s velocity, which is obtained by performing wave-function expectation

on the velocity operator, is directly analogous to a classical particle’s velocity. It is

therefore without surprises that the object of quantum mechanical spin is a corner-

stone for a variety of materials that can manifest quantum properties. Materials such

as quantum magnets and topological insulators are fascinating to study and holds

great application promises precisely because of the existence of quantum mechanical

spin and the associated coupling with the momentum (or better known as “orbitals”).

Typically, when the coupling strength is significant enough to increase energy scale

of interests, various quantum effects are brought to the forefront manifestly. We will

come back to address the origin and effect of the above mentioned coupling later in

Section 1.5 of Chapter 1.

Remarkably, there is a deep connection between quantum spin of a particle and

the quantum statistics obeyed by the particle: half-integer spin particles are fermions,

and integer spin particles are bosons. In non-relativistic quantum mechanics, this
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connection is accepted as an empirical postulate, a law of nature without known

exceptions to-date. However, in the relativistic quantum theory, it can indeed be

proved that half-integer spin particles cannot be bosons and integer spin particles

cannot be fermions [6].

1.4 Dilute Ultra-cold Quantum Gases

In the 1920s, the Indian physicist Satyendra Nath Bose studied the quantum statistics

of photons, for which the total number is not a fixed quantity and the particle is

massless. He asked for comments from Albert Einstein on his manuscript before

submitting it to a journal. Einstein immediately recognized the paper’s importance

and impact, and personally translated the paper and submitted it for publication

at Zeitschrift für Physik [7]. Subsequently, Einstein extended Bose’s treatment to

massive particles, whose total number is a fixed quantity, and made a highly cited

publication, the same year he published the important article on General Relativity

[8]. Einstein considered a gas of non-interacting massive bosons and concluded that,

below a critical temperature, there would be non-zero fraction of particles occupying

the lowest energy single particle state [9]

In Section 1.1 and 1.2, we mentioned that liquid helium-4 was cooled below the

λ-transition point and could flow frictionlessly, the very definition of superfluidity.

However, the strong interaction strength between helium atoms reduces the the num-

ber of atoms in the zero-momentum state even at ultra-low temperatures, thus the

condensate fraction is rather low, being around only 10%. The fundamental dif-

ficulties to realize weakly interacting Bose gases in ultra-cold temperatures (such

that they can have high condensate fraction) came from a number of factors at the

time. One important fact was that most substances at low temperatures do not re-
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main gaseous (otherwise inter-particle scattering strength can be greatly reduced),

but form solid structures (crystallization) or become liquefied (such as helium-4), so

much so that the effects of interaction remain large. As laser cooling of alkali atoms

made significant advances, it was finally made possible in the 1990s that a number of

experiments became successful in producing gaseous Bose-Einstein condensate in the

laboratories [10–12].

Since the exciting experimental realizations of Bose-Einstein condensate of ultra-

cold quantum gases in the laboratories, the field of quantum gases or ultracold atoms

is the fastest expanding and most interdisciplinary field in physics today. The ex-

perimental branch of this exciting new field uses the techniques of atomic, molec-

ular and optical physics to study quantum phase transition, Bose-Einstein conden-

sation (BEC), bosonic superfluidity, quantum magnetism, many-body spin dynam-

ics, Efimov states, Bardeen-Cooper-Schrieffer (BCS) superfluidity and the BEC-BCS

crossover, etc. These are condensed matter systems whose constituents have well-

understood microscopic interactions. At sufficiently low temperatures, the long de

Broglie wavelengths of the atoms allow these systems to exhibit quantum phenomena

on a macroscopic scale. Ultracold atoms are also used in experiments for precision

measurements enabled by the low thermal noise and, in some cases, by exploiting

quantum mechanics to exceed the standard quantum limit. In addition to potential

technical applications, such precision measurements may serve as tests of our current

understanding of physics. The theoretical branch of this field is completely interdis-

ciplinary, attracting top scientists from atomic, condensed matter, high energy and

nuclear physics, as well as from quantum optics, quantum information, quantum sim-

ulation and quantum computation. It is of great interest in the context of condensed

matter physics, where it may provide valuable insights into the properties of inter-
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acting quantum systems. The ultracold atoms are used to implement an analogue

of the condensed matter system of interest, which can then be explored using the

tools available in the particular implementation. Since these tools may differ greatly

from those available in the actual condensed matter system, one can thus experimen-

tally probe otherwise inaccessible properties. Furthermore, ultracold atoms may even

allow one to create exotic states of matter, which otherwise cannot be observed in

nature. In short, ultracold quantum gases are proving to be a powerful model system

for strongly interacting many-body systems [13–21].

1.5 Synthetic Gauge Field

Gauge fields are central in our modern understanding of physics at all scales. Electro-

magnetism is the simplest example, where the scalar and vector potentials together

describe the coupling between charged matter and electromagnetic fields. In the

standard model, interactions are mediated by more complex gauge fields which often

are of a non-Abelian character. At the highest energy scales, the microscopic uni-

verse is governed by particles interacting with each other through the exchange of

gauge bosons. At the largest length scales, our Universe is ruled by gravity, whose

gauge structure suggests the existence of a particle, graviton, that mediates the grav-

itational force. At the mesoscopic scale, solid-state systems are subjected to gauge

fields of a different nature: materials can be immersed in external electromagnetic

fields, but they can also feature emerging gauge fields in their low-energy description.

For example, the adiabatic motion of quantum particles with internal structure can

be described in terms of an effective ‘geometric’ gauge potential. This property was

first studied in molecular physics, where the Jahn-Teller effect revealed the geometric

phases and corresponding vector potentials [22–24].
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Atomic quantum gases are charge neutral, and therefore, they are not affected by

external electromagnetic fields the way electrons are. However, atom-light coupling

allows for the creation of versatile gauge potentials that effectively emerge in the atoms

dynamics, allowing experimental access to a wide range of new phenomena at the

quantum level. As such, atoms can be subjected to static Abelian gauge fields, offering

a framework where synthetic electric and magnetic fields can be experimentally tuned

with laser fields [25–27]. We noted in Section 1.4 that the laboratory realization of

ultracold neutral atomic gases including Bose-Einstein condensates (BECs) [10–12]

and degenerate Fermi gases [28] delivered remarkably versatile experimental systems

that can faithfully simulate a wide range of real world materials. The newest addition

to the quantum simulation vision∗ is just such: the static non-Abelian gauge fields

have been tailored so as to reproduce the effects of Rashba-type spin-orbit couplings

(SOCs) [30], as well as system of fermionic atoms in which lasers induce strong spin-

orbit coupling [31, 32]. One can envision that this technique may be combined with

Feshbach resonances [33] (which control the inter-atomic interactions) and optical

lattices (which mimic the lattices in real materials), enabling the production of exotic

states found in condensed-matter systems such as topological insulators. Even more

importantly, one hopes to realize novel states of matter (e.g., “fractional topological

insulators”), which are anticipated by many theoretical studies but are hard to create

∗In 1981, Richard Feynman gave a famous keynote speech [29] about the possibility and potential

consequences of “simulating physics with computers”. The take-home message is that “nature is not

classical and using classical computers to simulate quantum mechanics would be close-to impossi-

ble”. Instead, one could think about solving these computationally and/or analytically intractable

problems by constructing “quantum emulators/computers”. In the meanwhile, “physicisits can get

new ideas and explore new possibilities of understanding physical laws of nature”, about which “we

have to admit that we don’t understand everything”.
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and analyze experimentally.

Spin-orbit coupling refers to the interaction between the spin and motional degrees

of freedom of an electron. Consider a situation of 2-dimensional electron gas subjected

to the uniform electric field perpendicular to the plane. According to special relativity,

the electric field is seen as a magnetic field in the moving electrons’ frame of reference.

The magnetic field’s strength and direction depend on the velocity of the electron,

producing a correlation between the electrons’ momentum and their spin states. At

field strengths available in the laboratory this correlation can generally be neglected

for any reasonable electronic velocities. However, strong spin-orbit coupling can be

found in materials that contain heavier elements and lack inversion symmetry: the

electron motion becomes relativistic near the ion cores, and the local electric field

can be strong. While these relativistic effects can couple an electron’s spin to its

motion, coupling the spin and the center-of-mass motion of a neutral atom presents

a challenge.

But we mentioned in the beginning of Section 1.5, that in the low-energy de-

scription gauge fields can still be emergent under certain situations. For instance,

when the state vector of an atomic system evolves adiabatically in time, if the pa-

rameter space of the time-dependent Hamiltonian has cyclic geometric properties,

the accumulated Berry phase becomes universally invariant, cannot be canceled, and

consequently becomes an observable property of the system. These geometric vector

potentials appear when each atom’s external motion is described separately from its

internal dynamics, yet the Hamiltonian governing the internal dynamics parametri-

cally depends on the atomic position. In this context, when the local atomic internal

states ‘dressed’ by the laser fields have degeneracies, effective non-Abelian gauge po-

tentials can be formed, often manifesting as the spin-orbit coupling term that “heavy”



11

material systems would typically have due to relativistic correction to Schröndinger

equation.

What typically happens in the cold atom experiments is the following: two hy-

perfine atomic states are singled out among many other internal degrees of freedom.

Laser fields are properly aligned and designed in such a way that trapped atoms may

mimic charged particles in a magnetic field with emergence of Lorentz-like force. Two

counter-propagating laser beams are introduced to couple these states by a resonant

stimulated two-photon Raman transition: by absorbing a photon from the left beam,

and emitting it into the right beam, a ↑ spin atom will flip into the ↓ spin state.

Since in the process the atom receives a momentum kick, this provides a mecha-

nism by which spin and momentum become coupled. Using a group of degenerate

(or quasi-degenerate) pseudo-spin eigenstates, non-abelian dynamics of cold atoms

in light fields is generated, which effectively leads to the spin-orbit coupling for cold

atoms, simulating the electronic counterpart in condensed matter. Here, synthetic

SOC refers to the coupling between atom’s pseudo-spins (i.e. hyperfine states) and

COMmotion, rather than the generic interaction between electron’s spin (or magnetic

moment) and angular/linear momentum operator in quantum mechanics.

Such spin-orbit coupling (SOC) in cold atoms has been realized in both bosonic

[34, 35] and fermionic systems [31, 32], and has attracted tremendous attention in

recent years [36]. In practice, to avoid spontaneous emission, SOC is induced between

two hyperfine ground states of an atom via a pair of Raman laser beams. Due to

its non-Abelian nature† , SOC not only significantly affects the physics of a single

† The form of SOC we discuss here can be expressed in terms of static gauge fields in the atomic

Hamiltonian as H = (p−A)2/2m. When the components of the vector A = (Ax,Ay,Az) mutually

commutes with each other, the gauge field A is called Abelian gauge potentials. When they don’t
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atom, but, perhaps more importantly, also profoundly changes the properties of a

many-body system. It is an essential ingredient underlying such diverse phenomena

as topological superconductors/insulators, Majorana and Weyl fermions, spin-Hall

effects, etc.

Experiments for both bosonic and fermionic gases are exciting, as each holds great

and new promises for studying exotic states of matter. Due to the Pauli exclusion

principle, fermions occupy a large number of momentum states, and are therefore

sensitive to global (topological) features of the band structure. Spin-orbit-coupled

fermionic gases would thus provide ways to explore a much richer phenomenology.

Creating spin-orbit coupling in bosonic gases provides the first physical realization of

an SO coupled bosonic system and therefore many new issues arise, such as “how does

SO coupling affect the behavior of the superfluidity for bose gas”. Cold atom systems

are highly tunable and can be used for the purpose of quantum simulation. Making

use of this tunability, on one hand, we can study physics like topological insulators

and superconductors in a more flexible and disorder-free setting. On the other hand,

we can reach certain parameter regimes that are not easy to access with conventional

solid state materials, for instance, tuning the strength of spin-orbit coupling so that

it is comparable with Fermi energy, where novel effects will be expected.

1.6 Quantized Light Field

When Jaynes and Cummings first studied the time evolution of a two-level atom

in an electromagnetic field in a fully quantized way in 1960s [37], experimental

realization of this ideal theoretical model was out of reach. It was made possible

only with the advent of one-atom masers in late 1980s, by Rempe, Walther and

commute, for instance AxAy 6= AyAx, the gauge field A is called non-Abelian gauge potentials.
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Klein [38], who experimentally studied the interaction of a single atom and a single

resonant mode of electromagnetic field in a cavity. Jaynes-Cummings model (or J-

C Model) serves to bridge our understanding of the relationship between quantum

theory of radiation and semi-classical theory of atom-light interaction, and has become

one of the most important models in quantum optics and cavity electrodynamics

(CQED) and quantum mechanics was put to fundamental tests. In the experiment of

Reference [38], a beam of atoms was used and the atom-light interaction was studied

during the transient time when the atoms pass through the cavity. The intensity of

the atomic beam is sufficiently low such that at any given time, no more than one

atom is inside the cavity.

The field of CQED was further advanced by putting a single trapped cold atom

[39], and more recently a condensate of ultracold atoms [40–42], inside an optical

cavity. In addition, bright-state polaritons of four-wave mixing and six-wave mixing

signals can be parametrically amplified [43]. In the J-C model, and other related

CQED systems, the focus is the interaction and mutual influence between the cavity

mode and the atomic internal degrees of freedom. The external degrees of freedom of

the atom, i.e., its center-of-mass (COM) motion, is generally neglected.

Unlike “hot” atoms, however, cold atoms’ COM motion in general can no longer

be neglected in this “atom + cavity” system, as the COM momentum of a cold atom

will be significantly affected by photon recoil from emission and absorption of even

a single photon. Therefore in a more complete description of the cavity system,

one needs to take into account the interplay among the cavity photons, and both

the internal and external atomic degrees of freedom. Because intra-cavity photon

and atoms very frequently scatter off each other due to the geometric confinement,

not only dipole force gets strongly enhanced but also atom’s back-action onto light
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becomes significant. For Bose-Einstein condensate (BEC), atoms occupy the same

motional quantum state, and because of long-range cavity photon mediation, the

internal states (pseudo-spins) are infinitely coordinated. The most famous example

is the Dicke model [44], which has been realized in CQED as well [42]. Furthermore,

when more than one atom is inside the cavity, one should also account for the cavity

photon mediated long-range interaction between atoms. All of these make the “cold

atoms + cavity” system extremely rich and interesting, and truly represent a new

frontier in both CQED and cold atom research.

In Section 1.5, we mentioned that the synthetic gauge fields realized in cold atoms

experiment provided a plethora of research opportunities for physicists. However,

we should also note that all those schemes created static gauge fields, in the sense

that they can be perfectly well described by adding additional terms in the bare

atomic Hamiltonian. Whereas in nature, gauge fields as fundamental force carriers

are naturally dynamical. Even in many-body physics, gauge fields are described by

effective field theories and universally manifest themselves as dynamical: they are

described by their own Hamiltonian and are not just imposed, in an ad hoc way.

In Chapter 5, we will describe in details about our proposal of realizing dynamical

coupling between spin, orbit, and quantized light field. As a tidbit of this introductory

chapter, the photon field affects both the internal states (via inducing a transition

between different states of the atom) and the external center-of-mass motion (via

photon recoil) of the atom, and at the same time more importantly, the photon field

experiences back-actions from the atomic states. Such a simple feedback between

atom and photon field leads to dramatic modification of the atomic dispersion relation,

instability of the entire system, and exotic behaviors of the photon field. We will

conclude that the synthesis of cavity QED and spin-orbit coupling is not a trivial
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combination and interesting new physics emerges in this setting.

1.7 Outline of the Dissertation

The above sections conclude the introductory part in Chapter 1. The rest of the

dissertation is divided into three parts, which are largely drawn from the published

works while the author pursues the doctoral degree of physics at Rice University.

Chapter 2 and 3 addresses the novel features of ground-state physics, of spin-orbit

coupled cold gases. We note that spin-orbit coupling effectively changes the band

structure of single particle Hamiltonian [45, 46], may favor pairing at finite center-

of-mass momentum for two body bound state [45], and induces Fulde-Ferrell type of

Cooper pairs for many body systems [46].

Chapter 4 touches the surface and frontier of research progresses made in topo-

logical condensed matter physics and quantum dynamics of non-equilibrium physics.

To make progresses, we considered specific physical realizations [47], discussed con-

sequences of introducing spin-orbit coupling into well-known and well-studied model

Hamiltonians [47,48], and presented numerically simulated non-trivial dynamical evo-

lution [48].

Chapter 5 is dedicated to the proposal and study of another even more exotic type

of spin-orbit coupling. We propose to put atoms into optical cavity, and let the trio of

pseudo-spin, center-of-mass “orbit” (or orbital degrees of freedom for harmonic trap

if present), and quantized cavity light field be mutually coupled. The full system may

involve rather sophisticated experimental setup, but the physics from theoretical point

of view is rather rich, and we will discuss a few realizations that promise surprising

and interesting physics [49–52], which have never been conceived before.

Finally, in Chapter 6, we summarize the thesis and present concluding remarks.
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Chapter 2

Synthetic Spin-Orbit Coupling

2.1 Single-Particle Physics with Spin-Orbit Coupling

We start by formulating the single-particle Hamiltonian for a non-interacting homo-

geneous Fermi gas in three dimension:

H0 =
~
2k2

2m
+
∑

i=x,y,z

(viki + Λi) σi , (2.1)

where we have defined SOC strength vector v = (vx, vy, vz), and Zeeman field vector

Λ = (Λx,Λy,Λz). σ = (σx, σy, σz) are Pauli matrices acting on the atomic pseudo-

spin degrees of freedom. This description is a general model valid for various coupling

schemes. The single-particle spectrum can be straightforwardly obtained as E±
k =

ǫk±
√∑

i=x,y,z(viki + Λi)2 with ǫk = ~
2k2/(2m). The superscripts ‘±’ define the two

helicity bases which are related to the original spin basis by the transformation



|k+〉

|k−〉


 =




cos θk sin θk e
iφk

− sin θk e
−iφk cos θk






|k ↑〉

|k ↓〉


 , (2.2)

where

cos2 θk =
1

2


1 +

vzkz + Λz√∑
i=x,y,z(viki/m+ Λi)2


 ,

tanφk = −vyky + Λy
vxkx + Λx

.
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2.1.1 Equal Weight Rashba-Dresselhaus SOC

For concreteness, we now apply this general formalism to the experimentally realized

system whose single-particle Hamiltonian takes the following form:

H0 =
∑

σ

∫
drΨ†

σ(r)

(
~
2k2

2m
+ αδ

)
Ψσ(r)

+

∫
dr

(
Ω

2
e2i~krzΨ†

↑(r)Ψ↓(r) + h.c.

)
. (2.3)

Here Ψσ and Ψ†
σ are field operators for hyperfine spin states σ, and α = ±1 for

σ =↑, ↓ respectively. Ω is the two-photon Raman coupling strength and kr the recoil

momentum of the Raman beams which is taken to be along the z-axis. Finally δ

represents the two-photon detuning. To get rid of the exponential terms, we introduce

a local gauge transformation:

ψ̃↑(r) = e−ikrzΨ↑(r) , ψ̃↓(r) = eikrzΨ↓(r) . (2.4)

Defining the spinor ψ̃ = (ψ̃↑, ψ̃↓)T , we can recast H0 as

H0 =

∫
dr ψ̃

†
(r)H0 ψ̃(r) , (2.5)

H0 =
~
2k2

2m
+

~
2kr
m

kzσz +
Ω

2
σx + δσz , (2.6)

where we have neglected a constant energy shift Er = ~
2k2r/(2m) (the recoil energy)

in H0. One can immediately see that H0 above takes the form of Eq. (2.1) with

v = (0, 0, ~2kr/m) and Λ = (Ω/2, 0, δ).

The single-particle ground state occurs in the lower helicity branch, and is given

by |kmin−〉 at momentum kmin = (0, 0, k0) with energy

Emin =
~
2k20
2m
−
√
h2 + (λk0 + δ)2 , (2.7)
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where for notational simplicity we have defined h ≡ Ω/2 and λ ≡ ~
2kr/m. From

∂Emin/∂k0 = 0, we obtain

k0 =
λk0 + δ√

h2 + (λk0 + δ)2
kr . (2.8)

for δ 6= 0. When δ = 0, it is easy to show that the ground state is doubly degenerate

with minima k0 = ± 1
λ

√
(λ

2m
~2

)2 − h2 when h < λ2m
~2

or has single minimum at k0 = 0

when h > λ2m
~2

.

It is important to remember that kmin is not the mechanicalmomentum of the par-

ticle. Measured in the lab frame, the mechanical momentum of the particle prepared

in this ground state can be calculated as

K0 = (kmin + krẑ) sin
2 θkmin

+ (kmin − krẑ) cos2 θkmin
, (2.9)

To show that K0 = 0, we need to “undo” the local gauge transformation, from spinor

ψ̃ to Ψ̃.

First, we notice that the ground state minimum stays in the lower helicity branch,

which is a superposition of up and down components,

|k−〉 = − sin θk|k ↑〉+ cos θk|k ↓〉 (2.10)

= − sin θkc
†
k↑|0〉+ cos θkc

†
k↓|0〉 (2.11)

and the minimum occurs at kmin = (0, 0, k0) where (~ = m = 1)

k0 =
λ(λk0 + δ)√
h2 + (λk0 + δ)2

(2.12)

While, from bare spin basis ( atomic pseudospin basis ) to the model Hamiltonian’s

basis, spinors are related by

Ψ↑(r) = e+ikrzψ̃↑(r) (2.13)

Ψ↓(r) = e−ikrzψ̃↓(r) (2.14)
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Figure 2.1 : (a) and (b) Single-particle dispersion in the lower helicity branch. The
horizontal dashed lines represent the chemical potential of the Fermi sea. (c) and (d)
Momentum distribution along the z-axis for the non-interacting Fermi gas represented
by (a) and (b), respectively. The relative population of the two spin components are
listed in the plot, blue dashed line for spin-down atoms and red thick line for spin-up
atoms. For the left column [(a), (c)] we have δ = 0 and h = 0.6Er; for the right
column [(b), (d)] we have δ = 0.4Er and h = 0.6Er.

For the ground state with quasimomentum kmin, the momentum in the lab frame is

P z
0 = | sin θkmin

|2(k0 + kr) + | cos θkmin
|2(k0 − kr) (2.15)

=
1

2

(
1− λkx + δ√

h2 + (λkx + δ)2

)
(k0 + kr) (2.16)

+
1

2

(
1 +

λkx + δ√
h2 + (λkx + δ)2

)
(k0 − kr)

= k0 −
(λk0 + δ)kr√
h2 + (λk0 + δ)2

= k0 −
kr
λ
k0 = 0

where in the last line, Eq. (2.12) and kr = λ in the dimensionless unit are used.

So far, we have shown that particle in the ground state has exactly zero mechan-

ical momentum in the lab frame, even though its canonical momentum k0 depend

explicitly on the strengths of the SOC λ, and the Zeeman fields h and δ.
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2.1.2 Non-interacting Fermi Sea

Next we consider a filled Fermi sea at zero temperature. Following the discussion of

section 2.1.1, instead of taking k = kmin as in Eq. (2.9), we need to sum over all the

momentum under the Fermi surface. Here again one can show analytically that the

total momentum of the Fermi gas is zero in the lab frame as the following.

For a given chemical potential µ, Fermi surface is defined by the following equation

(we take ~ = m = 1)

k2z + k2⊥
2

−
√
h2 + (λkz + δ)2 = µ , (2.17)

where we have assumed that µ lies below the bottom of the upper helicity branch and

the Fermi surface is simply connected, as illustrated in Fig. 2.1. The total mechanical

momentum in the lab frame is obtained by integrating over the three-dimensional

volume of Fermi sea:

Kz
lab =

∑

k

[
| sin θk|2(kz + kr) + | cos θk|2(kz − kr)

]

=
V

(2π)3

∫ k2

k1

dkz

[
kz −

(λkz + δ)kr√
h2 + (λkz + δ)2

]
×
(
µ− 1

2
k2z +

√
h2 + (λkz + δ)2

)

=
V

8(2π)3
(
k42 − k41 + 8δλ(k1 − k2)− 4(µ+ λ2)(k22 − k21)

)

= 0 ,

where k1,2 are the intersections of the Fermi level with the lower helicity branch on

the z-axis and are simply the roots of Eq. (2.17) after taking k⊥ = 0. Similarly,

Kx
lab =

∑

k

[
| sin θk|2kx + | cos θk|2kx

]
= 0 ,

Ky
lab =

∑

k

[
| sin θk|2ky + | cos θk|2ky

]
= 0 .

The single-particle energy dispersion and momentum distributions of two examples

of non-interacting Fermi sea (one for δ = 0 and the other δ 6= 0) are illustrated in
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Fig. 2.1(a)-(d).

2.2 Dimer Bound State with Finite Center-of-Mass Momen-

tum

Next we consider the attractive s-wave contact interaction between un-like spins

which, in terms of the creation and annihilation operators for the original spin states,

is represented by

Hint =
g

V

∑

kk′q

c†
q/2+k↑c

†
q/2−k↓cq/2−k′↓cq/2+k′↑ , (2.18)

where g is the bare coupling strength to be renormalized using the s-wave scattering

length as. A general two-body wave function describing a dimer state with a definite

center-mass momentum q can be written as [53]:

|Ψ〉q =
∑

k,σ,σ′

ψσσ′(k) c
†
q

2
+kσ

c†q
2
−kσ′ |0〉 . (2.19)

Inserting this wave function into the Schrödinger equation

(H0 +Hint

)
|Ψ〉q = Eq|Ψ〉q , (2.20)

and after some lengthy algebra, we arrive at four coupled algebraic equations for the

coefficients ψσσ′(k). Self-consistency requires that the energy of the dimer state, Eq,

satisfies the following equation:

m

4π~2as
=

1

V

∑

k





Ek,q −

4E2k,q(v · k)2 − 4
[∑

i=x,y,z viki(viqi + 2Λi)
]2

Ek,q
(
E2k,q −

∑
i=x,y,z(viqi + 2Λi)2

)




−1

+
1

2ǫk


 ,

(2.21)

where Ek,q ≡ Eq − ǫq

2
+k − ǫq

2
−k, and the interaction has been regularized as 1/g =

m/(4π~2as)−1/V
∑

k 1/(2ǫk). The explicit forms of ψσσ′(k) can also be found, which

we list in the following.
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We start from the Schrödinger equation, i.e., Eq. (2.20). Using the form of

the Hamiltonian given in Eqs. (2.1) and (2.18), and that for the state vector |Ψ〉q
in Eq. (2.19), we can obtain four coupled equations for the coefficients ψσσ′ that

characterize the state |Ψ〉q. Let us introduce the singlet wave function ψs(k) =

1√
2
[ψ↑↓(k) − ψ↓↑(k)] and the triplet wavefunctions ψt(k) = 1√

2
[ψ↑↓(k) + ψ↓↑(k)],

ψu = 1√
2
(ψ↑↑(k) + ψ↓↓(k)), ψv = 1√

2
(ψ↑↑(k) − ψ↓↓(k)). The four equations for ψσσ′

can be recast into the following form:

Ek,q ψs =
2g

V

∑

k′

′
ψs(k

′) + 2vzkzψt − 2vxkxψv − 2vyikyψu , (2.22)

M




ψt

ψu

ψv




=




2vzkz

2ivyky

−2vxkx



ψs , (2.23)

where where Ek,q = Eq − ǫq

2
+k − ǫq

2
−k, and

∑′
k denotes summation over positive

momentum kz, and the matrix M is given by

M =




Ek,q −(vxqx + 2Λx) −i(vyqy + 2Λy)

−(vxqx + 2Λx) Ek,q −(vzqz + 2Λz)

i(vyqy + 2Λy) −(vzqz + 2Λz) Ek,q



.

Denoting

M ≡ det(M) = Ek,q
[
E2k,q −

3∑

i=1

(viqi + 2Λi)
2

]
,

and using Cramer’s rule in linear algebra, we can express triplet components in terms
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of ψs(k) as

ψt(k) =
2ψs(k)

M

∣∣∣∣∣∣∣∣∣∣

vzkz −(vxqx + 2Λx) −i(vyqy + 2Λy)

ivyky Ek,q −(vzqz + 2Λz)

−vxkx −(vzqz + 2Λz) Ek,q

∣∣∣∣∣∣∣∣∣∣

,

ψu(k) =
2ψs(k)

M

∣∣∣∣∣∣∣∣∣∣

Ek,q vzkz −i(vyqy + 2Λy)

−(vxqx + 2Λx) ivyky −(vzqz + 2Λz)

i(vyqy + 2Λy) −vxkx Ek,q

∣∣∣∣∣∣∣∣∣∣

,

ψv(k) =
2ψs(k)

M

∣∣∣∣∣∣∣∣∣∣

Ek,q −(vxqx + 2Λx) vzkz

−(vxqx + 2Λx) Ek,q ivyky

i(vyqy + 2Λy) −(vzqz + 2Λz) −vxkx

∣∣∣∣∣∣∣∣∣∣

.

After inserting expressions of ψt(k), ψu(k) and ψv(k) into Eq. (A.9), and integrating

both sides over momentum and dividing by the constant g
V

∑
k ψs(k), we finally reach

Eq. (2.21). The unnormalized singlet wavefunction is determined from Eq. (A.9) as

ψs(k) =


Ek,q −

4E2k,q(v · k)2 − 4
(∑

i=x,y,z viki(viqi + 2Λi)
)2

Ek,q
(
E2k,q −

∑
i=x,y,z(viqi + 2Λi)2

)




−1

, (2.24)

and the triplet wavefunctions are obtained accordingly.

Now we are in a position to discuss the two-body results when interaction is

included. First, note that the two-body interaction Hamiltonian takes the form of

Eq. (2.18) after we define the momentum space operators via ψ̃σ =
∑

k e
ik·rckσ/

√
V ,

and is obviously invariant under the transformation (2.4).

Second, following the general formalism, for a given set of parameters h, δ and as,

we can obtain numerically the eigen-energy of the dimer state Eq as a function of q.

The momentum q0 at which Eq reaches the minimum labels the ground dimer state.



24

The binding energy is defined as

ǫb = 2Emin − Eq0 . (2.25)

Only when ǫb > 0, can we consider the dimer as a truly two-body bound state.

Otherwise, its energy lies in the single-particle continuum. Figure 2.2(a) shows ǫb

decreases with increasing h and δ. Beyond a critical boundary value, the binding

energy becomes negative and no stable bound state can be found. For this system,

a two-body bound state only occurs on the BEC side of a Feshbach resonance with

as > 0 [54]. More importantly, q0 = q0ẑ will be non-zero and along the z-axis as long

as both h and δ are finite. Figure 2.2(b) displays q0 as functions of h and δ. We note

that q0 is an even function of h, and an odd function of δ. In the following, we prove

that for a given nonzero h, q0 deviates from zero for arbitrarily small δ.

2.2.1 Proof of nonzero q0 induced by Zeeman field

Following the discussion in section 2.1.1, for the equal-weight Rashba-Dresselhaus

SOC, by taking v = (0, 0, λ) and Λ = (h, 0, δ), and considering the possibility of a

bound state with momentum q0 = q0ẑ, the bound state energy Eq0 satisfies:

m

4π~2as
=

1

V

∑

k





[
Ek,q −

4λ2k2z
Ek,q

E2k,q − (λq + 2δ)2

E2k,q − 4h2 − (λq + 2δ)2

]−1

+
1

2ǫk



 , (2.26)

where Ek,q = Eq − ǫq

2
+k − ǫq

2
−k = Eq − ( q

2

4
+ k2⊥ + k2z). As a first step, we show that

the ground state occurs at q0 = 0 when δ = 0. To this end, we need to prove that

dEq/dq|q0=0 = 0. To show this, we take derivative with respect to q on both sides of

Eq. (2.26) and take q0 = 0, which yields

0 =
dEq
dq

∣∣∣∣
q0=0

∑

k

A(k) , (2.27)

A(k) =
[(k2 − E0)

2 − 4h2)]2 + 4λ2k2z [(k
2 − E0)

2 + 4h2]

(k2 −E0)2[(k2 − E0)2 − 4h2 − 4λ2k2z ]
2

. (2.28)
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Since the momentum integral in Eq. (2.27) is finite as the integrand A(k) is non-

negative, we must have dEq/dq|q0=0 = 0, indicating that the ground state indeed has

exactly zero momentum.

Next, we turn to a finite but small δ. We perform a similar calculation as above

and expand all terms to first order in δ. This leads to

0 =
dEq
dq

∣∣∣∣
q0=0

∑

k

A(k) + δ
∑

k

B(k) , (2.29)

B(k) =
64λ3h2k2z

(k2 − E0)3[(k2 − E0)2 − 4h2 − 4λ2k2z ]
2
. (2.30)

For a bound state, we have E0 < 0, hence B(k) is also non-negative. Consequently,

we conclude from Eq. (2.29) that dEq/dq|q0=0 ∝ δ. Therefore we have proved that for

any finite δ, the ground dimer state cannot have zero momentum.

For the two-body wave function given in Eq. (2.19), the momentum distribution

of the hyperfine spin states in the lab frame is given by:

n↑(k+ krẑ) = 〈c†k↑ck↑〉

= |ψ↑↓(k− q/2)|2 + |ψ↑↑(k− q/2)|2 , (2.31)

n↓(k− krẑ) = 〈c†k↓ck↓〉

= |ψ↓↑(k− q/2)|2 + |ψ↓↓(k− q/2)|2 . (2.32)

Both of these distribution functions will be symmetric along the x- and y-axis, which

yields the average momentum along these two axis P σ
x,y =

∫
dk kx,ynσ(k) = 0. By

contrast, nσ(k) will be in general asymmetric along the z-axis which results in finite

values of P σ
z =

∫
dk kznσ(k). The total momentum can be shown as

Klab =
∑

k

[k (n↑(k) + n↓(k))]

= q+ (N↑ −N↓)krẑ , (2.33)
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Figure 2.2 : Binding energy ǫb (in units of Er) (a) and the magnitude of the momentum
q0 (in units of kr) (b) of the dimer bound state, as functions of Zeeman field strengths
δ and h. The white region is where no bound states can be found. The scattering
length is given by 1/(kras) = 1.
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Figure 2.3 : (a) and (b) Momentum distribution along the z-axis of the dimer bound
state, discussed in section 2.2. (c) and (d) Difference between n↑(kz) and n↓(−kz) for
the cases shown in (a) and (b), respectively. For the left column [(a), (c)] we have
δ = 0 and h = 0.6Er; for the right column [(b), (d)] we have δ = 0.4Er and h = 0.6Er.
For the interacting case [(a)-(d)], the interaction strength is given by 1/(kras) = 1.

where Nσ =
∫
dknσ(k) is the population in spin-σ and satisfy the obvious constraint

N↑ + N↓ = 2. In Fig. 2.3(a) and (b), we illustrate how nσ(kz) =
∫
dkx

∫
dky nσ(k)

changes without and with detuning δ. To see it more clearly, we plot the differ-

ence between n↑(kz) and n↓(−kz) in Fig. 2.3(c) and (d). Notice that it is the SOC

that breaks spatial reflectional symmetry such that nσ(k) 6= nσ(−k) with σ =↑, ↓.

However, for δ = 0, one still has the symmetry n↑(k) = n↓(−k) as measured in the

experiment of Ref. [55]; with finite δ, this symmetry between n↑(k) and n↓(−k) is

further broken.

Note that for either h = 0 or δ = 0, we obtain q0 = 0 and N↑ = N↓ = 1. In either

of these cases, both P ↑
z and P ↓

z will be finite, but they have equal magnitude and

opposite sign and hence the total momentum of the dimer Pz = 0. When both h and

δ are non-zero, we obtain finite q0 and moreover N↑ 6= N↓. Our numerical calculation

shows that, under such circumstances, Pz ≈ 2q0.
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Figure 2.4 : (a) For spherical SOC, bound state energy Eq as a function of q (mo-
mentum along the z-axis) for different values of Zeeman field strength, from top to
bottom δ/Er = 0, 0.2, 0.4, 0.6, 0.8 and 1/(kras) = 1/2 for all curves. (b) Ground state
momentum q0 as a function of δ at different values of scattering length. From left to
right, the curves correspond to 1/(kras) = −1, −1/2, 0, 1/2, and 1, respectively. (c)
q0 as a function of 1/(kras) at δ/Er = 0.1.



29

This situation, combined with the results for the non-interacting system, leads

to the following peculiar phenomenon: In the absence of two-body interaction, the

system possesses zero total momentum; when the interaction is turned on, the system

picks up a finite total momentum even though the interaction Hamiltonian (2.18)

seems to be momentum-conserving. This peculiarity is indeed a salient feature of the

SOC. Since the linear momentum of the atom is intimately coupled to its pseudo-

spin, as the interaction induces the redistribution of atomic population (i.e., change

the value of σz) as shown in Fig. 2.1(d) and Fig. 2.3(b), it also modifies the total

momentum of the system. This phenomenon can be regarded as a manifestation of

the broken Galilean invariance, which is also responsible for other unusual behaviors

such as the deviation of dipole oscillation frequency in a harmonically trapped system

[56, 57], and the ambiguity in defining Landau critical velocity in spin-orbit coupled

condensates [58].

The momentum of each spin species can be readily measured in experiment using

the time-of-flight technique. This has actually been performed in a non-interacting

SOC Fermi gas [55]. However, our calculation shows that q0 is only on the order 1%

of recoil momentum for the equal Rashba-Dresselhaus SOC (see Fig. 2.2) which is

the only type of SOC realized so far.

The magnitude of q0, however, can be greatly enhanced under other SOC schemes.

As an example, we consider the spherical SOC coupling scheme that is recently pro-

posed [59, 60]. For this case, the SOC strength vx = vy = vz = v. We take the

spin-orbit coupling strength v = ~
2kr/m to be the same as in the previous case. Due

to the isotropic nature of the SOC term, the direction of the Zeeman field is irrelevant.

We choose it to be along the z-axis, i.e., Λ = (0, 0, δ), which, as we shall show, leads

to a dimer state with finite moment q0ẑ along the z-axis. Fig. 2.4(a) demonstrates
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that, with increasing δ, the minimum of of the bound state energy Eq deviates away

from zero to some finite value. Compared to the former equal Rashba-Dresselhaus

SOC case, an essential difference here is that a two-body bound state can be realized

even when as < 0 [61]. Fig. 2.4(b) and (c) show how q0 varies as functions of δ and

as. As one can see, as long as δ is non-zero, the dimer ground state possesses finite

momentum. Furthermore, The magnitude of q0 can reach as high as 0.2kr. Such a

large value should be easily detected in experiment.

For a Zeeman field along the z-axis, we have q0 = q2bẑ. Following the above-

mentioned protocol, we summarize the “phase diagram” of q2b as a function of the

SO coupling strength and the Zeeman field strength h in Fig. 2.5. As one would

expect, the Zeeman field tends to destroy the two-body bound state; whereas SO

coupling enhances its formation. The competition between these two outlines the

critical boundary value, beyond which ǫb becomes negative and no stable bound state

can be found. With increasing h, the minimum of Eq deviates further away from zero

momentum to some finite value. As long as Zeeman field is non-zero, the lowest-energy

bound state would occur at finite center-of-mass momentum q2b. Our calculation

shows that the magnitude of q2b can be as high as 0.2kF .

Finally, for the sake of completeness, we comment on the case of Rashba SOC

with v = (vx, vy, 0) and vx = vy = ~
2kr/m. In this case, when an in-plane Zeeman

field (i.e., with a component in the x-y plane) is present, the resulting dimer bound

state will again have finite momentum. A plot similar to Fig. 2.4 can be obtained.

Our calculation shows that the maximum q0 can be reached is about 0.05kr.
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Figure 2.5 : Finite momentum dimer bound state solution for 3DSOC. The coloring
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field strength h; the inset shows bound state energy Eq as a function of q/kF (along
the z-axis) for different h, from top to bottom h/EF = 0, 0.1, 0.2. We fix scattering
length as 1/(kFas) = −1
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2.3 Summary

In summary, we have studied a single-particle Hamiltonian for a non-interacting ho-

mogeneous Fermi gas in three dimensions, subjected to synthetic spin-orbit coupling.

We have shown that (a) a single particle in the ground state has exactly zero mechan-

ical momentum in the lab frame, even though its canonical momentum k0 depends

explicitly on the strengths of the SOC λ, and the Zeeman fields h and δ. (b) The

total mechanical momentum for the non-interacting Fermi Sea adds up to exactly

zero as well. (c) Two fermions, via s-wave scattering, may form a dimer bound state

with finite center-of-mass mechanical momentum, under proper configuration of SO

coupling and Zeeman field. We attribute this peculiar phenomenon to the broken

Galilean invariance induced by the SO coupling and special role played by the Zee-

man field. We have directly solved the two-body Schrödinger equation in the general

formalism, and considered the momentum distribution in the laboratory frame for

the experimentally realized system, where finite but relatively small bound state mo-

mentum q0 is found. Finally, we demonstrate that the recently proposed system with

spherical SOC [59,60] can result in dimer bound state with up to 20% of the recoil mo-

mentum. Note that, for bosons, previous studies have shown in the presence of SOC,

the ground state is either plane wave phase or standing wave phase [62–64]. However,

in contrast to our work, such states possess exactly zero mechanical momentum.

Motivated by the results from single-particle and two-body physics with synthetic

coupling and effective Zeeman field, one is naturally tempted to explore the direct

analog for the many-body system. Conceptually, at Fermi surface of equal momentum

magnitude, not all fermions can find partners to pair with, which thus leads to exotic

finite center-of-mass momentum pairing state.
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Chapter 3

Superfluid Pairing and Topological Order

A central theme of fundamental physical science has been the search for building

blocks of matter. In the 19th century, material compositions as elements were such

an example. In the 20th century, the search for elementary particles dominated the

field of high energy physics. However, understanding how atoms and electrons as

building blocks were put together and form many different states of quantum ma-

terials, such as solids, magnets, superconductors, etc., took tremendous efforts of

condensed matter physicists for several decades. The discovery and classification of

distinctive phases of matter, in the last century, can be often understood by Landau’s

approach of the principle of spontaneous symmetry breaking. In other words, quan-

tum states of matter possess different underlying symmetries that are spontaneously

broken. For example, translation symmetry is broken for crystalline solids, rotation

symmetry is broken for magnets, and gauge symmetry is broken for superconductors,

etc. Spontaneous symmetry breaking leads to a unique order parameter, which is es-

sential for formulating an effective field theory, the well-celebrated Landau-Ginzburg

theory [65].

In particular, the nature and the microscopic origin of fermionic pairing was first

elucidated in the pioneering work by Bardeen, Cooper, and Schrieffer, widely known

as the BCS theory [66]. The attractive pairwise interaction between electrons with

opposite spin, albeit extremely weak, can give rise to an instability in a normal elec-

tron gas towards the formation of zero-momentum Cooper pairs near Fermi surface,



34

and because of pair condensation, ordering of conduction electrons emerge naturally.

When subjected to an external Zeeman field, the population balance between elec-

trons with different spins may be broken. As a consequence, not all electrons can

find a partner to pair up with. If spin-population imbalance is large enough, the

pairing of fermions has to occur at finite center-of-mass momentum with a deformed

Fermi surface state [67]. This exotic possibility of inhomogeneous superfluid was first

predicted by Fulde and Ferrell (FF) [68], and by Larkin and Ovchinnikov (LO) [69]

a little later. FF refers to an order parameter with plane-wave form ∆(r) = ∆0e
iq·r,

which spontaneously breaks time-reversal symmetry; while LO considers the super-

fluid with a standing-wave order parameter ∆(r) = ∆0 cos(q · r), which explicitly

breaks translational symmetry. Both phases have puzzled the solid-state community

for decades in terms of unambiguous experimental evidence to prove their existence.

Moreover, the FFLO state is also of interest in quantum chromodynamics at low

temperature and high density, where the property of asymptotic freedom may favor

color superconductivity [70].

In Section 3.1, we apply the functional path integral treatment of the many-

body physics for a Fermi gas subjected to an isotropic three-dimensional SO coupling

(3DSOC) and an effective Zeeman field. The generation of such 3DSOC has been

recently proposed by optically dressing four internal atomic states with a tetrahedral

geometry [59, 60]. This version of the SO coupling is less explored and unfamiliar to

the condensed matter community, where 2D Rashba and Dresselhaus SO couplings

are studied extensively. One important advantage of 3DSOC over lower-dimensional

SO interaction is that it provides the greatest enhancement of fermionic pairing [71].

Furthermore, due to its isotropic nature, mathematical simplicity is ensured. The

bound states formed by two fermions subject to SOC have been studied rather inten-
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sively [53, 54, 72–76]. However, in previous studies, the interplay between the SOC

and the Zeeman field has not been thoroughly investigated. We show in the present

work that, in the absence of two-body interaction, such a system exhibits zero to-

tal momentum. By contrast, in the presence of attractive s-wave interaction and

with a proper combination of the SOC and the Zeeman field, the system may form a

dimer bound state with finite center-of-mass mechanical momentum. At first sight,

this result is very surprising since the s-wave interaction is manifestly momentum-

conserving. A closer examination will reveal that this is a natural consequence of

the broken Galilean invariance due to the presence of the SOC [56–58]. In princi-

ple, this finite-momentum dimer state can be realized in the current experimental

system with equal-weight combination of Rashba and Dresselhaus SOC. The momen-

tum of the bound state can be measured through standard time-of-flight techniques.

In other words, under arbitrarily weak Zeeman field, zero-momentum dimer state and

conventional BCS superfluid phase are no longer stable. For a many-body system,

the FF state is inherently robust, and ultimately connects to the normal phase in a

smooth manner as the Zeeman field strength is increased. Moreover, this type of ex-

otic superfluid has a different origin in comparison with the previously studied FFLO

state. In the absence of the SO coupling, individual particle number with different

spins is conserved, hence the imbalance induced finite-momentum pairing has parity

symmetry between q and −q, which should be called LO phase by definition; on the

other hand, in the presence of the SO coupling, the Zeeman field breaks time-reversal

symmetry explicitly and cause the single-particle dispersion to be asymmetric, which

underlines the idea of finite-momentum dimer bound states [71] and the FF pairing

instability. The center-of-mass momentum of the Cooper pair can be as large as the

Fermi momentum. This result should be very encouraging for future experimental
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exploration.

The above understanding of phases and phase transitions are governed by Lan-

dau’s symmetry breaking theory, where different phases are associated with differ-

ent symmetries and characterized by different order parameters. This approach was

widely accepted and believed to give a universal description of the quantum state of

matter.

It was only until the discovery of the quantum Hall (QH) state [77], that a new

framework of theoretical description was invented. The QH state does not sponta-

neously break any symmetry as other ground states do, but rather is topologically

distinct from the rest. Fundamental properties such as the quantized value of the

Hall conductance and the number of gapless modes are independent of material de-

tails [78,79] and remain unchanged by smooth deformations of the material parame-

ters, unless a quantum phase transition occurs.

The theory and experimental realization of topological insulators (TI) is an emerg-

ing field that led to numerous discoveries in material physics and future applications

of quantum computation. More specifically, TI is insulating in the bulk whose bulk

energy gap separates the highest occupied electronic band from the lowest empty

band, but the unidirectional flow of electric current is dissipationless which is due to

gapless edge states that are protected by time-reversal symmetry. These protected

gapless edge states are known as Majorana fermions – exotic quantum particles that

act as their own antiparticles and obey non-abelian braiding statistics. Their real-

izations are believed to lie at the heart of future technologies such as fault-tolerant

quantum computers. Roughly speaking, Majorana fermions constitute “half” of an

ordinary Dirac fermion, in the sense that two real Majorana fermions γ1 and γ2

- which can be separated in arbitrary distance - mathematically define a complex
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fermion operator c = γ1 + iγ2 [80]. The exchange statistics of Majorana fermions is

exotic. Unlike conventional bosons and fermions, braiding Majorana fermions around

one another in a 2N -dimensional Hilbert space (spanned by 2N well-separated Ma-

jorana fermions) produces non-Abelian unitary transformations in the Hilbert space.

Quantum information can then be non-locally encoded in the Hilbert space by such

braiding operators and be immune to decoherence, which is ideal for the purpose of

quantum computation [81].

In the Section 3.2, we will consider this kind of quantum state characterization us-

ing topological orders, which is completely beyond the symmetry breaking paradigm.

3.1 Mean Field Many-Body Physics with Pairing Instability

Motivated by the two-body results, one naturally attempts to explore the direct

analog for the many-body system, which we study in this section.

We start by formulating the Hamiltonian for a non-interacting homogeneous spin-

1/2 Fermi gas in 3D using field theories:

H0 =

∫
drψ†(r){ξk +

∑

i=x,y,z

(λiki + Λi) σi}ψ(r) (3.1)

where ξk = ~
2k̂2/(2m) − µ and ψ = [ψ↑(r), ψ↓(r)]T is the fermionic annihilation

field operator. We have defined the general form of SO coupling strength vector

λ = (λx, λy, λz) as in previous sections, and the Zeeman field vector Λ = (Λx,Λy,Λz).

σ = (σx, σy, σz) are Pauli matrices acting on the atomic (pseudo-)spin degrees of

freedom. This description is a general model valid for various SO coupling schemes.

The single-particle spectrum is given by Eγ(k) = ~2k2

2m
+ γ

√∑
i(λiki + Λi)2 with

γ = ±1 denoting the two helicity branches. In this section, we will focus on the

3DSOC [59, 60] with λx = λy = λz = λ. For this case, due to the isotropic nature
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of the SO coupling term, the direction of the Zeeman field is irrelevant and we shall

choose it to be along the x-axis, and hence Λ = (h, 0, 0).

It is important to note that the Zeeman field induces an asymmetry in the single-

particle dispersion relation. To illustrate this, we consider a filled Fermi sea with

simple topology (cf. [82]) at zero temperature. In Fig. 3.1, we plot the Fermi surface

without and with Zeeman field. In the absence of the Zeeman field, the Fermi surfaces

for both helicity branches are represented by spheres centered at zero momentum, as

shown in Fig. 3.1(a). When we turn on the Zeeman field, both Fermi surfaces are

distorted and no longer possess reflection symmetry about the kx = 0 plane, as can

be clearly seen in Fig. 3.1(b). From this perspective, the ground state of the single

particle Hamiltonian is associated with nonzero total momentum along the kx-axis.

However, we emphasize here that the nonzero total momentum refers to the canon-

ical momentum after gauge transformation, which is different from the experimentally

measurable mechanical momentum in the lab frame. The latter, for both the single-

particle ground state and the non-interacting Fermi sea, as we have discussed in the

Section 2.1.1, is exactly zero.

Next we consider the attractive s-wave contact interaction between un-like spins

which, in terms of the creation and annihilation field operators for the original spin

states, is represented by

Hint = U0

∫
drψ†

↑(r)ψ
†
↓(r)ψ↓(r)ψ↑(r) (3.2)

where U0 is the bare coupling strength to be renormalized using the s-wave scattering

length as. In this work, we constrain our attention to the experimentally exploited

broad Feshbach resonances, which is well captured by the single-channel Hamiltonian

prescribed above.
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Figure 3.1 : (a) Fermi surfaces (a cut in the ky = 0 plane) in the absence of the
Zeeman field. The two concentric Fermi surfaces are spherically symmetric. The
inner blue sphere represents the Fermi surface of the + helicity branch, while the
outer yellow sphere of the − helicity branch. (b) Fermi surfaces in the presence of
the Zeeman field along the x-axis: both Fermi surfaces are deformed in such a way
that the cylindrical symmetry about the kx-axis is still preserved, but the reflection
symmetry about the kx = 0 plane is broken.
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Here, we outline the functional path integral technique [83–85] and start from the

partition function Z =
∫
D[ψ (r, τ) , ψ̄ (r, τ)] exp

{
−S

[
ψ (r, τ) , ψ̄ (r, τ)

]}
where the

action

S
[
ψ, ψ̄

]
=

∫ β

0

dτ

[∫
dr
∑

σ

ψ̄σ (r, τ) ∂τψσ (r, τ) +H
(
ψ, ψ̄

)
]

(3.3)

is written as an integral over imaginary time τ . Here β = 1/(kBT ) is the inverse

temperature and H
(
ψ, ψ̄

)
is obtained by replacing field operators ψ† and ψ with

grassmann variables ψ̄ and ψ, respectively. We can integrate out the quartic in-

teraction term using the Hubbard-Stratonovich transformation [85], from which the

pairing field ∆ (r, τ) is defined.

If we assume the mean-field order parameter to be of FF-type ∆ = ∆0e
iq·r, and

further integrate out the fermionic fields, we arrive at an effective action as

Seff =

∫ β

0

dτ

∫
dr(−|∆|

2

U0

)− 1

2
Tr log[−G−1

∆ ] + β
∑

k

ξk+q/2 + ξ−k+q/2

2
, (3.4)

G−1
∆ (k, iωm) =



iωm − ξk+q/2 − f+ i∆0σ̂y

−i∆0σ̂y iωm + ξk−q/2 − f−


 (3.5)

where f± =
∑

i

(
λi(ki ± qi

2
)± Λi

)
σi. In the second term of Eq. (3.4), the trace is to

be taken over the Nambu spinor space Φ (r,τ) ≡ [ψ↑, ψ↓, ψ̄↑, ψ̄↓]T , the real coordinate

space and imaginary time. The last term in Eq. (3.4) comes from interchanging

fermionic fields ψ̄↑ and ψ̄↓with ψ↑ and ψ↓ and the corresponding equal-time limiting

procedure [85]. From Eq. (3.4), we can further sum over Matsubara frequencies to

arrive at the grand thermodynamic potential:

Ω

V
= − 1

β
lnZ = − |∆|

2m

4π~2as
+

1

V

∑

k

[
ξk+q/2 + ξ−k+q/2

2
− 1

4

4∑

α=1

|Eα
k |

+
|∆|2
2ǫk
− 1

2β

4∑

α=1

ln
(
1 + exp(−β|Eα

k |)
)]

(3.6)
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where we have regularized the bare interaction strength U0 in terms of the s-wave

scattering length as by 1
U0

= m
4π~2as

− 1
V

∑
k

1
2ǫk

. Eα
k (α = 1, 2, 3, 4) are the quasi-

particle energy dispersion, which are just the four eigenvalues obtained by solving

det[G−1
∆ (k, Eα

k )] = 0. In our case, Eα
k are too complicated to be presented here.

We take a canonical ensemble approach by considering a homogeneous system with

fixed particle number N and volume λ, and hence the density n = N/V = k3F/(3π
2).

The important quantity that determines the mean field phase diagram shall be the

free energy, also known as the Landau potential, defined as F = Ω + µN . At zero

temperature, it coincides with the ground state energy. For a given set of parameters

(including SO coupling strength λ, Zeeman field strength h, interaction parameter

1/(kFas), and temperature T ), order parameter ∆, chemical potential µ, and the FF

momentum q = qFF x̂ should be determined self-consistently by stationary conditions

∂F

∂∆
= 0,

∂F

∂µ
= 0,

∂F

∂q
= 0. (3.7)

We shall explicitly consider three types of phase: normal gas (∆ = 0, q = 0), BCS

state (∆ 6= 0, q = 0), and FF state (∆ 6= 0, qFF 6= 0).

3.1.1 Zero-temperature phase diagram on the BCS side

We shall first focus on a relatively weak-interacting regime on the BCS side of the

crossover and take 1/(kFas) = −1. In this regime, we can easily justify the mean-

field treatment at both zero and finite temperature, and furthermore the SO coupling

effect would be more pronounced [53, 73, 86, 87].

To get some insight first, in Fig. 3.2, we plot the free energy as a function of h for a

given SO coupling strength λ = EF/kF . (We choose this relatively large SO strength,

to avoid possible complications, e.g. Sarma phase [88], phase separation [89] etc.) It
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Figure 3.2 : Zero temperature free energy as a function of h for fixed SO coupling
strength λ = EF/kF and interaction strength 1/kFas = −1. FF superfluid phase
is favored throughout the plotted parameter space. In the inset, we plot the BCS
order parameter ∆BCS, the FF order parameter ∆FF (both in units of EF ), and the
FF momentum qFF (in units of kF ) as functions of h. Note that we have explicitly
excluded the consideration of the so-called LO phase, because of the fact that h has
explicitly broken the symmetry in momentum space. One particular direction of
quasi-momentum is always favored for a given h value. Consequently, LO phase is
guaranteed to give rise to higher free energy state.
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is very remarkable to notice that the FF state is energetically favored for arbitrarily

small h. For instance, at h = 0.02EF , the gain of energy over the BCS pairing phase is

∆F = FBCS−FFF ≈ 4.54588×10−5NEF . However, this energy gain quickly increases

as h is increased. For example, at h = 0.28EF , we have ∆F = 1.13728 × 10−2NEF

which is more than two orders of magnitude larger and represents a very large energy

value on the BCS side of Feshbach resonance. Once again, the idea of favoring the FF

phase is backed by the picture of the Fermi surface deformation (cf. Fig. 3.1) and the

two-body bound state solutions [Eq. (2.26) and Fig. 2.5]. When we further increase

h, the BCS superfluid is taken over by normal phase as the BCS order parameter

drops to zero rather sharply (see the inset of Fig. 3.2); on the other hand, the FF

state connects to normal phase very smoothly at a much larger value of h.

The FF state here has different origin with the conventional FFLO states in the

absence of the SO coupling [90–92], in which case, for a given interaction strength and

with increasing population imbalance (i.e., Zeeman field), one would expect that com-

petitions among various quantum phases (BCS, Sarma, FFLO, and normal phases)

could lead to both first- and second-order phase transitions. By contrast in the pres-

ence of SO coupling, especially 3DSOC, the FF state dominates almost the entire

phase diagram, as we map out in the λ-h plane Fig. 3.3(a). The BCS phase only

exists on the axis (i.e., in the absence of either the Zeeman field or the SO coupling).

The normal phase and the FF phase are connected by a smooth boundary, which we

identify by setting a threshold value of energy difference |FFF−Fnormal| ≈ 10−5NEF .

Note that close to the boundary, ∆FF also becomes exceedingly small. For illustration

purposes, we schematically added two small regions near λ = 0, the LO (green) and

the phase separation (blue) regions, in the phase diagram. The boundaries of these

two phases in the absence of the SO coupling (i.e., at λ = 0), which are well studied,
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Figure 3.3 : (a) Zero-temperature phase diagram at 1/kFas = −1 in the parameter
space spanned by h and λ. The FF phase is divided into gapped and gapless regions
by the green dashed line. The BCS state only exists strictly on the axis marked by
two red straight lines. The two blue lines indicate the smooth boundary between the
FF state and the normal phase. Within the FF phase, the color scale indicates the
momentum qFF. LO and phase separation (PS) regions are added schematically for
illustration purpose. (b) Single-particle excitation gap ∆E, FF order parameter ∆FF

and momentum qFF as functions of h. The SO coupling strengths are λ = 0.2EF/kF
(red curves) and 0.5EF/kF (black curves). (c) ∆FF and qFF as functions of λ for
h = 0.28EF . In all plots, the energy is in units of EF , and the momentum in units of
kF .
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are obtained from previous results [88,89,93]. It has been shown that, with increasing

SO coupling strength, both these phases are suppressed rather rapidly [93].

Furthermore, in Fig. 3.3(a), the FF phase is divided into the gapped and the gap-

less regions by examining the single-particle excitation gap ∆E = min{|Eα
k |}, where

Eα
k are quasi-particle dispersions introduced in Eq. (3.6). As shown in Fig. 3.3(b),

∆E decreases monotonically as a function of h and drops to zero at some critical

value of hc which depends on the SO coupling strength λ. The critical value hc is

represented by the green dashed line in Fig. 3.3(a). At hc, both qFF and ∆FF exhibit

kinks for relatively small SO coupling strength. These kinks get washed out quickly

with increasing λ (see, for instance, the inset of Fig. 3.2). On the other hand, in

the limit of λ = 0, these kinks become true jumps signaling the first-order phase

transition between the BCS phase and the FF phase region. In Fig. 3.3(c), we plot

qFF and ∆FF as functions of λ for a fixed h. We note that even though ∆FF increases

monotonically as λ, the FF momentum qFF shows non-monotonic behavior: it first

increases and then decreases as λ is increased from zero.

It is instructive to make comparisons between the two-body results and the many-

body results. To this end, we consider a cloud of degenerate Fermi gas typically real-

ized in experiment, with density n = 1012cm−3 which defines kF and EF . We compare

the two-body dimer momentum q2b with the many-body FF pairing momentum qFF

in Fig. 3.4 at two different values of SO coupling strengths. Note that the range of h

values for which the two-body bound state exists is much smaller than that for the

existence of the FF state. For example, at λ = 1.3EF/kF , two-body bound states

only exist for h < 0.1EF ; while the FF state extends all the way up to about h ≈ EF .

As such, the largest qFF that can be achieved is much larger than the largest q2b. In

the region where both two-body bound state and the FF state exist, qFF and q2b are
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Figure 3.5 : Nodal Fermi surface plots in momentum space. The closed surfaces are
formed by momentum values at which the excitation gap ∆E vanishes. Both figures
have the same interaction parameter 1/kFas = −1 as in phase diagram Fig. 3.2 and
coupling strength λ = 0.5EF/kF , while h = 0.2EF for (a) and h = 0.35EF for (b).

comparable, with the latter somewhat larger. The difference between them, however,

becomes smaller as the SO coupling strength increases, indicating that at large SO

coupling strength, the many-body properties of the system are also dominated by the

two-body physics.

Before ending this subsection, we want to remark on the gapless FF state. For

Zeeman field strength above the critical value hc, one or more quasi-particle energy

Eα
k will vanish at certain values of momentum k. Such momenta form closed surfaces

(nodal Fermi surface) in momentum space with cylindrical symmetry around the kx-

axis and reflection symmetry about the kx = 0 plane. Hence such nodal Fermi surfaces

always appear in pairs and may be measured using the technique of momentum-

resolved radio-frequency spectroscopy. Two examples are illustrated in Fig. 3.5.
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3.1.2 Effects of interaction

So far we have focused on the zero-temperature phase diagram of a weakly-interacting

system. Now we briefly discuss the effects of interaction in this subsection and those of

finite temperature in the next. In Fig. 3.6(a) and (b), we present two zero-temperature

phase diagrams in the h-λ plane for 1/kFas = −2 and 0, respectively. They are

qualitatively similar to the one presented in Fig. 3.3(a) for 1/kFas = −1. As we

move from the BCS limit towards unitarity, the region of normal phase shrinks and

the FF superfluid remains dominant. Furthermore, the region for gapped FF phase

increases quickly. At unitarity, the whole parameter space presented in Fig. 3.6(b)

are occupied by the gapped FF phase. On the other hand, for fixed h and λ, the

FF momentum qFF quickly decreases as we go from the BCS side to the BEC side,

as shown in Fig. 3.6(c). This result is consistent with the one obtained from the

two-body study [71, 94].

3.1.3 Effects of temperature

Finally, we consider the effects of finite temperature. In Fig. 3.7(a), we plot the phase

diagram in the parameter space spanned by h and T by taking 1/(kFas) = −1 and

λ = EF/kF . The FF superfluid phase dominates at small h and low T . There is a

second order transition towards the normal phase as h and/or T increases. The BCS

phase again only lives on the h = 0 axis. In Fig. 3.7(b), we compare the free energies

for all three phases at T = 0.1TF and clearly show that the FF phase possesses the

lowest free energy at any finite values of h as long as h is below a threshold at which

the system turns normal.
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3.2 Gapless Topological FF Superfluids

In this Section, we study the topological classification of superfluid states whose

symmetry classification properties have been discussed thoroughly in Section 3.1. We

found that the gapless regime can be further categorized into topologically non-trivial

phase and topologically trivial state. We note that the topologically non-trivial state

discussed here is novel in the sense that it is different from other typical topological

states that are protected by a non-zero gap energy in the bulk spectrum.

In Section 3.1, we introduced the functional path integral approach based on quan-

tum field theory, and applied the formalism to tackle quantum many-body problems.

It is a useful tool to derive systematic approximation schemes, such as introducing

Gaussian fluctuations as second order expansion of the mean field operator or com-

puting the effective inter-atomic interaction in terms of ladder diagrams, and often



51

leads to a much simpler derivation of some exact relations, such as relating two-body

T-matrix and many-body T-matrix exactly. It is, however, fully equivalent to the op-

erator formulation using second quantization in quantum mechanics. For our purpose

in this Section, we use operator formalism to first of all reproduce the BdG Hamil-

tonian and introduce the Bogoliubov quasi-particles wavefunctions, which make it

easier to compute quantities that are constructed by Bogoliubov quasi-particle wave-

functions, such as bulk topological number, or perform a basis expansion based on

boundary conditions by taking into account of geometric properties. In this way, we

can better understand the underlying topological properties and study in details the

bulk-edge correspondences.

3.2.1 Mean-field Model Hamiltonian and Bogoliubov Theory

To start off, we focus on a 3D spin-orbit coupled two-component Fermi gas with an

isotropic spin-orbit coupling λSO(k̂) = λ(k̂xσx + k̂yσy + k̂zσz) subject to an in-plane

Zeeman field hσx [95–97], which can be described by the model Hamiltonian,

H =

∫
dr

[
∑

σσ′

ψ†
σ (r)H

σσ′

0 ψσ′ (r) + Vint
]
, (3.8)

where ψ†
σ(r) (ψσ) is the field operator for creating (annihilating) an atom with pseudo-

spin state σ ∈ (↑, ↓) at position r, H0 = −~2∇2/(2m) − µ + VSO(k̂) + hσx is

the single-particle Hamiltonian with the atomic mass m and chemical potential µ,

k̂i=(x,y,z) = −i∂i is the momentum operator and σx,y,z are the Pauli matrices. V int =

U0ψ
†
↑(r)ψ

†
↓(r)ψ↓(r)ψ↑(r) describes a pairwise attractive contact interaction of strength

U0 < 0, where U−1
0 = m/(4π~2as) − V −1

∑
km/(~

2k2) can be expressed in terms of

the s-wave scattering length as. At the mean-field level, the model Hamiltonian can

be solved by taking an order parameter ∆(r) = −U0 〈ψ↓(r)ψ↑(r)〉 and linearizing the

interaction Hamiltonian Vint ≃ −[∆(r)ψ†
↑(r)ψ

†
↓(r) + H.c.]− |∆(r)|2 /U0.
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In the presence of an in-plane Zeeman field hσx, it is now widely understood

that Cooper pairs acquire a finite centre-of-mass momentum Q = qex along the

x -direction, i.e., ∆(r) = ∆eiqx [95, 98–101]. By using the Nambu spinor Φ(r) ≡

[ψ↑e
+iqx/2, ψ↓e

+iqx/2, ψ†
↑e

−iqx/2, ψ†
↓e

−iqx/2]T to gauge out the momentum related phase

in the order parameter, the mean-field model Hamiltonian can be solved by diagonal-

izing the following Bogoliubov-de Gennes (BdG) Hamiltonian

HBdG(k̂) ≡



H0

(
Q

2
+ k̂
)

−i∆σy
i∆σy −H∗

0

(
Q

2
− k̂

)


 , (3.9)

i.e., HBdGΦ
ν
kη(r) = Eην(k)Φ

ν
kη(r), which gives rise to the wavefunction of Bogoliubov

quasiparticles, Φνkη(r) = 1/
√
V eik·r[uνη↑, u

ν
η↓, v

ν
η↑, v

ν
η↓]

T , and the energy Eην(k). We

obtain four quasi-particle energy dispersions, indexed by ν ∈ (+,−) for the particle

(+) or hole (−) branch, and η ∈(1,2) for the upper (1) or lower (2) helicity band split

by spin-orbit coupling and Zeeman field.

Taking the mean-field approximation for the pairing interaction term, the model

Hamiltonian of the Fermi system can be rewritten into a compact form,

H = (1/2)

∫
drΦ†(r)HBdG(k̂)Φ(r)− V∆2/U0 +

∑

k

(ξk+Q/2 + ξk−Q/2)/2

where the explicit form of HBdG(k̂) in Eq. (3.9) is given by




ξ̂k+ + λk̂z Λ†
k+ 0 −∆

Λk+ ξ̂k+ − λk̂z ∆ 0

0 ∆ −ξ̂k− + λk̂z Λk−

−∆ 0 Λ†
k− −ξ̂k− − λk̂z




(3.10)

with ξ̂k± ≡ ~
2(k̂±Q/2)2/(2m)−µ and Λk± ≡ λ(k̂x±q/2+ik̂y)±h. For a homogeneous

Fermi gas with open boundary condition, the BdG Hamiltonian can be diagonalized
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by replacing the momentum operators k̂i (i = x, y, z) by the corresponding c-numbers

ki. Thus, we obtain the energy spectrum of Bogoliubov quasiparticles Eην(k), where

ν ∈ (+,−) denotes the particle or hole branch and η ∈(1,2) stands for the upper or

lower helicity band. The mean-field thermodynamic potential Ωmf at the temperature

T can be written down straightforwardly,

Ωmf

V
=

1

2V

∑

k

[
ξk+Q/2 + ξk−Q/2 −

∑

η=1,2

Eη+(k)

]

−∆
2

U0
− kBT

V

∑

kη=1,2

ln
[
1 + e−Eη+(k)/kBT

]
, (3.11)

where the last term is the standard expression of thermodynamic potential for non-

interacting Bogoliubov quasiparticles. Due to the inherent particle-hole symmetry

in the Nambu spinor representation, the summation over the quasiparticle energy

has been restricted to the particle branch, to avoid double counting. For a given set

of parameters (i.e., the temperature T , s-wave scattering length as etc.), different

mean-field phases can be determined using the self-consistent stationary conditions:

∂Ωmf/∂∆ = 0, ∂Ωmf/∂q = 0, as well as the conservation of total atom number,

n = −(1/V )∂Ω/∂µ, where n is the number density. At a given temperature, the

ground state has the lowest free energy F = Ω + µN . For simplicity, we only report

the results at zero temperature.

3.2.2 Topological Nodal Fulde-Ferrell superfluids

First, we report the phase diagram Fig. 3.8 where an in-plane Zeeman field will

drive the Fermi system from a gapped FF superfluid to a gapless phase (labeled as

“nodal FF”) [95]. Remarkably, at sufficiently large values it will also lead to a gapless

topologically non-trivial state (“topological nodal FF”). The evolution of the energy

spectrum at a typical spin-orbit coupling strength λ = EF/kF as a result of the
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increasing in-plane Zeeman field is presented in Fig. 3.9.

Physically, the transition to a gapless phase can be well characterized by a global

energy gap Eg = minE2+(k), which is the half of the energy difference between the

minimum energy of the particle branch and the maximum of the hole branch due to the

particle-hole symmetry E2+(k) = −E2−(−k). Hence, Eg ≤ 0 and Eg > 0 characterize

a gapless and gapped state, respectively. The topological phase transition, on the

contrary, is related to the change of the topology of the Fermi surfaces. It is well

known that such a change must be accompanied with the close and re-open of an

energy gap at some specific points in momentum space [102, 103]. In our continuum

case of a homogeneous Fermi gas, this occurs precisely at the origin k = 0 (see

Fig. 3.9b). Therefore, naively the topological transition can be determined from the

condition E2+(k = 0) = 0 or more explicitly,

hc2 =

√(
µ− ~2q2

8m

)2

+∆2 − λq

2
. (3.12)

In the absence of a FF pairing momentum (q = 0), the above condition reduces to

the well-known criterion hc =
√
µ2 +∆2 for the appearance of a SLTD topological

superfluid ∗, when an out-of-plane Zeeman field is applied [104,105]. It is interesting

that the gapless transition always occurs before the topological transition, as a result

of Eg ≤ E2+(k = 0). Thus, bulk-gapped topological FF superfluids, if exist, must

appear at very high in-plane Zeeman field. As a superfluid analogue of strong 3D

topological insulators [102, 103], they are anticipated to have the unique feature of

a single Dirac cone for the energy dispersion of the Majorana edge states. Unfortu-

nately, in the parameter space that we considered, we do not find their existence.

∗ The most efficient scheme to create topological superfluids is based on the model proposed by

Sau, Lutchyn, Tewari and Das Sarma (SLTD) in 2010 [104, 105].
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Figure 3.8 : Zero temperature phase diagram of the FF superfluid at the interaction
parameter 1/(kFas) = −0.5. With increasing in-plane Zeeman field, the Fermi cloud
changes from a gapped FF superfluid to a gapless FF superfluid, and finally turns
into a gapless topological superfluid. In our numerical calculations, using the num-
ber density n we have set the Fermi wavevector kF = (3π2n)1/3 and Fermi energy
EF = ~

2k2F/(2m) as the units for wavevector and energy, respectively. Unless specif-
ically noted, we shall focus on the attractive interaction regime with a dimensionless
interaction parameter 1/(kFas) = −0.5 and at zero temperature T = 0, for which our
mean-field treatment could be well justified.
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Figure 3.9 : The evolution of the energy gap and of the topology of the Fermi surfaces
at λ = EF/kF with increasing the in-plane Zeeman field. (a) The global energy gap
Eg = minE2+(k) (red dashed line), the energy gap at k = 0 (black solid line), and the
minimum energy of the surface states at kx = 0 and kz = 0 (green solid circles) when
open boundary is imposed along the y-direction. (b) The energy dispersion E2±(ky)
at kx = 0 and kz = 0. (c), (d) and (e) The 3D full plot of the energy dispersion
E2±(kx, k⊥ =

√
k2y + k2z) at hc1 ≃ 0.3EF (c), hc2 ≃ 0.327EF (d) and h = 0.4EF (e).
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At the coupling strength λ = EF/kF , the gapless transition and topological tran-

sition occur at hc1 ≃ 0.3EF and hc2 ≃ 0.327EF , respectively, as can be seen from

Fig. 3.9a, where Eg (red dashed line) and E2+(k = 0) (black solid line) become zero

as the in-plane Zeeman field increases. When h > hc1, nodal points which satisfy

E2±(k) = 0 develop and form two closed surfaces in momentum space [95]. When the

in-plane field further increases, passing through the threshold hc2 for the topological

transition (see Fig. 3.9d), the energy dispersion of the particle- and hole-branches

touches at two specific points (±kW ,0,0), as shown in Fig. 3.9e. Around these points,

the dispersion of Bogoliubov quasiparticles in the bulk acquires a linear structure and

thereby form a Dirac cone. This is precisely the energy dispersion for massless Weyl

fermions [106–108]. In this sense, the gapless topological FF superfluid predicted in

this work provides a new avenue for the observation of Weyl fermions around the

Weyl nodes (±kW ,0,0). Indeed, Weyl fermions have recently been discussed in the

context of 3D gapped topological superfluids [109, 110].

In our case, the appearance of theWeyl nodes and of the topological order is closely

related. Due to the asymmetry in the kx axis, only one of the Weyl nodes is occupied.

Thus, we may characterize the topological order of the gapless FF superfluid by using

the topological invariant of Weyl fermions [103, 111]:

NW =

∫
d3k

24π2
ǫµνρTr

[
Q†

k∂µQkQ
†
k∂νQkQ

†
k∂ρQk

]
, (3.13)

where Qk is the unitary matrix determined by the BdG Hamiltonian, µ, ν, ρ =

(kx, ky, kz) and the domain of the integration includes the isolated, occupied Weyl

node. The gapless topological FF superfluid is uniquely characterized a nonzero

topological invariant NW 6= 0.
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3.2.3 Majorana Surface States

Cylindrical hard-wall confinement

To further demonstrate the topological nature of the gapless FF superfluid, we calcu-

late the energy dispersion in the presence of open boundary by imposing cylindrical

hard wall confinement perpendicular to the y-z plane. There is a pair of zero-energy

Majorana fermion state on the boundary of r = L, which is the direct signature of

a topologically non-trivial state. The existence of Majorana fermions is reported in

Fig. 3.9a by green solid circles. They immediately appear after the change in the

topology of the Fermi surfaces.

We now discuss in more detail the Majorana surface states, whose dispersion is

shown in Fig. 3.10. Because the boundary we impose has rotational symmetry in the

y-z plane and translation symmetry along x -direction, states with different integer

orbital angular momentum m and continuous linear momentum kx are decoupled,

where we can perform Bessel function basis expansion.

First, in order to determine the Majorana surface states in the topologically non-

trivial phase, we impose a cylindrical hard wall potential, for example, perpendicular

to the y-z plane, so that any single-particle wavefunction must vanish identically at

the boundary r = L. We assume that the radius is sufficiently large so that we can

use the solution of a uniform pairing gap. Accordingly, in the BdG Hamiltonian Eq.

(3.10), we replace the momentum operator ky and kz by its corresponding derivatives

in cylindrical coordinates where longitudinal axis is chosen along x -direction. It can
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Figure 3.10 : Majorana surface states arising from the hard wall confinement per-
pendicular to the y-z plane. (a) and (b) The full energy spectrum E

(m)
kz

along the kx
axis for m = 0 and m = 10, respectively. The surface states at the two boundaries
are highlighted by red solid circles and blue empty squares, respectively. (c) and (d)
The wavefunction of the zero-energy Majorana fermions at finite kx values, satisfying
the symmetry uσ(y) = eiϑv∗σ(y), where ϑ is a constant phase factor and σ =↑, ↓. In
numerical calculations, we have set the length of the confinement L = 200k−1

F . Other
parameters are λ = EF/kF and h = 0.4EF .
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be diagonalized by using the following ansatz for the Bogoliubov wavefunctions,




u↑(r)

u↓(r)

v↑(r)

v↓(r)




=
eimθ√
2π

Nmax∑

n=1




Jm(κ
(m)
n

r
L
)√

N (m)
n

un↑

Jm+1(κ
(m+1)
n

r
L
)eiθ√

N (m+1)
n

un↓

Jm+1(κ
(m+1)
n

r
L
)eiθ√

N (m+1)
n

vn↑

Jm(κ
(m)
n

r
L
)√

N (m)
n

vn↓




eikxx (3.14)

where κ
(m)
n is the nth positive root of Bessel function of the first kind Jm(ρ) with

m ≥ 0. For states with m < 0, we have instead J−m(ρ) = (−1)mJm(ρ). Orthogonal

condition is given by
∫ L
0
Jm(κ

(m)
n

r
L
)Jm(κ

(m)
l

r
L
)rdr = 0 where integer n 6= l and normal-

ization reads as N (m)
n =

∫ L
0
Jm(κ

(m)
n

r
L
)Jm(κ

(m)
n

r
L
)rdr = 1

2
L2
(
Jm+1(κ

(m)
n )

)2
. Inserting

this ansatz into the BdG equation, we convert the BdG Hamiltonian into a 4Nmax by

4Nmax Hermitian matrix,

H(m)
11nun − iv

Nmax∑

l=1

W(m)
ln αl −∆vn = E

(m)
kx

un (3.15)

iv
Nmax∑

l=1

W(m)
nl ul +H

(m)
22nαn +∆βn = E

(m)
kx

αn (3.16)

∆αn +H(m)
33nβn + iv

Nmax∑

l=1

W(m)
nl vl = E

(m)
kx

βn (3.17)

−∆un − iv
Nmax∑

l=1

W(m)
ln βl +H(m)

44nvn = E
(m)
kx

vn (3.18)

where all the matrix elements have been analytically worked out (not shown here).

The diagonalization directly gives rise to the energies and wavefunctions of the Ma-

jorana surface states.

In Fig. 3.10a and b, we plot the full energy spectrum along kx axis for m = 0

and m = 10. Majorana zero energy mode can be identified by the energy crossing

of surface state contribution, at which points quasi-particle wave-functions become

localized at the edge, as shown in Fig. 3.10c and d. Although in comparison, edge



61

state wave-function is more localized for smaller m values. For even larger orbital

angular momentum value around m ≃ 20 surface state smoothly connects to the

Weyl node located approximately at kW ≃ 0.4kF in the bulk. Furthermore, it is

straightforward to make use of particle-hole symmetry of the BdG equation to prove,

for every zero energy state with m ≥ 0 and kx > 0, there is a corresponding zero

energy state at −m− 1 and −kx. As there are no net atomic currents at equilibrium,

the two counter-propagating chiral surfaces states compensate each other. This is a

unique feature of novel gapless topological FF superfluid in our work.

It is worth noting that the 3D gapless topological FF superfluid can not be viewed

as a stack of 2D topological superfluids along a specific direction (i.e., z -axis), unlike

the standard 3D topological superfluids known so far. For the latter, the Majorana

surface states of the 3D system can be understood as the edge states of the 2D system

on the surfaces which are parallel to the z -axis and therefore have a flat dispersion that

does not depend on kz [109]. This is analogous to the trivial or weak 3D topological

insulators [102,103]. In our case, due to the existence of spin-orbit coupling in all three

spatial directions, the dispersion of the Majorana surface states is no longer flat. In

this respect, the gapless topological FF superfluid is better regarded as the superfluid

analogue of a strong topological insulator [102,103], although the surface states may

not have a Dirac-cone-like dispersion due to the gapless bulk. In consistent with this

classification, there is only one pair of zero-energy Majorana fermions localized on

each surface, respectively. In Fig. 3.10 (c) and (d), we examine the wave function of

Majorana fermions. It satisfies the desired symmetry uσ(r) = eiϑv∗σ(r) for each spin

component σ =↑, ↓ , up to an unimportant constant phase ϑ [112].
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Hard-wall confinement along the y direction

We may also consider imposing hard-wall confinement along a specific direction, for

example adding two walls perpendicular to the y axis at y = 0, L. In this case,

unidirectional Majorana surfaces states propagate in the same direction on opposite

boundaries at y = 0 and y = L, respectively. Any single-particle wavefunction must

vanish identically at the boundary y = 0 or y = L. We assume that the length L is

sufficiently large so we use the solution of a uniform pairing gap. Accordingly, in the

BdG Hamiltonian Eq. (3.10), we replace the momentum operator ky with −i∂y . It

can be diagonalized by using the following ansatz for the Bogoliubov wavefunctions,

uσ (y) =
Nmax∑

n=1

unσψn (y) , (3.19)

vσ (y) =

Nmax∑

n=1

vnσψn (y) , (3.20)

where ψn (y) =
√
2/L sin[nπy/L] is the eigenfunction of the hard wall potential with

eigenvalue ǫn = ~
2n2π2/(2mL2). Inserting this ansatz into the BdG equation, we

convert the BdG Hamiltonian into a 4Nmax by 4Nmax symmetric matrix, whose diag-

onalization directly leads to the energies and wavefunctions of the Majorana surface

states.

With this hard wall confinement, the dispersion of Majorana surface states is

shown in Fig. 3.11. In momentum space, kx and kz are still good quantum numbers,

so we actually plot minE2+(kx, kz) and maxE2−(kx, kz). There are two sheets in

the energy dispersion (Fig. 3.11a), corresponding to the surface states localized at

the boundary y = 0 and y = L, respectively. Remarkably, these two sheets cross

at the line kz = 0, indicating that along this line the two branches of surface states

are unidirected, that is, propagating in the same direction on opposite boundaries.
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Figure 3.11 : Majorana surface states arising from the hard wall confinement along
the y-direction. (a) The surface state dispersion forms two sheets which crosses at
the line kz = 0. (b) and (c) The full energy spectrum E2±(kx, kz) along the kz or
kx axis, respectively. The surface states at the two boundaries are highlighted by
red solid circles and blue empty squares, respectively. (d) The wavefunction of the
zero-energy Majorana fermions at kx = 0 and kz = 0. In numerical calculations, we
have set the length of the confinement L = 200k−1

F . Other parameters are λ = EF/kF
and h = 0.4EF as in Fig. 3.10.
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This is highlighted in Fig. 3.11b, from which we also identify that the unidirected

Majorana surface states smoothly connect the two Weyl nodes (±kW ,0,0) in the bulk,

where kW ≃ 0.4kF . Recall that at equilibrium there are no net atomic currents. As

in the cylinderically symmetric case, the current due to these co-propagating surface

states on opposite boundaries therefore must be compensated by the current induced

by some extra counter-propagating modes in the bulk. This can only happen in

systems with a gapless bulk. We note that, the unidirected Majorana surface states

only occur along the line kz = 0. Actually, if we make a cut on the two sheets

along other directions, for example, along the line kx = 0, it is easy to see that the

Majorana surface states become counter-propagating (see Fig. 3.11c for the dispersion

as a function of kz), resembling the surface states in the standard gapped topological

superfluid. This follows the fact that at kx = 0 our topological FF superfluid is

actually gapped in the bulk. By comparing the two limiting cases shown in Figs.

3.11b and 3.11c, it is clear that the unidirected surface states discussed in our work

is a unique feature of novel gapless topological FF superfluid.

3.3 Summary

In Summary, in Section 3.1, we have studied a 3D spin-orbit coupled Fermi gas sub-

jected to an effective Zeeman field. Based on the picture of Fermi surface deformation,

the two-body calculations, and the mean-field many-body results, we conclude that

the BCS state with zero-momentum Cooper pairs is not stable against Fulde-Ferrell

superfluid pairing at any finite Zeeman field strength. We have found that the FF

phase is robust against interaction and finite temperature, and the corresponding

center-of-mass momentum of the Cooper pair can be comparable to the Fermi mo-

mentum. The finite-momentum dimer state in the two-body situation and the FF
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state in the many-body setting both originate from the asymmetric momentum distri-

bution as a consequence of the interplay between spin-orbit coupling and the Zeeman

field. This asymmetry also determines the direction of the momentum for the dimer

state or the Cooper pairs. The FF state in the present work is not exactly the same

as the FF or FFLO state in the context of a spin-imbalanced Fermi gas without spin-

orbit coupling. In the latter case, the direction of the momentum of the Cooper pairs

is determined through the mechanism of spontaneous symmetry breaking. For a sim-

ilar reason, we only considered FF state in our work, not the FFLO state. The FFLO

state requires the Cooper pairs to possess two momenta with equal magnitude but

opposite directions. However, in our case, the asymmetric momentum distribution

uniquely picks one particular momentum rather than an opposite pair.

In Section 3.2, we propose a new mechanism to create topologically non-trivial

states by using an in-plane Zeeman field only. Novel gapless topological superflu-

ids with inhomogeneous Fulde-Ferrell pairing orders parameter can be realized using

three-dimensional spin-orbit coupled s-wave superfluids, where the finite momentum

pairing and topological order are both driven by the in-plane Zeeman field. They fea-

ture unidirected Majorana surface modes and a pair of zero-energy Majorana fermions

at the edges, which are quite different from the standard gapped topological superflu-

ids that are known to date. These new features will greatly enrich our understanding

of topological quantum matters, in both solid-state and cold-atom systems.

So far in this dissertation, we have discussed stationary ground state properties,

for single-particle state, two-body states, mean field many-body phases characterized

by spontaneous symmetry breaking and topological orders. In the next Chapter,

we explore the interesting far out-of-equilibrium physics for a particular physical

realization of non-integrable quantum dynamical system.
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Chapter 4

Quench Dynamics

Beyond investigating topological properties of stationary ground states, out-of-equilibrium

quantum physics is also extremely interesting yet challenging to explore. Quantum

statistical mechanics provides a general framework under which the characterization

of equilibrium states of many-body systems is well established. To describe systems

slightly perturbed out of equilibrium, the linear response theory turns out to be ex-

tremely successful. Much is less known, however, on the quantum coherent dynamics

of a system far-from-equilibrium. A main reason for that can be ascribed to the fact

that such dynamics is generally difficult to access in experiments due to unavoid-

able relaxation and dissipation from interactions with the environment. However, the

dynamics of quantum systems far-from-equilibrium is of great interest from a funda-

mental viewpoint because it can provide us with the properties of the system beyond

the ground state, for instance, excitations, thermalization, (dynamical) phase transi-

tions and related universalities [113–118]; see more details in a recent Review [119].

In this regard, ultracold atom systems provide a new platform for the exploration of

intriguing far-from-equilibrium coherent dynamics [116, 120, 121]. This is made pos-

sible by the precise control of key parameters in cold atomic systems as well as the

ideal isolation from environment [122].

For these reasons, the coherent dynamics of the s-wave Bardeen-Cooper-Schrieffer

(BCS) superfluid has been intensively studied over the past decade [123–130]. In these

theoretical studies, via the so-called Anderson’s pseudospin representation, the BCS
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model can be exactly mapped into a classical spin model, which is proven to be

integrable and can be solved exactly using the auxiliary Lax vector method [131,132].

It has been shown that the quench dynamics of the system depends strongly on

both the initial and the final values of the quench parameter, which is often chosen

to be the interaction strength. In general, three different phases can be identified

according to the long-time asymptotic behavior of the order parameter: the undamped

oscillation phase (synchronization phase), the damped oscillation phase, and the over-

damped phase. Integrability of the Hamiltonian is essential to understand these

results. The p-wave superfluid has the same mathematical structure as the s-wave

superfluid, thus similar phases are observed in a recent study [133, 134]. As the p-

wave superfluid supports topological phases, a quenched p-wave superfluid is found

to support dynamical topological phases within certain parameter regimes. However,

a Fermi gas with p-wave interactions, realized by tuning the system close to a p-wave

Feshbach resonance, suffers from strong incoherent losses due to inelastic collisions

[135]. On the other hand, one may realize cold atomic systems with effective p-

wave interactions. Such candidates include ultracold polar molecules with long-range

dipolar interaction [136] and spin-1/2 Fermi gases subject to synthetic partial waves

[137]. Both of these systems are being intensively investigated in cold atom research.

As quantum simulators of real world materials, the spin-orbit coupled degenerate

Fermi gas provides a new platform to realize topological superfluids and related topo-

logical excitations. In this Chapter, we study the quench dynamics and topological

edge states in a spin-orbit (SO) coupled superfluid Fermi gas in two dimension (2D),

motivated by the very recent realization of SO coupling in ultracold atoms [138–143].

The ground state of this system can be topologically nontrivial in some parameter

regimes [144–160]. This is because the SO coupling, Zeeman field and s-wave inter-
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action together can lead to effective p-wave pairing. This system possesses several

control parameters that can be readily tuned in experiments, which makes it ideal

to study the far-from-equilibrium coherent dynamics and related topological phase

transitions. However, the simultaneous presence of the SO coupling and the Zee-

man field breaks the integrability of this model [161], and changes the system from

a single-band to a two-band structure. It is therefore natural to ask the fundamen-

tal question: “What types of post-quench dynamical phases will this system exhibit,

and how do these dynamical phases differ from the ones supported by the integrable

models?” In our study, we choose the Zeeman field as the quench parameter for the

reasons to be discussed below. It is quite surprising that all the phases supported

by the integrable model still exist in our non-integrable system, although there exists

unique topological features in our system. We provide a complete phase diagram and

investigate each phases in details. We also show how dynamical topological phases,

which can support topologically protected edge states, emerge in this model.

4.1 Novel Topological Superfluids

4.1.1 Model Hamiltonian

To make progress, as an example, we consider a 2D system of uniform SO coupled

degenerate Fermi gas with s-wave interaction confined in the xy-plane, whose Hamil-

tonian is written as H = H0 + V, where (~ = 1)

H0 =
∑

k,s,s′

c†ks [ξk + α(kyσx − kxσy) + hσz]ss′ cks′,

V = g
∑

k,k′,q

c†k+q↑c
†
k′−q↓ck′↓ck↑, (4.1)

where s, s′ =↑, ↓ label the pseudospins represented by two atomic hyperfine states, k

is the momentum operator, ξk = ǫk − µ, where ǫk = k2/2m denotes kinetic energy
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and µ is the chemical potential, α is the Rashba SO coupling strength, σx,y,z are the

Pauli matrices, h is the Zeeman field along the z-axis, cks is the annihilation operator

which annihilates a fermion with momentum k and spin s, and g represents the inter-

species s-wave interaction strength. Notice that the 2D system is created from the

three dimensional system by applying a strong confinement along the z-axis, thus g

in principle can be controlled by both confinement and Feshbach resonance. This 2D

degenerate Fermi gas has been realized in recent experiments [162–165].

We consider the quench dynamics of the Fermi gas at the mean field level, thus

the potential defect production, i.e., the so-called Kibble-Zurek mechanism, after

the quench is not considered. Imagine that we prepare the initial system in the

ground state with Zeeman field hi. At time t = 0+, we suddenly change the Zeeman

field from hi to some final value hf . This scheme should be in stark contrast to

previous literatures, in which the interaction strength g generally serves as the quench

parameter [123–130, 133, 134]. We choose the Zeeman field as our quench parameter

for the following reasons. (1) As we shall show in the discussion of the ground

state properties of this system, the Zeeman field directly determines the topological

structure of the ground state. (2) In SO coupled quantum gases, the laser intensity

and/or detuning serve as the effective Zeeman field, and these parameters can be

changed in a very short time scale, satisfying the criterion for a sudden quench. By

contrast, a change of the interaction strength is achieved by tuning the magnetic field,

via a Feshbach resonance, which usually cannot be done very rapidly. (3) Moreover,

changing the effective Zeeman field in SO coupled quantum gases has already been

demonstrated in recent experiments [138–142], in which both the magnitude and the

sign of the Zeeman field can be changed.

The superfluid order parameter is defined as ∆ = gΣk〈c−k↓ck↑〉 and the interaction
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term can be rewritten as V → ∆∗c−k↓ck↑ +∆c†k↑c
†
−k↓ − |∆|2/g. Therefore, under the

Numbu spinor basis Ψk = (ck↑, ck↓,−c†−k↓, c
†
−k↑)

T , the total Hamiltonian becomes

H = ΣkΨ
†
kMkΨk − |∆|2/g, where the Bogoliubov-de Gennes (BdG) operator reads

as [144, 145]

Mk =
1

2



H0(k) ∆

∆∗ −σyH∗
0 (−k)σy


 . (4.2)

Assuming fk± = (uk±, vk±, pk±, qk±)T are the two energy levels ofMk with positive

eigenvalues, the initial value of chemical potential and order parameter are determined

by minimizing the thermodynamical potential [144–147,150–158], which is equivalent

to solving the gap equation

∑

k

[
1

2ǫk + Eb
−
∑

s=±

E0 + sh2

4E0E
+
ks

]
= 0, (4.3)

and number equation

n =
∑

k

[
1−

∑

s=±

ξk
2

E0 + s(h2 + α2k2)

E0E
+
ks

]
, (4.4)

where Eη
k± = η

√
ξ2k + α2k2 + h2 + |∆|2 ± 2E0 are the excitation energies, with η = ±

correspond to the particle and hole branches respectively and E0 =
√
h2(ξ2k + |∆|2) + α2k2ξ2k.

Here the bare interaction strength g should be regularized by 1/g = −∑k 1/(2ǫk+Eb)

[145]. As a result, in the following, the interaction strength is quantitatively defined

by the binding energy Eb ∈ [0,∞). Throughout our numerical calculations, the en-

ergy unit is chosen as the Fermi energy EF = k2F/2m, where kF =
√
2πn is the Fermi

wavenumber for a non-interacting Fermi gas without SO coupling and Zeeman field

in 2D. We only consider the physics at zero temperature. Throughout this work,

we choose the binding energy Eb = 0.2EF , and the corresponding scattering length

kFa2D =
√

2EF/Eb ≃ 3.1623 and ln(kFa2D) ≃ 1.1513, which is around the BEC-

BCS crossover regime. Since kFa2D > 1, the superfluid is composed of weakly bound
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Cooper pairs. For a typical Fermi gas of 6Li, kF ∼ 1/µm, EF ∼ 1kHz , and the

relevant time scale discussed in this work is 1/EF ∼ 1ms . The long time collective

oscillations of degenerate Fermi gas that much longer than this relevant time scale

has been demonstrated in experiments [166, 167].

4.1.2 Vanishing energy gap of the ground state phases

Before we turn to the discussion of the quench dynamics, let us first briefly outline

the ground state properties of the system. The most salient feature of the system is a

topological phase transition induced by the Zeeman field [144–147,150–158]. Without

loss of generality, we assume that h ≥ 0, in which case, the spin-up atoms (spin-down

atoms) represent the minority (majority) species. It is well known that the topology of

the superfluid is encoded in the topological index W [144–147], which corresponds to

the topological state withW = 1 if h >
√
µ2 +∆2, while h <

√
µ2 +∆2 yieldsW = 0

and the state is non-topological. In Fig. 4.1(a), we show how µ, ∆ and the single-

particle excitation gap E0 at zero momentum change as a function of the Zeeman field

h. At the critical point, hc =
√
µ2 +∆2, the excitation gap E0 vanishes, indicating

a topological phase transition. This feature is also essential for the realization of the

long-time far-from-equilibrium coherent evolution.

4.1.3 Spin textures in momentum space

To see this phase transition more clearly, we also examine the momentum space

spin texture. The spin vector is defined as S(k) = (c†k↑, c
†
k↓)σ (ck↑, ck↓)

T , with the

corresponding ground state expectation value given by 〈Sx(k)〉 = 2
∑

η=± ℜ[p∗kηqkη],

〈Sy(k)〉 = 2
∑

η=±ℑ[p∗kηqkη], and 〈Sz(k)〉 =
∑

η=±(|qkη|2 − |pkη|2). As shown in

Fig. 4.1(b), we find that 〈Sz(0)〉, the spin component along the z-axis (which is just the
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Figure 4.1 : Topological phase transition in spin-orbit coupled superfluids. (a) Plot of
E0 (energy gap at zero momentum), ∆, and µ as functions of h. The arrow marks the
critical Zeeman field hc ∼ 0.545EF . The topological phase transition is characterized
by the topology of the ground state instead of symmetry because no spontaneous
symmetry breaking takes place across the phase transition point. (b) Plot of the
total spin polarization Sp and zero momentum spin population Sz(0) as a function of
Zeeman field. Sp is a smooth function of h, whereas Sz(0) jumps at hc due to band
inversion transition. Sexp is the spin population averaged over a region in momentum
space (see text), which mimics the possible finite momentum resolution in realistic
experiments. Throughout this paper if not specified otherwise we take Eb = 0.2EF
and αkF = 1.2EF .
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population difference between the two spin species) at k = 0, jumps discontinuously

when the Zeeman field crosses the critical value hc, while the total spin polarization

which is defined as Sp = (n↑ − n↓)/n, changes smoothly with respect to h. We

emphasize that the jump of Sz(0) across the topological boundary is still visible if

we take the finite momentum resolution into account, as will be the case in realistic

experiments; see curve Sexp =
∫
dkSz(k)/

∫
dkn(k) in Fig. 4.1 (b), where n(k) is

the total density at momentum k and the integral is performed in a circular area in

momentum space centered at k = 0 with a radius of 0.1kF . In fact, as shown below,

the jump of 〈Sz(0)〉 just implies a change of topology of the spin texture.

The Hamiltonian at k = 0 can be reduced to

Mk=0 =




−µ + h 0 ∆ 0

0 −µ− h 0 ∆

∆∗ 0 µ+ h 0

0 ∆∗ 0 µ− h




. (4.5)

We first consider the spin texture in the stationary condition. If |h| <
√
µ2 +∆2, the

two eigenvectors with positive eigenvalues are f0,+ = ( −µ+λ√
∆2+(µ−λ)2

, 0, ∆√
∆2+(µ−λ)2

, 0)T

and f0,− = (0, −µ+λ√
∆2+(µ−λ)2

, 0, ∆√
∆2+(µ−λ)2

)T respectively, where λ =
√
µ2 +∆2. Then,

from the expression of 〈Sz(k)〉 in the main text, we can directly get that 〈Sz(0)〉 = 0

and Q = 0, which means the system has topologically trivial spin texture. In contrast,

if |h| >
√
µ2 +∆2, the two eigenvectors will become f0,+ = ( −µ+λ√

∆2+(µ−λ)2
, 0, ∆√

∆2+(µ−λ)2
, 0)T

and f0,− = ( −µ−λ√
∆2+(µ+λ)2

, 0, ∆√
∆2+(µ+λ)2

, 0)T respectively. So, in this region, we will

have 〈Sz(0)〉 = −1 and Q = −1, which means the system has a topologically nontriv-

ial spin texture. We see that the sudden changes of Sz(0) is due to the band inversion

transition across the critical point.

Typical spin textures for h < hc and h > hc are plotted in Fig. 4.2(a) and (b), re-
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Figure 4.2 : Topological properties of the spin texture. (a), (b) Spin texture for the
normalized spin vector s (Skyrmion) of the ground state of a non-topological state
(h = 0.4EF ) and a topological state (h = 0.7EF ), respectively. For the parameter
we used, hc ∼ 0.545EF , see also Fig. 4.1 (a). The corresponding z-component of the
spin vector, Sz(k), are plotted in (c) and (d). (e) and (f) represent schematic plot
of the mapping from the 2D momentum space onto a unit sphere for non-topological
phase and topological phase, respectively. The darker green region represents the
area swept out by the spin vector when the momentum k varies from 0 to ∞.



75

spectively. The topology of the system can be characterized by the Skyrmion number

defined as

Q =

∫
d2k

2π

[
s · (∂kxs× ∂kys)

]
, (4.6)

where s(k) = 〈S(k)〉/|〈S(k)〉| is the normalized spin vector, which maps the 2D

momentum space to a unit sphere S2. In this sense, Q is nothing but the number of

times the spin vector wraps around the south hemisphere. Note that for momenta

with fixed magnitude |k|, sx and sy always sweep out a circle parallel to the equator.

In the topologically trivial regime, we always have sz(0) = 0, see Fig. 4.2(c). Hence as

|k| increases from zero, s begins at the equator, descends toward the south pole and

then returns to the equator as |k| → ∞. Thus in this regime, s(k) initially sweeps out

the darker green region in the southern hemisphere of Fig. 4.2(e), but then unsweeps

the same area, resulting in a vanishing winding number Q = 0. In contrast, in the

topologically nontrivial regime, we have sz(0) = −1, see Fig. 4.2(d). Hence as |k|

increases from zero to infinity, the spin vector covers the entire southern hemisphere

exactly once, as shown schematically in Fig. 4.2(f), which leads to a nontrivial winding

number Q = −1. The sudden change of spin polarization is due to band inversion

transition across the critical point.

It is worth pointing out that, for any quench, we always have ∂
∂t
〈Sz(0, t)〉 = 0,

regardless of the initial and final values of h. When k = 0, we have i∂tq± = ∆∗v±−hq±
and i∂tp± = ∆∗u± + hq±. Substituting these equations into Ṡz(t) =

∑
η=± q̇

∗
ηqη +

q∗η q̇η − ṗ∗ηpη + p∗ηṗη, we immediately find that Ṡz(t) = 0. Thus we have the important

conclusion that 〈Sz(0, t)〉 = 〈Sz(0, 0)〉, which means Q remains unchanged over time.

We need to emphasize that this spin texture is totally different from the pseudospin

texture discussed in Ref. [133]. The true spin texture discussed in this work can be

directly probed in experiments from the time-of-flight imaging [141,168,169] in which
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Q(t) = Q(0) can be directly verified.

Therefore, Q is unchanged over time after the quench. We can see that, the Q

and W are equivalent at equilibrium, but their dynamics after a sudden quench are

different. As shown below, W , which describes the topology of the full spectrum of

the Hamiltonian, will evolve in time, while Q, which reflects the topological nature

of the the state itself, will not. A similar conclusion is found in the study of the

quenched p-wave superfluid [133,134]. We emphasize that the momentum space spin

texture studied here can be measured in cold atom experiments using the standard

time-of-flight technique [141, 168, 169].

4.2 Quench Dynamics

4.2.1 Time-dependent Bogoliubov-de Gennes equation

The coherent dynamics of this model cannot be exactly solved due to the lack of any

nontrivial symmetry [161], thus it should be computed numerically.

The initial value of µ(0) and ∆(0) can be directly determined by solving the gap

equation and number equation self-consistently, with which the initial wavefunction

at t = 0− is constructed. Then we take the initial values as ∆(0) and µ(0) and plug

them back into



ξk + h λ(kx − iky) 0 −∆(0)

λ(kx + iky) ξk − h ∆(0) 0

0 ∆(0) −(ξk + h) λ(kx + iky)

−∆(0) 0 λ(kx − iky) −(ξk − h)







uηk(0)

αηk(0)

βηk(0)

vηk(0)




= Eη
k




uηk(0)

αηk(0)

βηk(0)

vηk(0)




(4.7)

and straightforwardly diagonalize it for given momentum k and obtain wave-functions

of uηk, α
η
k, β

η
k, v

η
k and eigenenergy Eη

k.
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In this case, the topological phase can be realized when [144, 145],

h2 > µ2 +∆2. (4.8)

However, this phase can only be realized in the BEC-BCS crossover regime. A simple

but intuitive argument is that, in both the BEC and BCS limit, µ2 ≫ ∆2, thus in

these two limits, |h| ≫ |∆|, and the pairing can be easily destroyed by the Pauli

depairing effect. As a result, the topological phase can only be realized in a small

parameter window near the strong coupling regime. In the following, we choose the

Zeeman field as the quench parameter instead of others, because it is the most easily

controllable parameter in the current experiments [138–143]. Eq. (4.8).

Immediately after the quench of the Zeeman field, as a reasonable but general

assumption, the system’s wavefunction takes the BCS form

|Ψ(t)〉 =
∏

k,±
f †
k±Ψk|0〉, (4.9)

where the dynamics of the vectors fk±(t) are determined by the following time-

dependent BdG equation

i
∂

∂t
fk± =Mkfk±. (4.10)

HereMk is the time-dependent BdG Hamiltonian in which ∆(t) now evolves in time

after the quench. In fact Eq. (4.10) is equivalent to

i∂t|Ψ(t)〉 = H|Ψ(t)〉. (4.11)

The above semiclassical equation can be derived from δΨ∗L = 0, with L = 〈Ψ|i∂t −

H|Ψ〉.

As a technical note, we rewrite Eq. 4.10 in more details here. With the initial
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values (as benchmarks), we quench value of h and evolve the functions according to




ξk + h λ(kx − iky) 0 −∆(t)

λ(kx + iky) ξk − h ∆(t) 0

0 ∆∗(t) −(ξk + h) λ(kx + iky)

−∆∗(t) 0 λ(kx − iky) −(ξk − h)







uηk(t)

αηk(t)

βηk(t)

vηk(t)




= i
∂

∂t




uηk(t)

αηk(t)

βηk(t)

vηk(t)




(4.12)

where

∆(t) = −U0

2

1

V

4∑

η=1

∑

k

[uηk(t)v
η∗
k (t)f(Eη

k(t = 0)) + αηk(t)β
η∗
k (t)f(−Eη

k(t = 0))] (4.13)

where we need to use renormalization 1/U0 = m/(4π~2as)−
∑

k 1/2ǫk.

For two dimensional system, the renormalization is given by

1

U0

= − 2π

(2π)2

∫ kc

0

kdk
1

Eb + 2ǫk
(4.14)

= − 1

2π

1

4
log(2k2 + Eb)|kc0 (4.15)

= − 1

8π
log(1 +

2k2c
Eb

) (4.16)

where I have used 1
V

∑
k
= 1

(2π)2

∫ kc
0
kdk

∫ 2π

0
dθ and as for BdG matrix elements,

kx = k cos θ, ky = k sin θ.

As a result of particle-hole symmetry, integration in ∆(t) can be reduced to radial

direction only, since the relative phase between kx and ky would not matter.

∆(t) = − 1

2U0

1

V

4∑

η=1

1

2π

∫ kc

0

kdk [uηk(t)v
η∗
k (t)f(Eη

k(t = 0)) + αηk(t)β
η∗
k (t)f(−Eη

k(t = 0))]

(4.17)

To get accurate time-dependent results, the momentum integral meshgrid number is

expected to be above 2000 points, and time step shall be around 0.0005.
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4.2.2 Phase diagram of the quench dynamics

We now turn to our discussion on the quench dynamics. As in Refs. [133, 134],

we capture the dynamics using a phase diagram presented in Fig. 4.3. The phase

diagram contains three different dynamical phases (which should not be confused

with the equilibrium phases of a many-body system), identified by the distinct long-

time asymptotic behavior of the order parameter in the parameter space spanned by

the initial and final values of the Zeeman field hi and hf . The three phases are labeled

as phase I, II and III in Fig. 4.3.

In phase I (the undamped oscillation phase), the magnitude of the order parameter

oscillates periodically without damping, although the wavefunction does not recover

itself periodically. Away from the phase boundaries, the oscillation amplitude can be

as large as a significant fraction of EF (see Fig. 4.4 below). |∆(t)| shows persistent

oscillations, which is from the collisionless coherent dynamics. The dark blue dashed

line separates phase I into non-topological Floquet state denoted as NTSFloquet and

topological Floquet state labeled as TSFloquet.

In phase II (the damped oscillation ), the order parameter exhibits damped oscilla-

tion with a power-law decay to a finite value. |∆(t)| → ∆∞, a nonzero constant value,

which serves as the basic parameter to determine the long-time asymptotic behavior.

The orange dashed lines are the non-equilibrium extension of the topological phase

transition at h = hc, which separates phase II into two parts, NTS and TS accord-

ingly. Inside NTS (TS) region, the energy spectrum of quasi-stationary Hamiltonian

is trivial (nontrivial) without (with) topologically protected edge modes. W = 0 or 1

marks the topological index at t = +∞.

In phase III (the overdamped phase), the order parameter decays to zero expo-

nentially. We also show that within phase I and II, there exists dynamical topological
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regimes where topological edge states emerge in the asymptotic limit. |∆(t)| → 0

due to strong dephasing from the out-of-phase collisions. We need to emphasize that

the transition between various phases is smooth. However, these different phases are

well distinguished not very close to the boundaries (distance > 0.1 EF ). All other pa-

rameters are identical to Fig. 4.1. We have repeated the same calculation for several

different values of SO coupling strengths and found no qualitative differences.

Next, we shall discuss the properties of each phase in more details.

4.2.3 Phase I

In Fig. 4.4 we plot the dynamics of the magnitude of the order parameter for a

typical point in phase I (point A in Fig. 4.3), from which we find that |∆(t)| oscillates

asymptotically as [124]

|∆(t)| = ∆+dn[∆+(t− τ0/2), κ], κ = 1−∆2
−/∆

2
+, (4.18)

where dn[u, k] is the periodic Jacobi elliptic function, and ∆+ and ∆− are the maxi-

mum and minimum value of |∆(t)|, respectively. This expression was first derived by

Barankov et al. for the weakly-interacting conventional BCS superfluid [124]. The

fitted result using this empirical formula are presented in Fig. 4.4 as dashed line,

which fits the numerical results surprisingly well. This phase can be understood from

the picture of synchronization effect. In the integrable models [124, 128, 134], the

Hamiltonian is mapped into a classical spin model parameterized by k and the spin

dynamics can be described as a precession around an effective Zeeman field, which is

constructed by order parameter and the kinetic energy. For a large order parameter

such that the contribution from the kinetic energy is small, the effective Zeeman field

is essentially the same for different Cooper pairs and as a result, all Cooper pairs pre-

cess with roughly the same frequency and phase coherence is therefore maintained.
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Figure 4.3 : Phase diagram of the quenched spin-orbit coupled superfluid condensate.
The different phases in this figure are obtained by the long-time asymptotic behavior
of the order parameter upon the quench of the Zeeman field from initial value hi
to final value hf . The diagonal light blue line, with hi = hf , is the case without
quench, thus the quantum state is unchanged. hc marks the quantum critical point
separating the topological superfluid and non-topological superfluid in the equilibrium
ground state, which is determined by h2c = ∆2+µ2. Three different dynamical phases
observed in this system are labeled with I, II, and III by green, white and purple
shaded areas, respectively.
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Here we reinterpret the synchronization effect as a consequence of the condensate

formed by Bose condensed Cooper pairs. The condensate ensure phase coherence of

the constituent Cooper pairs. This reinterpretation is fully consistent with the spin

precession picture, however it now becomes clear that the synchronization effect does

not rely on whether the system is integrable or not. To substantiate this reinterpre-

tation, we first notice that the Phase I region occurs in the parameter space where

|hf | < |hi|, for which shortly after the quench the order parameter is increased (see

Fig. 4.4). Second, we artificially include a finite temperature T in the post-quench

dynamical evoltion. For small T , the behavior of the order parameter remains es-

sentially the same as the zero-temperature result. For large T , however, the order

parameter no longer exhibits undamped oscillation, but rather decays to a constant.

For the parameters used in Fig 4.4, this occurs when T > 0.2EF . Such a behavior

can be easily undersood as a sufficiently large T destroys the condensate and hence

phase coherence between different Cooper pairs is lost.

To gain more insights into this persistent oscillating behavior, it is helpful to

investigate the spin population dynamics. We found that, as shown in the inset of

Fig. 4.4, the persistent oscillation of the order parameter is not accompanied by a

similar oscillation in the spin population. In fact, after the quench Sp exhibits damped

oscillation and quickly reaches a steady-state value. Recently, the dynamics of the

spin polarization after quench in a Fermi gas above the critical temperature has been

measured in experiments [140]. The decay of the spin polarization can be attributed

to the interband Rabi oscillation, in which, different momentum state has slightly

different Rabi frequency, such that destructive interference gives rise to the damping

phenomenon.

Equation (4.18) provides an empirical formula for the asymptotic dynamics of the
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Figure 4.4 : Dynamics of order parameter and spin polarization in phase I. We plot the
result for point A (hi = 2.1, hf = 0)EF in Fig. 4.3 with green solid line. The purple
dashed line is the best fit using Eq. (4.18) with fitted parameter ∆+ = 0.282EF ,
∆− = 0.047EF . Inset shows the dynamics of spin polarization after quench, which
quickly approaches a constant at the time scale of few 1/EF .
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|∆(t)|. The order parameter itself behaves like ∆(t) = |∆(t)|e−i2µ∞t+iϕ(t) [133, 134],

where ϕ(t) (modulo 2π) is also a periodic function with commensurate period to

|∆(t)|. The phase factor’s linear piece in time, −2µ∞t, can be gauged out by a unitary

transformation [134]. After the gauge transformation, we obtain a BdG Hamiltonian

M̃k(t) that is periodic in time. For such a periodic system, we may invoke the Floquet

theorem to examine its Floquet spectrum.

For a general periodically driven Hamiltonian Ĥk(t) with period T , that is, Ĥk(t) =

Ĥk(t+ T ), we invoke the Floquet theorem to examine its Floquet spectrum. We can

define the Floquet wavefunction as |ϕk(t)〉 = e−iεkt|Ψk(t)〉, where ε is the quasiparticle

spectrum and |Ψk(t)〉 = |Ψk(t+T )〉, i.e., the wavefunction in the time-domain is also

a periodic function. We are able to expand |Ψk(t)〉 =
∑

nΨn,ke
in2πt/T . Then we can

map the time-dependent model to the time-independent model H4(2N+1)×4(2N+1)Ψk =

εΨk, where Ψk = (Ψ−N,k,Ψ−N+1,k, · · · ,ΨN−1,k,ΨN,k)
T with N being a truncation of

frequencies. This model has particle-hole symmetry defined as Σ = I2N+1 ⊗ σxK

with K being the conjugate operator and I2N+1 being an identity matrix. In our two

dimensional model, this equivalent model belongs to topological D class with index

Z.

To determine whether the system is topological in the Floquet sense, we calculate

the spectrum εk± in a strip by adding a hard-wall boundary condition in the x-

direction. In the long-time limit, the order parameter in phase I approaches ∆(t) =

|∆∞(t)|e−2iµ∞t+iϕ(t), where |∆∞(t)| is periodic in time, e.g. see Fig. 4.4. We make a

gauge transformation, similar to that in Eq. (4.28), by identifying µ∞ as the effective

chemical potential, and we obtain M̃k(t) from Eq. (4.2) by replacing µ with µ∞

and ∆ with |∆(t)|eiϕ(t). Obviously, M̃k(t) = M̃k(t + T ), where T is the period

determined by both |∆(t)| and ϕ(t). Now we assume the eigenvectors of the above
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effective Hamiltonian to be f̃k±(t) = Φk±(t)e
−iεk±t, where Φk±(t+T ) = Φk±(t). Then

we have
(
M̃k(t)− i∂t

)
Φk±(t) = εk±Φk±(t), (4.19)

where εk± is the quasiparticle dispersion. Similar to the discussion of dynamical edge

state in the previous section, we impose a hard wall boundary condition along x

direction with length L. We expand the wavefunction in the following way,

Φk± = A
Nmax∑

n=1

Mmax∑

m=−Mmax

sin(
nπx

L
)e

2imπt
T




ũ±nm

ṽ±nm

p̃±nm

q̃±nm




, (4.20)

where Nmax and Mmax are basis cutoff for the spatial and temporal expansion and

A = (2/LT )1/2. Then Eq. (4.19) can be recast into a sparse self-adjoint complex

matrix form of size (4Nmax × (2Mmax + 1)) × (4Nmax × (2Mmax + 1)). The direct

diagonalization of this matrix gives rise to Floquet spectrum. In practice, since we

are only concerned with the eigenenergies close to zero, we could utilize the shift

and invert spectral transformation and compute only a portion of eigenenergies using

the ARPACK library routines. For instance, we choose cutoffs as Nmax = 200 and

Mmax = 15 and only compute 500 eigenvalues around zero-energy out of total 24800

ones for a given ky. The results are presented in Fig. 4.5. The robustness of these

protected edge states are also examined by slightly changing the model parameters,

in which we find that the linear dispersions of these edge states are unchanged.

Two examples of the spectrum are plotted in Fig. 4.5. In the example shown in

Fig. 4.5(a), the spectrum is gapped, corresponding to a topologically trivial Floquet

state. By contrast, the spectrum shown in Fig. 4.5(b), exhibits gapless modes at

ky = 0. An enlarged view of these modes are presented in Fig. 4.5(c). Note that
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due to the finite-size effect, the energies of these gapless modes are not exactly zero,

but on the order of 10−3EF and are well separated from the rest of the spectrum.

In Fig. 4.5(d), we show the evolution of the wavefunctions of one pair of the gapless

modes over one oscillation period. As one can see, the gapless modes are well localized

at the boundaries. Furthermore, we have verified that their wavefunctions satisfy

the requirement for Majorana modes. Hence these gapless excitations represent the

Majorana edge modes and the system can therefore be characterized as a topological

Floquet state. We have also verified that the edge states with the same chirality are

localized at the same boundary. Thus no direct coupling is allowed between them

due to particle-hole symmetry.

The intrinsic particle-hole symmetry ensures that the zero energy states are Ma-

jorana fermions at ky = 0 in a strip along y direction. The wavefunction of these

Majorana fermions can be constructed using ψ = ψi±Σψi, where ψi is the quasipar-

ticle wavefunctions with energy approach zero. We can observe: (1) The edge states

have well-defined chirality which are defined as Σψ = ±ψ; (2) These edge modes are

well-localized at the boundaries when the strip width is much larger than the coher-

ent length; (3) All the edge states with the same chirality are localized at the same

boundary; (4) For a general random potential V, the matrix elements 〈ψi|V|ψj〉 ≡ 0

when ψi and ψj have the same chirality. Thus these zero energy states are robust

against perturbations and the Majorana edge states can always be observed in the

topological phase regime. We have numerically verified this point by slightly vary-

ing the parameters of the Hamiltonian and we find that the edge modes will not be

gapped out without closing the quasiparticle energy gap at zero momentum.

This explains the robustness of the edge modes from a perturbative viewpoint,

even though there can exist multiple edge modes near the same boundary. We note
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that the number of the edge modes depends on the parameter set. For the example

shown in Fig. 4.5(b), there are 7 pair of edge modes. In the phase diagram of Fig. 4.3,

inside phase I, the two dark blue dashed lines characterize the topological boundaries,

which separate the non-topological states denoted by NTSFloquet from the topological

states denoted by TSFloquet.

As a technical note, we document more details following Eq. 4.20. After phase

fixing, the Hamiltonian is periodic in time with period T . According to the Floquet

theorem, we have




U(y, t)

A(y, t)

B(y, t)

V (y, t)




=




u(y, t)e−iεt

α(y, t)e−iεt

β(y, t)e+iεt

v(y, t)e+iεt




where |Φ(t)〉 ≡




u(y, t)

α(y, t)

β(y, t)

v(y, t)




and

|Φ(t + T )〉 = |Φ(t)〉. This is because we need to respect the particle-hole symmetry-

Then we write H(t)|ψ(t)〉 = i∂t|ψ(t)〉 as



H − i∂t Λ −∆

Λ† H − i∂t ∆

∆∗ H + i∂t Λ†

−∆∗ Λ H + i∂t







u(y, t)

α(y, t)

β(y, t)

v(y, t)




= i~
∂

∂t




u(y, t)

α(y, t)

β(y, t)

v(y, t)




(4.21)

We expand the wavefunction in both position and time as (assuming hard wall

boundary condition along y direction)

|Φ(t)〉 ≡




u(y, t)

α(y, t)

β(y, t)

v(y, t)




=
Pmax∑

p=−Pmax

Nmax∑

n=1

√
2

L
sin(

nπy

L
)

1√
T
exp(+i

2pπt

T
)




unp

αnp

βnp

vnp




(4.22)

where Nmax = 200 and Pmax = 10 are good cutoffs. The Hamiltonian can be recast

into a self-adjoint matrix form of size (Nmax × (2Pmax + 1))× (Nmax × (2Pmax +1)) ,
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Figure 4.5 : Dynamical Floquet state in a strip for phase I. Imposing a strip geometry,
we find the quasiparticle spectrum is trivial (gapped) in (a) (hi = 1.5, hf = 0.3)EF
and topologically nontrivial (gapless) in (b) (hi = 2.1, hf = 0.9)EF . Seven pairs of
edge states with linear dispersion at small k have been identified in (b), which is
a direct manifestation of bulk topology based on bulk-edge correspondence. (c) An
enlarged view of the low-lying quasiparticle spectrum at ky = 0. Here n is the index
for quasiparticle states. (d) Evolution of the wavefunction for one pair of edge states
(the two symbols shown in purple in (c), n = 249 and n = 250) in one full period.
Here we only plot the |u|2 component of the wavefunction, and the other components
show a similar behavior, i.e., they are also well localized near the boundary.
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we have
(
k2x − µ∞ + h+ (

mπ

L
)2 +

2pπ

T

)
ump + λkxαmp −

∑

n 6=m
Λmnαnp −

∑

q

Γ(1)
pq vmq = Eump

λkxump +
∑

n 6=m
Λmnunp +

(
k2x − µ∞ − h+ (

mπ

L
)2 +

2pπ

T

)
αmp +

∑

q

Γ(1)
pq βmq = Eαmp

∑

q

Γ(2)
pq αmq −

(
k2x − µ∞ + h+ (

mπ

L
)2 +

2pπ

T

)
βmp + λkxvmp +

∑

n 6=m
Λmnvnp = Eβmp

−
∑

q

Γ(2)
pq umq + λkxβmp −

∑

n 6=m
Λmnβnp −

(
k2x − µ∞ − h+ (

mπ

L
)2 +

2pπ

T

)
vmp = Evmp

where,

Γ(1)
pq =

∫ T

0

dt

T
|∆∞(t)| exp

(
+i

2π

T
(q − p)t+ iφ(t)

)
(4.23)

Γ(2)
pq =

∫ T

0

dt

T
|∆∞(t)| exp

(
−i2π

T
(q − p)t− iφ(t)

)
(4.24)

Λmn =
2λmn

L

(1− (−1)m+n)

(m2 − n2)
(4.25)

The self-adjoinct property of the matrix can be easily checked by noting Λmn = −Λnm
and Γ

(1)∗
pq = Γ

(2)
qp . Instead of performing serials of exponential matrix multiplication,

we construct the matrix once and diagonalize it directly to examine Floquet spectrum

within the range of [− π
T
, π
T
]. However, the price to pay is that the matrix size becomes

very large, with Smax × Smax where Smax = (2Pmax + 1)4Nmax. Of note is that the

matrix is not only Hermitian but also sparse, and the degree of denseness can be

calculated by first calculating the number of nonzero entries (2Pmax + 1)(4Nmax +

4Nmax+4(4Nmax×4Nmax))+2Pmax(2Pmax+1)4Nmax = 8Nmax(2Pmax+1)(1+8Nmax+

Pmax)and the ratio of nonzero entries to the total matrix elements is 8Nmax+Pmax+1
2Nmax(2Pmax+1)

.

4.2.4 Phase II

In this damped phase, the magnitude of the order parameter undergoes damped

oscillation and tends to a finite equilibrium value. Two examples (corresponding to
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points B and C in Fig. 4.3) are shown in Fig. 4.6. Here the magnitude of the order

parameter can be described by the following power-law decay function [123,125,126,

128]

|∆(t)| = ∆∞ +
A

tν
cos(2E∞

g t+ θ), (4.26)

where ∆∞ is the magnitude of the order parameter in the asymptotic limit, which in

general does not equal to the order parameter ∆f determined by the Zeeman field hf

at equilibrium. E∞
g is the minimal band gap of the effective Hamiltonian at t→∞.

It should be pointed out that, unlike the conventional BCS model, E∞
g does not in

general equal to ∆∞ in the current model, due to the presence of the SO coupling and

the Zeeman field. The second term on the r.h.s. of Eq. (4.26) gives rise to the decay

of the order parameter. The exponent ν, characterizing the power-law decay, is not

a universal constant in this model. This is in distinct contrast to the conventional

BCS model, where ν = 1/2 [123, 126, 128] in the BCS limit, and ν = 3/2 [125] in the

Bose-Einstein Condensation (BEC) limit.

In this phase, the order parameter behaves as ∆(t) = ∆∞e−i2µ∞t in the asymp-

totic limit [133, 134]. Again we can gauge out the phase factor linear in time and

treat µ∞ as an effective chemical potential [134]. We can therefore construct a time-

independent BdG Hamiltonian by replacing the chemical potential and order param-

eter in Eq. (4.2) with µ∞ and ∆∞, respectively. This is still a dynamical phase

because µ∞ 6= µf , and ∆∞ 6= ∆f , where ∆f and µf are equilibrium order parameter

and chemical potential with Zeeman field hf . For example, for point B, we have

∆f = 0.662EF and µf = 0.199EF , whereas numerically we obtain ∆∞ ≈ 0.456EF

and µ∞ ≈ −0.019EF . Given the asymptotic time-independent BdG Hamiltonian, the

region of the dynamical topological phase can be determined by the condition

h2f > |∆∞|2 + µ2
∞, (4.27)
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Figure 4.6 : Dynamics of order parameter and spin texture in phase II. Green line
represents dynamics for point B (hi = 0.9, hf = 0)EF and the purple line is the
result for point C (hi = 0.3, hf = 1.2)EF in Fig. 4.3, and dashed lines represent
the fitted curve using Eq. (4.26). For point B (blue dashed line), ∆∞ = 0.455EF ,
E∞

g = 0.456EF , A = −0.16E1+ν
F , θ = π/4, and ν = 1/2 while for point C (black

dot-dashed line), ∆∞ = 0.19EF , E
∞
g = 0.16EF , A = 0.2E1+ν

F , θ = π/4 and ν = 3/4.
Inset shows the corresponding dynamics of the spin polarization, with green line for
point B and red line for point C.
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with a topological indexW = 1, otherwise we have a non-topological dynamical phase

with W = 0. In the following we will show that dynamical edge state can indeed be

observed in the topological regime.

In this regime, the magnitude of the order parameter will gradually approach a

constant, while its phase factor oscillates periodically, i.e., ∆(t)→ ∆∞e−iµ∞t up to a

trivial constant, which is the only time-dependent parameter in the BdG Eq. (4.10).

This oscillating phase can be gauged out by defining

fk± = (ũk±e
−iµ∞t, ṽk±e

−iµ∞t, p̃k±e
+iµ∞t, q̃k±e

+iµ∞t)T e−iEk,±t,

where f̃k± = (ũk±, ṽk±, p̃k±, q̃k±)T . Inserting this wavefunction to Eq. (4.10), we find

that

M̃kf̃k± = Ek,±f̃k±, (4.28)

where M̃k is identical to Eq. (4.2) except that µ = µ∞ and ∆ = ∆∞. We immediately

see that µ∞ is the effective chemical potential of the model in the quasi-equilibrium

condition. Note that this phase is still dynamical phase because the µ∞ 6= µf and

∆∞ 6= ∆f , where µf and ∆f are equilibrium chemical potential and order parameter

with Zeeman field hf ; see our numerical results in the main text. We did not observe

the abrupt change of order parameter in all our calculations [170].

This model can support dynamical edge state in the topological regime defined by

Eq. (4.27). Similar to the analysis in Ref. [144], we can prove exactly that the bulk

system is always fully gapped except at the critical point of hc for k = 0. Thus the

closing and reopening of the gap provides important indications for topological phase

transition. To see the topological phase transition more clearly, we consider a strip

superfluids with length L by imposing hard wall boundary at the x direction. To this

end, we replace kx → −i∂x, while ky remains as a good quantum number. Along the
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x direction, we construct the wavefunction using plane wave basis [171]




ũ(x)

ṽ(x)

p̃(x)

q̃(x)




=

Nmax∑

n=1

√
2

L
sin
(nπx
L

)




ũn

ṽn

p̃n

q̃n




, (4.29)

where Nmax is the basis cutoff. Upon inserting this ansatz into Eq. (4.28), we can

convert the matrix M̃k into a 4Nmax by 4Nmax matrix, whose diagonalization directly

leads to the protected modes of dynamical edge state dictated by nontrivial topolog-

ical invariants. Empirically, we found Nmax = 200 is a good basis cutoff for a long

strip with L = 200k−1
F . The numerical results are presented in Fig. 4.7.

We have also calculated the Chern number C = i
2π

∑
n<0

∫
dkxdkyε

ab〈∂kaψnk|∂kbψnk〉

of the system, where n < 0 means that we sum over all occupied bands of effective

time-independent Hamiltonian [see Eq. (4.28)]. We find that C = 1 (0) in the topo-

logical (non-topological) regime defined above.

As a technical note, we write out the computation of Chern number in more details

here. Berry curvature for hole branch is defined by Γν=− ≡ γν=−
1 + γν=−

2 ,

γνη = i(〈∂kxΦνη|∂kyΦνη〉 − kx ←→ ky)

= −2ℑ〈∂Ψ
ν
η

∂kx
|∂Ψ

ν
η

∂ky
〉

= −2ℑ




(
∂uk
∂kx

∂αk

∂kx

∂βk
∂kx

∂vk
∂kx

)∗
·




∂uk
∂ky

∂αk

∂ky

∂βk
∂ky

∂vk
∂ky







ν

η

= −2ℑ
(
∂u∗k
∂kx

∂uk
∂ky

+
∂α∗

k

∂kx

∂αk

∂ky
+
∂β∗

k

∂kx

∂βk
∂ky

+
∂v∗k
∂kx

∂vk
∂ky

)ν

η
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Chern number is defined as

Cν=− =
1

2π

∫
d2k

∑

η=1,2

γν=−
η (4.30)

where the summation runs over the two occupied quasi-hole bands. The equivalent

definition for Berry curvature is

γν=−
η = i

∑

ν′ 6=ν

∑

η′=1,2

〈νη|∂kxHBdG|ν ′η′〉〈ν ′η′|∂kyHBdG|νη〉 − (kx ↔ ky)

(Eνη
k − Eν′η′

k )2

= −2
∑

ν′ 6=ν

∑

η′=1,2

ℑ〈νη|∂kxHBdG|ν ′η′〉〈ν ′η′|∂kyHBdG|νη〉
(Eνη

k −Eν′η′

k )2

Derivatives for Hamiltonian is straightforward,

∂

∂kx




ξk + h λ(kx − iky) 0 −∆(t)

λ(kx + iky) ξk − h ∆(t) 0

0 ∆∗(t) −(ξk + h) λ(kx + iky)

−∆∗(t) 0 λ(kx − iky) −(ξk − h)




=




2kx λ 0 0

λ 2kx 0 0

0 0 −2kx λ

0 0 λ −2kx




∂

∂ky




ξk + h λ(kx − iky) 0 −∆(t)

λ(kx + iky) ξk − h ∆(t) 0

0 ∆∗(t) −(ξk + h) λ(kx + iky)

−∆∗(t) 0 λ(kx − iky) −(ξk − h)




=




2ky −iλ 0 0

iλ 2ky 0 0

0 0 −2ky iλ

0 0 −iλ −2ky




where I have chosen ~ = 2m = 1. Then, we have a simplified notation

γν=−
η = −2

∑

ν′ 6=ν

∑

η′=1,2

ℑ〈νη|hx|ν
′η′〉〈ν ′η′|hy|νη〉

(Eνη
k −Eν′η′

k )2

= −2
∑

ν′ 6=ν

∑

η′=1,2

ℑ
{ 1

(Eνη
k − Eν′η′

k )2

(
u α β v

)∗
×




2kxu
′ + λα′

λu′ + 2kxα
′

−2kxβ ′ + λv′

λβ ′ − 2kxv
′



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·
(
u′ α′ β ′ v′

)∗
×




2kyu− iλα

iλu+ 2kyα

−2kyβ + iλv

−iλβ − 2kyv




}

= −2
∑

ν′ 6=ν

∑

η′=1,2

ℑ
{

1

(Eνη
k − Eν′η′

k )2
Ξ1 · Ξ2

}

where

Ξ1 = (2kxu
′u∗ + λα′u∗ + λu′α∗ + 2kxα

′α∗ − 2kxβ
′β∗ + λv′β∗ + λβ ′v∗ − 2kxv

′v∗)

Ξ2 = (2kyu
′∗u− iλu′∗α + iλα′∗u+ 2kyα

′∗α− 2kyβ
′∗β + iλβ ′∗v − iλv′∗β − 2kyv

′∗v)

And therefore,

Cν=− =
−2
2π

∫
dkx

∫
dky

∑

ν′ 6=ν

∑

η=1,2

∑

η′=1,2

ℑ
{

1

(Eνη
k −Eν′η′

k )2
Ξ1 · Ξ2

}
(4.31)

=
−2
2π

∫
dkx

∫
dky

∑

η=1,2

∑

η′=1,2

ℑ
{

1

(E−η
k − E+η′

k )2
Ξ1 · Ξ2

}
(4.32)

In practice, we observe the curvature as a function of momentum kx and ky are

rotationally symmetric. Therefore, we can have

Cν=− = −4

π

∫ kc

0

dkx

∫ kc

0

dky
∑

η=1,2

∑

η′=1,2

ℑ
{

1

(E−η
k − E+η′

k )2
Ξ1 · Ξ2

}
(4.33)

where kc is the momentum cutoff introduced numerically, and integration mesh only

requires 100 grids, which can already give rise to very accurate results of Chern

number! Numerically, I have checked γν=−
η (kx, ky) is rotationally symmetric. As a

result, we may further reduce the momentum integration to the radial direction, as

the following,

Cν=− = −2
∫ kc

0

kdk
∑

η=1,2

∑

η′=1,2

ℑ
{

1

(E−η
k − E+η′

k )2
Ξ1 · Ξ2

}
(4.34)
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where

Ξ1 = (2ku′u∗ + λα′u∗ + λu′α∗ + 2kα′α∗ − 2kβ ′β∗ + λv′β∗ + λβ ′v∗ − 2kv′v∗)

Ξ2 = (2ku′∗u− iλu′∗α+ iλα′∗u+ 2kα′∗α− 2kβ ′∗β + iλβ ′∗v − iλv′∗β − 2kv′∗v)

where we may empirically choose kc ∼ 10kF and grids around 500 points.

Note that in the calculation, we need to update Eνη
k (t) at each time step in the

following way,

Eνη
k (t) =

(
uηk(t) αηk(t) βηk(t) vηk(t)

)∗

×




ξk + h λ(kx − iky) 0 −∆(t)

λ(kx + iky) ξk − h ∆(t) 0

0 ∆∗(t) −(ξk + h) λ(kx + iky)

−∆∗(t) 0 λ(kx − iky) −(ξk − h)




×




uηk(t)

αηk(t)

βηk(t)

vηk(t)




The topological nature of the system can also be manifested by examining the

existence of the Majorana edge modes. To this end, we obtain the BdG spectrum by

adding a hard-wall boundary along the x-direction. Examples are shown in Fig. 4.7.

We show the energy gap at zero momentum at t =∞, E∞
0 = |hf−

√
µ2
∞ + |∆∞|2|, as

a function of the final Zeeman field hf in Fig. 4.7(a) for fixed initial Zeeman field. The

closing and reopening of the energy gap E∞
0 signals the dynamical topological phase

transition. Indeed, we show that zero-energy dynamical edge state can be observed

in the topological regime, see Fig. 4.7(d), where the bulk spectrum is gapped and the

edge state is gapless.

4.2.5 Phase III

In phase III, the order parameter quickly decays to zero (see Fig. 4.8) according to

∆(t) ∼ exp(−t/T ∗), where T ∗ ∼ 1/∆, the decay time, is equal to the order parameter
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Figure 4.7 : Dynamical edge state in a strip for phase II. (a) Energy gap at k = 0,
E∞

0 = |hf −
√
|∆∞|2 + µ2

∞|, as a function of final Zeeman field. The closing and
reopening of energy gap E∞

0 signals a transition from a trivial phase (W = 0) to
topological phase W = 1 at hc = 0.53EF . In this plot hi = 0.6EF is used, and all the
other parameters are identical to that in Fig. 4.1. (b) - (d) show the band structure in
a strip geometry with hard wall boundary condition. Robust edge states with linear
dispersion can be observed in the topological phase regime. The final Zeeman field
from (b) to (d) are 0.4EF , 0.55EF , and 0.7EF , respectively.
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Figure 4.8 : Dynamics of order parameter and condensate fraction in phase III. We
plot the result for point D (hi = 0.3, hf = 2.4)EF in Fig. 4.3. Inset shows the
dynamics of condensate fraction of singlet pairing ns (green) and triplet pairing nt
(purple), which remains finite values although |∆(t)| approaches zero in the long-time
limit.
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dynamical time. However, we need to emphasize that a vanishing order parameter

does not mean that the system has become a normal gas. We demonstrate this by

showing the dynamics of both the singlet and the triplet condensate fraction, defined

as ns =
∑

k |〈ck↑c−k↓〉|2/n and nt =
∑

k |〈ck↑c−k↑〉|2/n.

Recall Bogoliubov transformation,

ψσ(x) =
1

V

∑

k

[
ukσ(x, t)ckσ + v∗kσ̄(x, t)c

†
kσ̄ + αkσ̄(x, t)ckσ̄ + β∗

kσ(x, t)c
†
kσ

]
(4.35)

where σ =↑, ↓ and correspondingly σ̄ =↓, ↑. For the homogeneous system we study

here, we use plane-wave as the basis and wavefunctions take the following form,




uk(x)

αk(x)

βk(x)

vk(x)




=




uke
+iqz/2

αke
+iqz/2

βke
−iqz/2

vke
−iqz/2




eik·x (4.36)

We further have

ψσ(k
′) =

∫
e−ik

′·xdx
1

V

∑

k

[
ukσ(x, t)ckσ + v∗kσ̄(x, t)c

†
kσ̄ + αkσ̄(x, t)ckσ̄ + β∗

kσ(x, t)c
†
kσ

]

=

∫
e−ik

′·xdxdk
[
ukσe

iqz/2eik·xckσ + v∗kσ̄e
iqz/2e−ik·xc†kσ̄

+ αkσ̄e
iqz/2eik·xckσ̄ + β∗

kσe
iqz/2e−ik·xc†kσ

]

=

∫
dk
[
ukσckσδ(k + q/2− k′) + v∗kσ̄c

†
kσ̄δ(q/2− k − k′)

+ αkσ̄ckσ̄δ(k + q/2− k′) + β∗
kσc

†
kσδ(q/2− k − k′)

]

= u−q/2+k′σc−q/2+k′σ + v∗q/2−k′σ̄c
†
q/2−k′σ̄ + α−q/2+k′σ̄c−q/2+k′σ̄ + β∗

q/2−k′σc
†
q/2−k′σ
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Then, we should have

N0 =

∫
dk|〈

(
u−q/2+k↑c−q/2+k↑ + v∗q/2−k↓c

†
q/2−k↓ + α−q/2+k↓c−q/2+k↓ + β∗

q/2−k↑c
†
q/2−k↑

)

×
(
u−q/2−k↓c−q/2−k↓ + v∗q/2+k↑c

†
q/2+k↑ + α−q/2−k↑c−q/2−k↑ + β∗

q/2+k↓c
†
q/2+k↓

)
〉|2

=

∫
dk|u−q/2+k↑v

∗
q/2+k↑〈c−q/2+k↑c

†
q/2+k↑〉+ v∗q/2−k↓u−q/2−k↓〈c†q/2−k↓c−q/2−k↓〉

+ α−q/2+k↓β
∗
q/2+k↓〈c−q/2+k↓c

†
q/2+k↓〉+ β∗

q/2−k↑α−q/2−k↑〈c†q/2−k↑c−q/2−k↑〉|2

If we consider zero in-plane Zeeman field, we set q = 0. Then, we have

N0 =

∫
dk|uk↑v∗k↑〈ck↑c†k↑〉+v∗−k↓u−k↓〈c†−k↓c−k↓〉+αk↓β

∗
k↓〈ck↓c†k↓〉+β∗

−k↑α−k↑〈c†−k↑c−k↑〉|2

Due to redundancy in BdG construction and particle-symmetry, we further have

N0 =
1

4

1

V

∑

k

|ukv∗kf(Ek) + αkβ
∗
kf(−Ek)|2 (4.37)

=
1

4

1

V

∑

k

∣∣∣∣∣

4∑

η=1

uηk(t)v
η∗
k (t)f(Eη

k(t = 0)) + αηk(t)β
η∗
k (t)f(−Eη

k(t = 0))

∣∣∣∣∣

2

(4.38)

which we could have obtained in a much simpler way, by doing analogy with ∆.

Similarly, we have triplet condensate fraction,

N1 =

∫
dk|〈

(
u−q/2+k↑c−q/2+k↑ + v∗q/2−k↓c

†
q/2−k↓ + α−q/2+k↓c−q/2+k↓ + β∗

q/2−k↑c
†
q/2−k↑

)

×
(
u−q/2−k↑c−q/2−k↑ + v∗q/2+k↓c

†
q/2+k↓ + α−q/2−k↓c−q/2−k↓ + β∗

q/2+k↑c
†
q/2+k↑

)
〉|2

=

∫
dk|u−q/2+k↑β

∗
q/2+k↑〈c−q/2+k↑c

†
q/2+k↑〉+ v∗q/2−k↓α−q/2−k↓〈c†q/2−k↓c−q/2−k↓〉(4.39)

+ α−q/2+k↓v
∗
q/2+k↓〈c−q/2+k↓c

†
q/2+k↓〉+ β∗

q/2−k↑u−q/2−k↑〈c†q/2−k↑c−q/2−k↑〉|2 (4.40)

Setting q = 0 and using the redundancy reduction, we have

N1 =
1

4

1

V

∑

k

|ukβ∗
kf(Ek) + αkv

∗
kf(−Ek)|2 (4.41)

=
1

4

1

V

∑

k

∣∣∣∣∣

4∑

η=1

uηk(t)β
η∗
k (t)f(Eη

k(t = 0)) + αηk(t)v
η∗
k (t)f(−Eη

k(t = 0))

∣∣∣∣∣

2

(4.42)



101

As shown in Fig. 4.8), one can see that in the long-time limit, the condensate

fraction remains non-zero even though the order parameter vanishes. Non-zero con-

densate fraction means that the system still contains nontrivial pairings. However,

the pairing field for different momenta oscillates at different frequencies, which leads

to dephasing and hence a vanishing order parameter.

4.3 Summary

In this chapter, we have demonstrated that dynamical topological phases can be

realized in an SO coupled degenerate Fermi gas by quenching the Zeeman field. The

Zeeman field directly determines the topological properties of the ground state, which

is completely characterized by the zero-momentum spin polarization Sz(0), a quantity

that is directly measurable in cold atom experiments using the standard time-of-flight

technique. We have further mapped out the post-quench phase diagram according

to the asymptotic behavior of the order parameter. In the undamped phase, the

persistent oscillation of the order parameter may support a topological Floquet state

with multiple edge states. In the damped phase, the magnitude of the order parameter

gradually approaches a constant via a power-law decay, and this phase contains a

dynamical topological portion in certain parameter regions. One pair of edge modes

can be observed in this case. In the overdamped phase, the order parameter quickly

decays to zero exponentially while the condensate fraction remains finite.

The presence of the SO coupling and the Zeeman field breaks the integrability

of our model. However, the same types of post-quench dynamical phases observed

in our model are also present in integrable models studied previously. This raises

the important question on the relationship between integrability and the long-time

asymptotic post-quench behavior of the superfluid/superconducting system. This
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issue has been intensively investigated in other models regarding relaxation, thermal-

ization and phase transitions [114,119], in which integrability plays the most essential

role therein. Our work here shows that this is a rather subtle question and further

studies are needed to provide a definitive answer.

We finally comment on the feasibility of observing the exotic dynamical topo-

logical phases unveiled in this chapter. The dynamics of the superfluids are mainly

determined by two characteristic time scales, that is, the energy relaxation time

τǫ ∼ EF/E
2
g , where Eg is the energy gap of the superfluids before quench, and the or-

der parameter dynamical time τ∆ ∼ 1/∆. As we have already mentioned, the quench

of the effective Zeeman field in SO coupled Fermi gases can be achieved at a time

scale much smaller than 1/EF [142]. The far-from-equilibrium coherent evolution can

be realized when τǫ > t ≥ τ∆ [124, 128]. The ultracold Fermi gas provides a natural

system to explore the physics in the far-from-equilibrium condition at a time scale

of 1/EF . In the BCS limit ∆ =
√
2EFEb approaches zero. Thus Eg = ∆ ≪ EF

(µ > 0 in the BCS limit), and we immediately have τǫ ≫ τ∆ (Using point A in

Fig. 4.3 as an example, we have ∆ ∼ 0.013EF , µ ∼ 0.7EF , Eg ∼ 0.009EF , thus

τ∆ ∼ 70/EF and τǫ ∼ 104/EF ∼ 160τ∆). In our system, the SO coupling and the

Zeeman field can greatly change the band structure of the superfluids. For example,

the energy gap is no longer determined solely by the order parameter and chemical

potential, but instead, it is a very complicated function of all parameters. At the

boundary of topological phase transition, we have Eg = E0 = 0. In the vicinity of

this boundary, τǫ ∼ EF/(h −
√

∆2 + µ2)2, we naturally expect that τǫ ≫ τ∆. We

should emphasize that this condition, which can only be realized in the BCS limit

in a conventional s-wave superfluid, can now be realized very easily in a SO coupled

model in the strong coupling regime because of the different parameter dependence
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for these two time scales. Meanwhile, the temperature effect is also a critical issue in

ultracold atomic system. In the BCS limit, we expect Tc =
2EF e

γ

π

√
Eb/2EF ∼ 1

2
∆ for

a conventional superfluid [172], where γ ≃ 0.577 is the Euler’s constant. The required

temperature is thus very low in order to observe the coherent dynamics of superflu-

ids, which poses a great challenge to the experiments [162–165]. This dilemma can

be resolved in our model because of the dramatic change in band structure caused

by the SO coupling and the Zeeman field. In the strong coupling regime, we expect

the relevant temperature to be determined by the Kosterlitz-Thouless transition tem-

perature TKT ∼ 0.1EF [145, 172], which is experimentally accessible within current

technology [162–165]. In fact, the temperature effect may become important only

when T ≫ ∆, in which case the pairing may be destroyed. We have verified that the

persistent oscillations in phase I regime can still be observed if we add a small finite

temperature T in the time-dependent BdG equation. For instance, for the parameter

set used in Fig. 4.4, oscillations can be observed up to T ≈ 0.2EF . For these reasons,

we expect that the relevant dynamics of the order parameter and associated dynami-

cal topological phase transitions in phase I and phase II regimes can be realized using

realistic cold atom setup at the currently achievable temperatures.

So far, from Chapter 2 to 4, we have considered spin-orbit interaction created by

two-photon Raman process stimulated by coherent laser beams. This means the laser

field serves as semi-classical field, well described by coherent state. Atoms flip spins

by absorbing or emitting photon and exchanging momentum due to conservation law.

To consider atoms’ back-kick onto photon field simultaneously in this process, we turn

next to our proposal of putting atoms in the cavity field, and realize the dynamical

coupling between spin, orbit, and quantized light field. New and interesting non-

trivial physics are expected from the synthesis of cavity QED and spin-orbit coupling.
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Chapter 5

Light Field Induced Dynamical Spin-Orbit

Coupling

When an atom interacts with a quantized light field supported by an optical cavity,

the atom and the light field mutually affect each other. A self-consistent solution

for the light field and the atom is thus required. This has been a major theme in

cavity quantum electrodynamics (CQED) [173]. In traditional CQED settings, only

the internal dynamics of the atom is relevant: the cavity photons induce quantum

transitions among different atomic internal states, and the atom affects the cavity

field by emitting/absorbing cavity photons. The link between Cavity photon and

Atomic internal states in Fig. 5.1 illustrates the relationship between the cavity

and the atom. In recent years, ultracold atoms have been put inside optical cavities

and in such a situation, one can no longer neglect the center-of-mass (COM) motion

of the atom. Emitting or absorbing even a single photon can significantly change

the motional states of the atom. This situation is represented by the link between

cavity photon and atomic external states in Fig. 5.1. In fact, the mutual influence

of the cavity field and the atomic COM motion can be put into the broader context

of optomechanics. Here the atoms can be regarded as a mechanical system whose

dynamics is controlled by, and in the same time provides a back-action to, the cavity

field. A variety of phenomena in this “ultracold atom + cavity” system, which is an

example of an optomechanical system, has been explored experimentally [174–180]

and theoretically [181, 182].
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Cavity photon

Atomic external  

states 

Atomic internal  

states 

Figure 5.1 : A new frontier in both CQED and cold atoms research, in which one
needs to take into account the interplay among the cavity photons, the atomic external
states, and also the atomic internal degrees of freedom.
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Another recent breakthrough in cold atom research is the realization of spin-

orbit coupling (SOC) in ultracold atoms, in both bosonic [183] and fermionic sys-

tems [55,184]. Realization of SOC in cold atoms involves a two-photon Raman tran-

sition between two hyperfine ground states as schematically shown in Fig. 5.2(b). The

Raman-induced transition between the two atomic levels and the associated momen-

tum transfer due to photon recoil give rise to an effective coupling between the COM

motion and the internal states of the atom. Due to its non-Abelian nature, SOC not

only significantly affects the physics of a single atom, but, perhaps more importantly,

also profoundly changes the properties of a many-body system. It is an essential ingre-

dient underlying such diverse phenomena as topological superconductors/insulators,

Majorana and Weyl fermions, quantum spin-Hall effects, etc.

In the experiments of spin-orbit coupled quantum gases, the Raman beams that

generate the SOC are provided by two classical laser fields, which are not affected by

the atoms. Here we consider a situation where one of the Raman beams is replaced

by a quantized light field supported by an optical cavity, as schematically shown in

Fig. 5.2(a). In this scheme, akin to other “ultracold atom + cavity” systems, there

will be a back-action from the atom to the light. Therefore the SOC in the atom is

generated by a quantized light field which itself is affected by the atomic dynamics. In

this sense, the cavity-assisted SOC becomes dynamic [185]. In other words, the same

cavity photon can affect both the internal states (via inducing a transition between

different states of the atom) and the external COM motion (via photon recoil) of the

atom. As a result, it naturally induces an effective coupling between the two atomic

degrees of freedom, as is represented by the dashed link between Atomic external

states and Atomic internal states in Fig. 5.1. Furthermore, in previous experimental

studies of cold-atom based cavity optomechanical systems [174–180], only the COM
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motion of the atom is included. The inclusion of the internal spin degrees of freedom

and the resulting SOC opens up a new avenue of research in cavity optomechanical

systems. We will show that this dynamic SOC dramatically modifies the atomic

dispersion relation, dynamical instabilities, vanishing atom-photon entanglement at

large atomic momentum tail and re-entrant superadiant phase in the thermodynamic

limit.

5.1 Back-action From Atom(s) to Photon Field

We consider a single atom (or, a non-interacting Bose-Einstein condensate) with two

relevant internal states (denoted as | ↑〉 and | ↓〉) confined inside a unidirectional

optical ring cavity, depicted schematically in Fig. 5.2. The cavity is pumped by a

coherent laser field with frequency ωp and pumping rate εp. It supports a single mode

traveling wave and has an intrinsic angular frequency ωc. An additional coherent

laser beam with frequency ωR shines on the atom, which together with the cavity

field provides the Raman transition between | ↑〉 and | ↓〉 states. During the Raman

transition, a recoil momentum of ±2~qrẑ is transferred to the atom. We treat the

leakage of cavity photon phenomenologically by introducing a cavity decay rate κ.

The model Hamiltonian is thus written as (we take ~ = 1),

H =
∑

σ

∫
dr

[
Ψ†
σ(r)

(
k̂2

2m
+ ǫ0σ

)
Ψσ(r)

]

+
Ω

2

∫
dr e+2iqrzΨ†

↑(r)Ψ↓(r)c̃e
+iωRt

+
Ω

2

∫
dr e−2iqrz c̃†Ψ†

↓(r)Ψ↑(r)e
−iωRt

+ iεp(c̃
†e−iωpt − c̃e+iωpt) + ωcc̃

†c̃− iκc̃†c̃, (5.1)

where Ψσ(r) (σ =↑, ↓) is the atomic annihilation operator, ǫ0σ is the corresponding

bare atomic energy, and c̃ represents the photon annihilation operator. Ω describes
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κ

p
εωp,

ωR
|

|

ωR

(a) (b)

ωp

Figure 5.2 : (a) Schematic diagram of the cavity-assisted spin-orbit coupled system;
(b) Level diagram of atom photon/light field interaction.

the atom-photon coupling strength. However, the true Raman coupling strength

also includes the cavity photon amplitude of c̃ or c̃† which is coupled to the atomic

operators. It is this coupling that renders the resulting SOC dynamic.

It is convenient to work work in a frame rotating at pump laser frequency ωp by

transforming the photon operator to c = c̃eiωpt. This is equivalent to performing an

unitary transformation U = e+iωpc̃†c̃t to the Hamiltonian (5.1), by H ′ = UHU−1 +

idU
dt
U−1. From H ′, we perform another unitary transformation Ũ = eiδRt(Ψ

†
↑Ψ↑−Ψ†

↓Ψ↓)/2,

with δR = ωp−ωR, to obtain the Hamiltonian H ′′. Finally, after a gauge transforma-

tion to atomic operators ψ↑ = Ψ↑e−iqrz and ψ↓ = Ψ↓e+iqrz, we arrive at the following

effective Hamiltonian Heff :

Heff =
∑

σ

∫
dr

[
ψ†
σ(r)

(
k̂2 + 2αqrkz

2m
+ αδ̃

)
ψσ(r)

]

+
Ω

2

∫
dr
[
ψ†
↑(r)ψ↓(r)c+ c†ψ†

↓(r)ψ↑(r)
]

+ iεp(c
† − c)− δcc†c− iκc†c, (5.2)
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where δ̃ = δR/2 + (ǫ0↑ − ǫ0↓) represents the two-photon Raman detuning; δc = ωp − ωc
is the cavity-pump detuning, and α = ±1 for σ =↑, ↓, respectively.

The resulting effective Hamiltonian Heff in Eq. (5.21) has Raman coupling term

fundamentally different from experimentally realized ones (cf [55, 183, 184] for in-

stance). The amplitude of Raman coupling in Eq. 5.21 is not only related to Ω, but

also determined by photon field operator in rotating frame. It is indeed in this sense

the generation of cavity-assisted dynamical SOC is novel.

5.2 Mean Field Theory

From the Hamiltonian (5.21), one can easily obtain the following equations of motion

(EOM):

i
d

dt
c = iεp − (δc + iκ)c +

Ω

2

∫
drψ†

↓(r)ψ↑(r), (5.3)

i
∂

∂t
ψ(r) =




k̂2+2qrkz
2m

+ δ̃ Ω
2
c

Ω
2
c† k̂2−2qrkz

2m
− δ̃


ψ(r) , (5.4)

where ψ(r) ≡ [ψ↑(r), ψ↓(r)]T . To proceed further, we adopt a mean-field approx-

imation by replacing the operators by their respective expectation values: c →

〈c〉 , ψσ(r) → 〈ψσ(r)〉 ≡ ϕσ(r), which is valid for small quantum fluctuations of

both operators c and ψσ(r). Assuming a homogeneous atomic density distribution,

we take the plane-wave ansatz for the atomic modes ϕσ(r) = eik·rϕσ with the nor-

malization condition |ϕ↑|2 + |ϕ↓|2 = 1. The steady-state solution for the photon field

is given by

〈c〉 = εp − i
2
Ωϕ∗

↓ϕ↑

κ− iδc
. (5.5)
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Substituting Eq. (5.5) into Eq. (5.4), we have

iϕ̇↑ =

(
k2

2m
+ qrkz + δ̃

)
ϕ↑ +

Ω

2

εp − iΩ
2
ϕ∗
↓ϕ↑

κ− iδc
ϕ↓ , (5.6)

iϕ̇↓ =

(
k2

2m
− qrkz − δ̃

)
ϕ↓ +

Ω

2

εp +
iΩ
2
ϕ∗
↑ϕ↓

κ+ iδc
ϕ↑ . (5.7)

For a given atomic quasi-momentum k, we define energy levels as the solution of

the time-independent version of Eqs. (5.6) and (5.7), obtained by replacing i(∂/∂t)

with the eigenenergy ǫ(k). After some calculation, we find that ǫ(k) obeys a quartic

equation:

4ǫ4 +Bǫ3 + Cǫ2 +Dǫ+ E = 0 , (5.8)

where

B = −(8k2z + 2w)

C = 6k4z + 3k2zw − 4(qrkz + δ)2 + |v|2 − 4|u|2

D = −2k6z −
3

2
wk4z + 4k2z(qrkz + δ̃)2 − |v|2k2z + 2w(qrkz + δ̃)2

E = (
k4z
4
− (qrkz + δ̃)2)(k4z + |v|2 + wk2z)− |u|2k4z

This quartic equation can be solved analytically, but the expressions are cumbersome.

We plot the typical behavior of the dispersion relation ǫ(kz) vs kz for δ̃ = 0 in Fig. 5.3.

Note that we always take kx = ky = 0, as the SOC only occurs along the z-axis. A

maximum of four real roots are allowed by Eq. (5.8). As we will show, in such regimes,

a loop structure develops in the dispersion curve.

As shown in Fig. 5.3, for δc = 0 (i.e., the pump field is resonant with the cavity),

we always have two dispersion branches. The two branches are gapped when the

atom-photon coupling strength Ω is small and touch each other at kz = 0 when Ω

exceeds a critical value. For δc 6= 0, we again have two gapped branches at small Ω.
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Ω
=

3κ
Ω

=
5κ

δc = −κ δc = 0 δc = κ

/κ

kz/qr
−10 −5 0 5 10
0

1

2

3

Ω
=

7κ

Figure 5.3 : Eigenenergy ǫ as a function of quasi-momentum. We set δ̃ = 0 and
εp = κ. For nonzero δc, a loop structure forms when Ω

(1)
c < Ω < Ω

(2)
c . For δc = ±κ,

Ω
(1)
c = 4εp and Ω

(2)
c = 4

√
2εp. Throughout our calcultion, we take κ and

√
2mκ to

be the units for energy and momentum, respectively. A typical value for κ is 2π × 1
MHz, and we choose qr = 0.22 in our units.
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Figure 5.4 : Photon number distribution as a function of atom’s quasi-momentum.
The parameters are the same as in the right column of Fig. 5.3, where δc = κ, εp = κ,
and Ω/κ = 3, 5, and 7 from (a) to (c).

As Ω is increased beyond a critical value, a loop appears near kz = 0 in either the

upper or the lower branch depending on the sign of δc. The loop increases in size

as Ω increases and finally touches the other branch and dissolves when Ω reaches a

second critical value. Note that such a dispersion relation is markedly different from

that without the cavity, in which case one always obtains two gapped branches. The

dispersion curves for finite δ̃ are qualitatively similar, but in that case the curves are

no longer symmetric about kz = 0 and the loop emerges at finite kz (see Fig. 5.7

below).

The photon number distributions corresponding to the right column of Fig. 5.3

are plotted in Fig. 5.4. As seen in Fig. 5.4(c), for sufficiently large Ω, the cavity pho-

ton number decreases dramatically. Correspondingly, the effective Raman coupling

becomes negligibly small, and the atomic dispersion curve becomes quadratic as in

the absence of laser fields (see the bottom row of Fig. 5.3). This is analogous to the

photon blockade phenomenon [186] in which the strong atom-photon coupling keeps

pump photons from entering the cavity.
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We can gain some insights about the general structure of the dispersion curve, and

particularly the appearance and disappearance of the loop, by examining the quartic

equation (5.8) for kz = 0 and δ̃ = 0. Under these conditions, Eq. (5.8) is simplified

to:

ǫ2(4ǫ2 − 2wǫ+ |v|2 − 4|u|2) = 0 , (5.9)

with the constraint that the root ǫ = 0 is only valid for Ω ≥ 4ǫp. Here the coefficients

w = v + v∗ = 2(Ω
2
)2 δc
κ2+δ2c

, u = Ω
2

εp
κ−iδc and v = Ω

2

− i
2
Ω

κ−iδc . Simple analysis shows that

there are three regimes. First, when Ω < 4εp ≡ Ω
(1)
c , Eq. (5.9) has two real roots, one

positive and one negative. This corresponds to the two gapped branches for small

Ω in the top row of Fig. 5.3. Second, when Ω
(1)
c ≤ Ω ≤ 4εp

√
1 + (δc/κ)2 ≡ Ω

(2)
c ,

Eq. (5.9) has four real roots — two degenerate roots at ǫ = 0 and two additional

roots with the same sign. This corresponds to the looped regime in the middle row of

Fig. 5.3. Finally when Ω > Ω
(2)
c , only the two degenerate roots at ǫ = 0 exist, which

correspond to the gapless regime represented by the bottom row in Fig. 5.3. Note

that for δc = 0, we have Ω
(1)
c = Ω

(2)
c = 4ǫp, and the loop never develops.

In the case of vanishing two-photon detuning (i.e., δ = 0), simple analysis shows

that there should be a total of four regimes, as shown in Fig. 5.5(a). In region I, the

two dispersion branches are gapped, and the lower branch has a double degenerate

minima, as shown in Fig. 5.5(b1). This dispersion curve structure is very similar to

the case when both Raman beams are provided by classical coherent laser fields (we

shall refer to this as the “classical case”) and the Raman coupling strength is small.

In region II, as shown in Fig. 5.5(b2), the two dispersion branches are still gapped,

but the lower branch has a single minimum. This is similar to the classical case with

a large Raman coupling strength. Regions III and IV do not have analogs in the

classical case. Region III features a loop structure, as shown in Fig. 5.5(b3), whereas
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Figure 5.5 : Single particle eigen-energy spectrum “phase diagram”. The dispersion
curve is generally catagorized by four regions, represented from I to IV in (a). From
(b1) to (b4), we fix εp = κ. In region I, the dispersion has double minima as shown
in (b1) with Ω = 0.03κ; region II is enclosed by the red solid curve in (a) and we
show the typical point in (b2) (Ω = κ) where only a single minimum exisits in the
lower helicity branch; region III is enclosed by the black dashed lines in (a) and it
is a region where loop structure emerges, as in (b3) with Ω = 5κ; finally, in region
IV we recover the double minimum dispersion although it’s different from region I by
closing the gap at k = 0, as in (b4) with Ω = 8κ. Throughout the paper we fix δc = κ
and δ = 0, and adopt a dimensionless unit system with ~ = m = κ = 1. A typical
value for κ is 2π× 1 MHz, and we choose qr = 0.22 in our dimensionless units (based
on a realistic experimental parameter estimate).
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in Region IV, the loop dissolves but the two dispersion branches becomes gapless at

k = 0, as shown in Fig. 5.5(b4). In the looped region, the quartic equation (5.8)

yields four real roots. It can be shown that this requires the coupling strength Ω to

satisfy

Ω(1)
c ≡ 4εp ≤ Ω ≤ 4εp

√
1 + (δc/κ)2 ≡ Ω(2)

c .

The two dashed lines in Fig. 5.5(a) represent the two critical values Ω
(1)
c and Ω

(2)
c ,

respectively.

It is instructive to examine how the effective Raman coupling strength Ωeff behaves

as a function of Ω. In Fig. 5.6(a), we plot |Ωeff| for the lowest dispersion branch as a

function of Ω for different k values. Note that |Ωeff |2 = Ω2nphoton where nphoton = |c|2

is the steady-state cavity photon number. A few remarks can be made based on this

plot. First, the fact that Ωeff is different for different k clearly shows the influence

of the atomic COM motion on both the atomic internal dynamics and the cavity

photon number. Second, |Ωeff | is not a monotonous function of Ω. For given k,

|Ωeff | increases with Ω linearly for small Ω. This can be intuitively understood as

follows. At such weak atom-photon coupling, the back-action from the atom to the

cavity photon is negligible. The number of cavity photons nphoton is roughly given

by nphoton ≈ n0 =
∣∣∣ εp
κ−iδc

∣∣∣
2

=
ε2p

κ2+δ2c
, where n0 is the number of cavity photons when

the atom is absent. As a result, we have |Ωeff | ≈ Ω
√
n0 which is independent of the

atomic quasi-momentum k. On the other limit, when Ω is very large, the strong

atom-cavity coupling strength significantly detunes the cavity away from resonance

and the cavity photon number nphoton, and hence |Ωeff |, decreases as a function of Ω.

Such a non-monotonous behavior of Ωeff is a unique feature of the cavity system and

a direct manifestation of the non-linearity of the system arising from the back-action

of the atom on the cavity photon.
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Figure 5.6 : (a) Effective Raman coupling |Ωeff| is plotted as a function of atom-
photon coupling strength Ω for different k values, 0, qr, 10qr for blue dash-dot, red
solid and black dashed lines. We observe that |Ωeff| does not monotonically increases
with Ω but rather peaks at an intermediate value, then approaches zero in the large
Ω limit. Figure (b) shows a comparison between critical boundary of region I and II
(red solid curve) and the analytical result (blue dashed line) given in Eq. (5.10). At
large εp limit, the two results match asymptotically well.

From the above analysis, it should also become clear that when the effect of the

back-action is weak (which occurs when Ω is small and/or εp is large), we should

recover the properties of the classical case. In particular, in the classical case, the

lower dispersion branch change from two degenerate minima to a single minimum

when the Raman coupling strength exceeds a critical value. Using our notation, this

occurs when |Ωeff | exceeds the critical value 4Er where Er = q2r/(2m) is the photon

recoil energy. For weak atom-cavity coupling, |Ωeff | = Ω
√
n0 = Ω εp√

κ2+δ2c
. Hence the

critical value of Ω is given by

Ω = 4Er

√
κ2 + δ2c
εp

. (5.10)

In Fig. 5.6(b), we plot this critical value (blue dashed line) as a function of cavity

pump rate εp and compare it with the numerically determined lower boundary (red

solid line) between region I and II of Fig. 5.5(a). The two curves overlap with each
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other when εp increases. Therefore, as we have expected, in the limit of weak atom-

cavity coupling and strong cavity pumping, we fully recover the classical case where

the SOC is induced by two classical laser beams.

The emergence of the loop structure is a distinctive nonlinear feature of the sys-

tem. We remark that similar loop structures or the associated hysteretic phenomena

have been found in other nonlinear systems. For Bose-Einstein condensates (BEC) in

optical lattices, periodic potential favors Bloch wave solutions whereas density-density

interaction prefers quadratic dispersion. Usually upon reaching a critical value, where

nonlinearity wins over external potential term, swallowtail in the energy dispersion

emerges from the tip. This leads to the understanding of nonlinear Landau-Zener

tunneling of BEC between two Bloch bands [187], where nonzero transition proba-

bility occurs even in the adiabatic limit, known as the hysteresis effect [188]. The

swallowtail also helped to explain the breakdown of superfluidity when BEC flows

through optical lattices [189]. For the loop region, there are multiple solutions for the

wave-functions within one band and they cause dynamical instability that destroys

the superflow of BEC [190]. In other nonlinear systems, e.g. superfluid Fermi gas

in optical lattices [191], cavity-induced feedback system [192], affirmative evidences

of band structure loop have also been found. The nonlinearity may originate from

the mean-field density-density interaction [193] or from the cavity-induced feedback

between atoms and photons [194]. The case studied here corresponds to the latter

situation. However, in previous studies of “ultracold atom + cavity” systems [194],

the interaction between the cavity photons and atoms is dispersive, and so it does

not induce SOC directly. As we will show below, the system studied here possesses

very different dynamical and stability properties.

Stability and Dynamical Analysis — Nonlinear systems usually possess intriguing
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stability properties. To examine the stability of the eigenstates obtained above, we

introduce conjugate variables p = |ϕ↓|2 − |ϕ↑|2 and θ = angle(ϕ↓)− angle(ϕ↑), which

correspond to the spin magnetization and the relative phase between the two atomic

spin states. The EOM for p and θ can be easily derived from Eqs. (5.6) and (5.7) as,

ṗ =
Ω2κ

κ2 + δ2c

1− p2
4

(
1− 4εp(κ sin θ + δc cos θ)

Ωκ
√

1− p2

)
, (5.11)

θ̇ = 2(krkz + δ̃) +
κεp cos θ − δcεp sin θ

κ2 + δ2c

Ωp√
1− p2

+

(
Ω

2

)2
δc

κ2 + δ2c
p , (5.12)

from which we can readily obtain the fixed points (p∗, θ∗) by setting ṗ = θ̇ = 0, we

obtain fixed points equations,

√
1− p∗2 = 4εp

Ωκ
(κ sin θ∗ + δc cos θ

∗) , (5.13)
(
Ω

2

)2(
κ

κ2 + δ2c

κ cos θ∗ − δc sin θ∗
κ sin θ∗ + δc cos θ∗

+
δc

κ2 + δ2c

)
p∗

+2(qrkz + δ̃) = 0 , (5.14)

. The solutions are identical to eigenstates obtained in terms of ϕ↑ and ϕ↓. To check

the stability, we linearize the equations around the fixed points by taking p = p∗+δp,

θ = θ∗ + δθ, and arrive at

d

dt




δp

δθ


 =




f1 f2

g1 g2







δp

δθ


 ≡M




δp

δθ


 , (5.15)

where matrix elements ofM are given by

f1 = − p∗κΩ2

2(κ2 + δ2c )
+
p∗εpΩ(δc cos θ∗ + κ sin θ∗)

(κ2 + δ2c )
√

1− p∗2
(5.16)

f2 =

√
1− p∗2
1 + δ2c

εpΩ(δc sin θ
∗ − κ cos θ∗) (5.17)
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g1 =
Ω

4(κ2 + δ2c )
(δcΩ +

4εp(κ cos θ
∗ − δc sin θ∗)

(1− p∗2)3/2 ) (5.18)

g2 = − p∗εpΩ√
1− p∗2(δ2c + κ2)

(δc cos θ
∗ + κ sin θ∗) (5.19)

If any of the eigenvalues ofM has a positive real part, the fluctuation terms δp and

δθ grow exponentially in time and therefore the system is dynamically unstable [195].

For unstable states, we denote the largest real part as γ, which can be regarded as

the decay rate of the unstable states.

A typical result of the stability analysis is shown in Fig. 5.7, where we plot the

dispersion curves and indicate the stability of the states using colored triangles. One

can observe: (1) in the regime without the loop, one branch is stable and the other

branch is unstable; (2) in the regime with the loop, there may exist one or two stable

branches and correspondingly three or two unstable branches. This means that the

cavity feedback completely alters the system’s stability. Nevertheless, for a relatively

large cavity pumping rate as shown in Fig. 5.7(a)-(c), γ is small and the unstable

branches are more robust compared with the case represented in Fig. 5.7 (d)-(f)

where a smaller εp is used. This can be understood as follows: as the cavity pump

rate εp is increased, the cavity photon number increases and the back-action from the

atom to the photon becomes less important. Therefore we expect (and have confirmed

from our calculation) that in the strong pump limit, the cavity system would not be

very different from the conventional system without a cavity [55, 183, 184].

A direct way to detect dynamical instability experimentally in this system is to

count the sudden change in the cavity photon number. As an example, we consider

the following situation. We start from a stable eigenstate represented in Fig. 5.7(a).

From t = 0 to 4000/κ, the two-photon detuning δ̃ is changed linearly from 0.05κ

to −0.05κ and remains fixed at −0.05κ afterwards. We plot the evolution of the
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Figure 5.7 : Stability analysis of the dispersion curve. Colored triangles represent
dynamically unstable states and black solid dots represent dynamically stable ones.
The colorbar represents γ, the decay rate of the unstable states. In all figures, Ω =
1.1κ and δc = κ. From (a) to (c) εp = 2κ and δ̃ = 0.05, 0, and −0.05κ; from (d) to
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Figure 5.8 : Evolution of photon number. The initial states are prepared using the
same set of parameters as in Fig. 5.7(a). In (a), we start from point P1 with kz = −2qr
and in (b) we start from point P2 with kz = 0, both indicated in Fig. 5.7(a). From
t = 0 to 4000/κ, δ̃ is linearly tuned from 0.05κ to −0.05κ and remains fixed after-
wards. Red solid dots represent the photon number corresponding to the instanta-
neous eigenstate, while blue solid lines represent the dynamical evolution according
to Eqs. (5.3) and (5.4) after mean-field approximation.

photon number in Fig. 5.8. In Fig. 5.8(a) we start from the state referred to as P1 in

Fig. 5.7(a). During the whole evolution, the photon number follows the corresponding

value of the instantaneous eigenstate as the system remains dynamically stable. In

Fig. 5.8(b) we start from the state referred to as P2 in Fig. 5.7(a). During the linear

ramp of δ̃, the photon number follows the corresponding values of the instantaneous

eigenstate. However, at the end of the ramp, the system evolves into a dynamically

unstable state. The dynamical instability sets in some time after the end of the ramp

and the photon number jumps to a different value after a short transient time. The

final state matches the stable state P3 with the same atomic quasi-momentum as

indicated in Fig. 5.7(c) (note that the quasi-momentum does not change during the

time evolution).
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5.3 Density Matrix Approach

The mean-field treatment relies on two implicit assumptions: (1) the atom-photon

correlation is negligible, and (2) the photon field can be well approximated by a

coherent state. In order to examine the validity of these assumption, and hence the

validity of the mean-field approximation, we now turn to a full quantum treatment

based on the Master equation:

ρ̇ =
1

i~
[Heff, ρ] + L[ρ] . (5.20)

Here ρ is the total density operator of the coupled atom-cavity system, the effective

Hamiltonian Heff is given by,

Heff =
∑

σ=↑,↓

∫
dz

[
ψ̂†
σ(z)

(
k2 + 2ασqrk

2m
+ ασδ

)
ψ̂σ(z)

]
+

Ω

2

∫
dz
[
ψ̂†
↑(z)ψ̂↓(z)ĉ + h.c.

]

+ iεp(ĉ
† − ĉ)− δcĉ†ĉ . (5.21)

The dissipation arising from cavity decay is modeled by the Liouvillean term in the

standard form of Lindblad super-operator [196, 197],

L[ρ] = κ(2cρĉ† − ĉ†ĉρ− ρĉ†ĉ) . (5.22)

Again, due to spatial homogeneity, we decouple momentum eigenstates by taking the

plane-wave ansatz for the atomic modes as ψ̂σ(z) = eikzψ̂σ. As there is no coupling

between atomic operators with different k, we can work in the subspace for a fixed

value of k. Here we explicitly write the commutator in Eq. (5.20), for a given atomic

quasi-momentum k, as,

[Heff(k), ρ] =

(
k2

2m
+
qrk

m
+ δ

)(
ψ̂†
↑ψ̂↑ρ− ρψ̂†

↑ψ̂↑
)
+

(
k2

2m
− qrk

m
− δ
)(

ψ̂†
↓ψ̂↓ρ− ρψ̂†

↓ψ̂↓
)

+
Ω

2

(
ψ̂†
↑ψ̂↓ĉρ+ ĉ†ψ̂†

↓ψ̂↑ρ− ρψ̂†
↑ψ̂↓c− ρĉ†ψ̂†

↓ψ̂↑
)

+iεp
(
ĉ†ρ− ĉρ− ρĉ† + ρĉ

)
− δc

(
ĉ†ĉρ− ρĉ†ĉ

)
. (5.23)
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Note that if the photon recoil qr = 0, which occurs when the cavity mode and the

external laser beams are co-propagating, the COM kinetic energy terms k2/(2m) can

be gauged away after a simple gauge transformation. Our model is then reduced

to the J-C model and the atomic COM motion does not play a role. To solve the

Master equation (5.20), we choose our basis states as direct product states of photon

Fock state |n〉 and atomic internal state |σ =↑, ↓〉: |n; σ〉 ≡ |n〉 ⊗ |σ〉, where non-

negative integer n denotes cavity photon number. Our goal is to calculate the entire

matrix elements of the density operator under this set of basis states, denoted by

〈m; σ|ρ|n; σ′〉 ≡ ρσσ
′

mn. We found the governing equation for the matrix element can

be written as,

d

dt
ρσσ

′
mn = −i

(
k2

2m
+
qrk

m
+ δ

)
(δσ↑ − δσ′↑) ρσσ

′
mn − i

(
k2

2m
− qrk

m
− δ
)
(δσ↓ − δσ′↓) ρσσ

′
mn

+
Ω

2i
(δσ↑
√
m+ 1ρσ̄σ

′
m+1n + δσ↓

√
mρσ̄σ

′
m−1n − δσ′↑

√
n+ 1ρσσ̄

′
mn+1 − δσ′↓

√
nρσσ̄

′
mn−1)

+ εp

(√
mρσσ

′
m−1n −

√
m+ 1ρσσ

′
m+1n +

√
nρσσ

′
mn−1 −

√
n+ 1ρσσ

′
mn+1

)

+ iδc (m− n) ρσσ
′

mn + κ
(
2
√
m+ 1

√
n + 1ρσσ

′
m+1n+1 − (m+ n)ρσσ

′
mn

)
, (5.24)

where σ̄ represents the flip-spin value, i.e. ↑̄ =↓ and ↓̄ =↑.

With Eq. (5.24), we can study the dynamical evolution of the density operator ρ

for a given initial state. Obviously, we need to introduce a sufficiently large photon

number cutoff. Once we obtain the density operator, all relevant physical quantities

can be readily calculated. An example is given in Fig. 5.9, where we show the time

evolution of the cavity photon number n = Tr[ρn̂] = Tr[ρĉ†ĉ] for the initial state |0; ↑〉.

The three different curves in Fig. 5.9 correspond to different atomic quasi-momentum

k.

As evidenced in Fig. 5.9, due to the presence of cavity decay, a steady state will

eventually be reached. Let us now focus on the properties of the steady state. The



124

k/qr = −10

k/qr = 0

k/qr = 10

p
h

o
to

n
 n

u
m

b
e

r

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

tκ
Figure 5.9 : Time evolution of cavity photon number. The initial state is given by
|0; ↑〉 and we consider the same parameter as in Fig. 5.10(a) with k/qr = −10, 0, 10.
The steady-state values, obtained in the long time limit as shown here, correspond
to red dashed lines at corresponding k values in Fig. 5.10(a).
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steady-state density operator matrix elements can be obtained by equating the RHS of

Eq. (5.24) to zero. The red dashed lines in Fig. 5.10(a)-(c) represent the steady-state

photon number as functions of atomic quasi-momentum k. The horizontal arrows in

the plot represent the cavity photon number by setting qr = 0, in which case our

model reduces to the J-C model and all physical quantities become k-independent.

To have a better understanding of the photon statistics, we study the steady-state

photon number fluctuation. Specifically, we calculate the normalized photon number

fluctuation defined as

∆n =
〈(∆n)2〉
〈n̂〉 =

〈n̂2〉 − 〈n̂〉2
〈n〉 ,

where the expectation values of the operators are obtained with the help of the

steady-state density operator. For a coherent cavity field, the photon fluctuation

is Poissonian and we have ∆n = 1. The solid curves in Fig. 5.10(d)-(f) represent

∆n (left vertical axis) as functions of k, and the horizontal arrows pointing to left

give the values of ∆n from the J-C model by setting qr = 0. For the parameters we

have used, we note that the J-C model always predicts a super-Poissonian photon

statistics, whereas our model gives super-Poissonian photon statistics only for small

atomic quasi-momentum, but Poissonian statistics as k/qr → ±∞.

Last but not least, to characterize the correlation between the atom and the

cavity field, we investigate the so-called negativity which measures the degree of

entanglement for a mixed state system. The negativity is defined asN (ρ) = (||ρTA||1−

1)/2, where ρTA is the partial transpose of the density operator with respect to either

the atom subsystem or the cavity subsystem, and ||ρTA||1 denotes its trace norm

with the definition ||Â||1 ≡ Tr[
√
Â†Â]. A negativity of zero indicates that the two

subsystems (the atom and the cavity, in our case) are not entangled, whereas a positive

negativity means that finite degree of entanglement is present. The dashed curves
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Figure 5.10 : (a)∼(c) Photon number obtained from the mean-field approach (solid
curves) and from quantum mechanical Master equation approach (red dashed curves).
From (a) to (c), Ω = 3κ, 5.6κ, 6κ. The color on the solid curves represents the
normalized decay rate γ/Ω of unstable mean-field states. The black color represents
stable mean-field states. We have used εp = κ, and other parameters are the same
as before. (d)∼(f) Corresponding photon number fluctuation (blue solid curve) and
negativity (green dashed line) obtained from the quantum approach. The parameters
used here are the same in (a)∼(c), respectively. The horizontal arrows indicate results
from the J-C model by taking qr = 0.

in Fig. 5.10(d)-(f) represent the negativity (right vertical axis) in the steady state

as functions of k, and the horizontal arrows pointing to right give the values of the

negativity from the J-C model by setting qr = 0. One can observe that for the chosen

parameters, the J-C model always predicts a finite degree of entanglement between

the atom and the cavity field. By contrast, the degree of entanglement in our model

weakens when k/qr → ±∞.

In Fig. 5.10(a)-(c), in addition to the steady-state photon number obtained from

the quantum treatment (dashed curves), we also plot the photon number nphoton = |c|2

obtained from the mean-field approach (solid curves). In the quantum treatment, the
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steady-state density matrix is obtained by solving a set of linear equations. For a

given k, the solution is unique. Hence we only get one steady-state photon number

for a given atomic quasi-momentum. On the other hand, the mean-field treatment

allows multiple steady-state solutions corresponding to different real roots of the

quartic equation Eq. (5.8). Hence a single k value is associated with more than one

steady-state photon number. However, due to the non-linearity intrinsic in the mean-

field method, not all steady-states are dynamically stable. A straightforward stability

analysis allows us to quantify the dynamical stability of the mean-field states. The

stability information of the mean-field states are encoded as the color value in the solid

curves. Those stable states are represented by black color, while any color other than

black indicates an unstable state, and the color value represents the decay rate (see

the colorbar) of the corresponding state. From Fig. 5.10(a)-(c), we clearly see that

at large atomic quasi-momentum k/qr → ±∞, the Master equation result overlaps

with the stable mean-field branch; while at small |k|, the quantum result deviates

significantly away from the mean-field solution.

The agreement for large |k| and the discrepancy at small |k| are both consistent

with the results of the negativity and photon number fluctuations as presented in

Fig. 5.10(d)-(f): At large |k|, the negativity is small (i.e., atom-cavity entanglement

is weak) and the photon number fluctuation tends to Poissonian (i.e., the photon

field is well approximated by a coherent state), this is exactly the regime where we

expect the mean-field approximation is valid. By contrast, for small |k|, the quantum

calculation indicates that there is non-negligible entanglement between the atom and

the cavity field, and the cavity field itself cannot be assumed as a coherent state.

Hence the mean-field assumption is no longer valid.

The reason why mean-field approximation only works for large |k| is actually
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rather simple. Consider a Raman transition process where the atom jumps from | ↑〉

to | ↓〉. The quasi-momentum k does not change during this process, however the real

momentum changes from k+ qr to k− qr. Therefore the effective two-photon Raman

detuning is not just 2δ, but 2δ + 2qrk/m, where the additional term comes from the

difference of the kinetic energies for different pseudo-spin state |σ〉. In other words,

the SOC renders the two-photon detuning momentum-dependent. In the examples

we presented in this work, we have taken δ = 0. Hence the Raman transition is only

near-resonant for small |k|, and becomes far off-resonant for large |k|. Therefore, for

large |k|, the atom-photon coupling, and hence the atomic back-action to cavity, are

weak. This explains why the mean-field assumption becomes valid in this regime.

5.4 Superradiant Phase in Thermodynamic Limit

So far, we have been focusing on the properties of a single atom. In this section,

we consider a system where the single mode cavity photon field is coupled to many

atoms in the thermodynamic limit. We neglect the bare interactions between atoms.

However, as each atom influences the whole photon field which back acts on the

other atoms, the photon field induces an effective coupling between atoms. When

the atomic COM motion is neglected, our model reduces to the TC model. One of

the most well-known many-body effects in this model is the Dicke superradiant phase

transition [198–200]. Here we investigate how the COM degree of freedom and the

SOC affect the Dicke phase transition.

We consider a canonical ensemble where N atoms inside the cavity are confined

within a box with volume V . In the thermodynamic limit, both N and V are taken

to be infinity but the number density ρ = N/V is finite. The Hamiltonian of this
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system is given by

H = ωLc
†c+

N∑

j=1

ĥj , (5.25)

with the Hamiltonian for the jth atom

ĥj =
k̂2
j

2m
+
qrk̂zj
m

σjz +
ω0

2
σjz +

Ω̃

2
√
N

(
σ+
j c+ σ−

j c
†) , (5.26)

where Ω̃ =
√
NΩ is the rescaled Raman coupling strength, and k̂j is the three dimen-

sional quasi-momentum operator for the jth atom.

To investigate the thermodynamic phase transition at temperature T , we take a

similar approach as in Ref. [200] in which the Dicke phase transition in the TC model

is investigated. The canonical partition function Z = Tr
(
e−βH

)
with β = 1/ (kBT )

can be calculated as

Z =
V N

(2π)3N

∫
d2α

π

∫ ( N∏

j=1

dkj

)
∑

{σj}
〈Ψ| e−βH |Ψ〉 , (5.27)

where we have chosen the states

|Ψ〉 = |α〉
N∏

j=1

|kj〉 |σj〉 (5.28)

as our basis states to evaluate the trace. Here |α〉 is the photon coherent state, i.e.,

the eigenstate of photon annihilation operator such that c|α〉 = α|α〉, |kj〉 is the

momentum eigenstate, and |σj〉 is the eigenstate of σjz for the jth atom. By using the

condition N →∞, we obtain

〈α| e−βH |α〉 = exp

[
−β
(
ωL |α|2 +

N∑

j=1

ĥαj

)]
, (5.29)

where

ĥαj =
k̂2
j

2m
+
qrk̂zj
m

σjz +
ω0

2
σjz +

Ω̃

2
√
N

(
σ+
j α + σ−

j α
∗) . (5.30)
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As the summation over spin and integral over momentum in Eq. (5.27) are indepen-

dent for different atoms, the partition function can be simplified as

Z =

∫
d2α

π
e−βωL|α|2

[
V

(2π)3

∫
dk
(
e−βǫ

+

+ e−βǫ
−
)]N

, (5.31)

where

ǫ± =
k2

2m
±

√√√√
(
qrkz
m

+
ω0

2

)2

+

(
Ω̃

2

)2
|α|2
N

(5.32)

are the eigenvalues of ĥαj in Eq. (5.30). Integrating over the complex angle of α and

x, y components of k in (5.31), and letting u = |α|2
N

, we can rewrite the partition

function as

Z = C1

∫ ∞

0

du exp {N [F (u)]} , (5.33)

with constant C1 = N
(
mV
4π2β

)N
and

F (u) = −βωLu+ log S (u) , (5.34)

S (u) = 2

∫
dkz exp

(
−βk

2
z

2m

)
cosh ξ (kz, u) , (5.35)

ξ (kz, u) = β

√√√√
(
qrkz
m

+
ω0

2

)2

+

(
Ω̃

2

)2

u . (5.36)

The Laplace’s method [200] is used to deal with the integral over u in Eq. (5.33). For

N →∞, this yields

Z = C2 max
u∈[0,∞)

exp {N [F (u)]} , (5.37)

where C2 is a constant and we denote that the maximum of F (u) is reached at u = u0.

We numerically obtain a u0 > 0 by taking the first and second order derivatives of

F (u), and it is straightforward to show that u0 is actually the normalized photon

number

u0 =

〈
c†c
〉

N
, (5.38)
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Figure 5.11 : Normalized photon number
〈
c†c
〉
/N as a function of temperature T

and effective Raman coupling strength Ω̃ with Er = 0.5ω0, where
〈
c†c
〉
is the average

photon number and N is the atom number. Here
〈
c†c
〉
/N > 0 corresponds to the

superradiant phase and
〈
c†c
〉
/N = 0 corresponds to the normal phase. We take

ωL = 0.8ω0 in these figures.

where
〈
c†c
〉
/N > 0 corresponds to the superradiant phase with a macroscopic photon

excitation appearing in the thermodynamic limit; and
〈
c†c
〉
/N = 0 corresponds to

the normal phase.

Figure 5.11 shows
〈
c†c
〉
/N as a function of the temperature T and the rescaled

Raman coupling strength Ω̃ with the SOC strength Er = 0.5ω0. The red solid line

in the figure represents the critical coupling strength Ω̃c (i.e., the phase boundary):

Above this line, we have
〈
c†c
〉
/N > 0 and the system is in the superradiant phase; and
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below this line,
〈
c†c
〉
/N = 0 which corresponds to the normal phase. In Fig. 5.12(a),

we plot Ω̃c as a function of T for several different values of Er. As in the previous

single-atom case, we recover the usual TC model when Er = 0 (bottom curve in

Fig. 5.12(a)). For the TC model, Ω̃c is a monotonically increasing function of T ,

and Ω̃c = 2
√
ω0ωL at T = 0. For finite Er, Ω̃c is larger than the corresponding

value in the TC model. In other words, in the presence of the SOC, the regime of

normal phase is enlarged, which is consistent with the single-atom property that the

SOC enlarges the n = 0 regime with no photons. The upward shift of Ω̃c at finite

Er is more pronounced at lower temperature. This may not be surprising as, at

lower temperature, the average atomic COM kinetic energy is lower and hence the

photon recoil plays a more significant role. This temperature dependent shift leads to

another important feature brought by the SOC: Ω̃c is no longer a monotonic function

of T , as can be easily seen in Fig. 5.12(a), and reaches the minimum value at a finite

temperature.

A consequence of the nonmonotonic behaviour of Ω̃c is that the normal phase

may become reentrant as the temperature varies. This is depicted in Fig. 5.12(b),

where we plot
〈
c†c
〉
/N as a function of T with Ω̃ = 2.9ω0 for Er = 0.5ω0 (red solid

line) and Er = 0 (blue dashed line). For the TC model (Er = 0), the system is in

the superradiant phase at sufficiently low temperature when Ω̃ > 2
√
ω0ωL (as is the

case shown in Fig. 5.12(b)) with finite
〈
c†c
〉
/N . As temperature increases,

〈
c†c
〉
/N

decreases monotonically until it reaches 0 at the critical temperature Tc which is given

by

4ω0ωL

Ω̃2
= tanh

(
ω0

2ωLkBTc

)
. (5.39)

For the example shown in Fig. 5.12(b) with finite Er, the system is in the normal

phase with
〈
c†c
〉
/N = 0 at both the low and the high temperature ends, and is in the
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superradiant phase in an intermediate temperature window between T
(1)
c and T

(2)
c .

A remark is in order. In our derivation of the partition function Z in Eq. (5.27),

we have treated the N atoms as distinguishable particles which obey the Boltzmann

distribution. In other words, we have ignored the quantum statistics of atoms. This

should be a good assumption at high temperature. We may estimate the temperature

regime in which this assumption is valid as follows. Let us assume that the atoms

are ideal bosons. The critical temperature for the bosons to form a Bose-Einstein

condensate is given by

TBEC = 3.31
~
2ρ

2
3

mkB
≈ 3× 10−4

(
~ω0

kB

)
, (5.40)

where we have taken typical values such that the atomic number density ρ = 1013cm−3,

m the mass of 87Rb atom, and energy splitting between two ground state hyperfine

states ω0 = 2π × 4.81MHz. When T ≫ TBEC, quantum statistics is not important,

and the bosons can in practice be treated as distinguishable particles. As TBEC is

very small in our unit system, our results as presented in Fig. 5.11 and Fig. 5.12

should largely remain valid for typical experimental situations. Note that as TBEC

is roughly the same as Fermi degenerate temperature, this estimate is also valid for

a system of Fermi gas. How to properly incorporate quantum statistics of atoms in

the calculation for temperatures within the quantum degenerate regime remains a

challenge and will be investigated in the future.

5.5 Summary

In Section 5.2, we have considered a system consisting of a single atom (or a non-

interacting condensate) whose two hyperfine spin ground states are Raman coupled by

two light fields, one of which is a quantized cavity field. In this setting, the internal and
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external degrees of freedom of the atom and the cavity field are dynamically coupled.

This coupling leads to a dynamic SOC for the atom. We have calculated the atomic

dispersion relation and examined its stability and dynamic properties. In comparison

to the static SOC generated by two classical laser beams which are not affected by

the atomic dynamics, the cavity feedback dramatically modifies the properties of

the system. Besides giving rise to new physics in the study of synthetic SOC in

cold atoms, our system also represents a new cold-atom-based cavity optomechanical

system. From a practical point of view, all the ingredients proposed in this work

have been demonstrated in various labs. Hence our proposal can be readily tested

in experiment. In fact, recent work reported in Refs. [176, 177] investigated a BEC

inside a ring cavity. A straightforward modification can be used to study the physics

predicted in our work. In the future, it will be interesting to extend the study to

include inter-atomic interactions and to the case where a system of fermions are

Raman coupled via cavity fields. Our current work on the single-particle physics will

serve as an important first step towards understanding the many-body properties of

the system.

In Section 5.3, we have studied spin-orbit coupled cold atoms inside a ring cavity

system, employing both the mean-field theory and the full quantum mechanical Mas-

ter equation approach. By treating both light and atom on equal footing and seeking

the self-consistent solution in both approaches, we have found: (1) cavity-assisted

SOC dramatically modifies atomic dispersion relation, (2) intriguing dynamical in-

stabilities exist in the system, (3) atom’s back-action onto cavity field also leads to

non-trivial atom-photon coupling that is fundamentally different from either the sys-

tem with classical-laser induced SOC in the absence of the cavity or the J-C model

where the atomic COM motion is neglected (i.e., by taking qr = 0). We have also
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explored correspondence and discussed the connection between the mean-field and

the quantum approaches. The two distinctively different approaches provide us with

a deeper understanding and complementary insights into this system. We conclude

that the synthesis of cavity QED and SOC is not a trivial combination and interesting

new physics emerges in this setting. Our work will serve as the first steps for further

exploration. For instance, we have only considered a single-mode plane-wave cavity.

What would happen if a more commonly used standing-wave cavity is employed? We

have not taken into account the quantum statistics of the atom, nor the interactions

between atoms. A theoretical investigation with these factors taken into account will

be much more challenging, but perhaps also much more exciting, as this would truly

represent a new frontier of research where cavity QED meets many-body physics.
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Chapter 6

Summary

In this dissertation, we started from the historical notes of ultra-cold atomic physics,

introduced the very recent experimental development in creating light-induced gauge

potentials that allow systems of charge-neutral atoms to behave like charged par-

ticles in a magnetic field. We theoretically studied novel ground state properties

of spin-orbit coupled atomic systems, including single-particle Hamiltonians, a non-

interacting Fermi sea, a two-body bound state, and many-body systems at the mean-

field level. We found out that spin-orbit coupling makes a dramatic change to the

band structure, may favor pairing at finite center-of-mass momentum for two body

bound states, and induces a Fulde-Ferrell type of Cooper pairs for many body systems.

We noted that beyond symmetry breaking paradigm of characterization of quantum

states, topological order is a new and important concept in modern physics. We

explored the topological state classification in a gapless Fulde-Ferrell state in our spe-

cific realization of the Hamiltonian. Based on the ground state properties and phase

transitions, we considered non-equilibrium dynamical response properties for systems

undergoing a parameter quench. We discovered our non-integrable quantum system

undergoes non-trivial dynamical evolution, depending on a different system param-

eter (Zeeman field strength in our case) of initial and final values. We mapped out

the complete post-quench phase diagram and investigated each phase in great details.

We are surprised but delighted to find out how dynamical topological phases which

support topologically protected edge states can naturally emerge in this model. We
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also comment that the relevant dynamics predicted by our work are within reach of

current cold-atom experimental setups. Going beyond a semi-classical description of

coherent laser fields, which is used to assist two-photon Raman processes, we propose

to put atoms in the cavity field and study the fully dynamical coupling between atom’s

pseudo-spin, orbital degrees of freedom including center-of-mass/harmonic oscillator

state, and quantized light field. We solved the “full” system using semi-classical

theory and the full quantum master equation approach. We have shown that rich

physics are emergent in this trio system, such as loop structure in energy dispersion

relation, dynamical instabilities, vanishing atom-photon entanglement at large atomic

momentum tail and re-entrant superadiant phase in the thermodynamic limit. The

two distinctively different approaches provide us with a deeper understanding and

complementary insights into this system. We conclude that the synthesis of cavity

QED and SOC is not a trivial combination and new physics emerges naturally.

In retrospect, we note that ultra-cold atomic systems in the past few decades

have demonstrated a wide range of quantum simulation for condensed-matter sys-

tems, where many-body effects determine the basic physics of the system: BEC

creation [10–12,201], Feshbach resonances [33], Tonks-Girardeau gases [202,203], the

superfluid to Mott-insulator transition [13], Berezinskii-Kosterlitz-Thouless physics

for bosonic systems in two-dimensions [204], the crossover from BEC to BCS su-

perfluid in fermions [205], and synthetic gauge field manipulation for bosons and

fermions [25–27,30–32,184,206]. We are truly in an exciting era of fulfilling and sur-

passing Richard Feynman’s vision of building quantum simulators, in order to deepen

our understanding of the quantum mechanical nature of the universe. Ultra-cold

atomic system provides such a clean and versatile tabletop platform, where theorists

and experimentalists meet and collaborate to make significant progresses together.
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Chapter 7

Epilogue

Ultra-cold atoms and condensed-matter physics is the study of various collective be-

havior of infinitely complex assemblies of electrons, nuclei, magnetic moments, spin,

atoms, molecules or qubits. The complexity is reflected in the size of the state space,

which grows exponentially with the number of particles, reminiscent of the ’curse

of dimensionality’ commonly encountered in the machine learning and deep learning

field of studies. Despite the curse, the machine learning community has developed

various techniques to turn it into a blessing. Remarkable progresses have been made,

over the last few decades but most prominently within the last ten years, to recog-

nize, classify, interpolate, and characterize complex sets of data. It is one of today’s

most rapidly growing technical fields, lying at the intersection of computer science,

applied statistics, applied mathematics and electrical and computer engineering, and

at the core of artificial intelligence and data science. The rapid progresses have been

driven by the combination of development of new learning algorithms and theories,

new programming frameworks and hardware infrastructures, and the ongoing explo-

sion in the availability of online data and low-cost computations. Not to mention

and going into details of how the adoption of machine-learning based solutions have

been playing a more and more important role throughout various domain science,

technology and commerce, I would like to note that machine learning has been on

the frontier of fundamental research in physics, and is being used to solve long out-

standing problems in quantum science. Machine learning and in particular, deep
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learning approaches have been used to search for exotic particles and improved the

search power and precision of high-energy particle colliders [207], an exact mapping

between the variational renormalization group and deep learning has been made [208],

quantum algorithms for supervised and unsupervised machine learning has been pro-

posed [209,210], machine learning has been used to classify phases of matter with one

specific example of classifying phases and phase transitions in the Ising model [211],

and solving many-body problems with machine learning based approaches [212–223]

(for a more comprehensive and actively updating list of publications combing the

fields of physics especially quantum mechanics and machine learning, please see Roger

Melko and Miles Stoudenmire’s blog page [224]).

Nonetheless, beyond the news headlines, there are serious efforts quietly emerging

in the corridors and on the blackboards of academia and industry on this nascent field

of quantum machine learning. The field is still in the preliminary stages of defining

itself. To some, it is the (obvious) plan to implement machine learning on future

quantum hardware, or at least, to explore whether any advantage exists in doing

so. However, to others it is using existing machine learning algorithms to attack the

myriad of ultra-complex problems encountered on a daily basis by physicists studying

quantum systems using conventional computers. Finally, to some it is the opportunity

to take strategies developed during years of struggle on these ultra-complex problems,

and to use this experience to improve machine learning algorithms for the larger

community of data scientists. Whatever it means, it is an exciting time to be involved

in quantum machine learning, as we watch the field begins to take shape.

Finally, I would like to mention a few words on how to get started with machine

learning based on my own experience from the past one or two years. To be honest, it

is actually quite overwhelming to digest all the new progresses within a short period of
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time, while still multitasking on one’s own research works. Here are my suggestions:

1. Sign up for the free course of Machine Learning taught by Andrew Ng (As-

sociate Professor, Stanford University; Chief Scientist, Baidu; Chairman and

Co-founder, Coursera) at coursera.org:

• Attentively watch the video lectures, take notes and finish the homework

coding assignments in Matlab or Octave.

• This course gives an excellent overview of the Machine Learning in a very

compact presentation, and going through the book “An Introduction to

Statistical Learning with Applications in R” by Gareth James, Daniela

Witten, Trevor Hastie and Robert Tibshirani at the same time should

be very helpful in getting the details right. (You don’t have to know R

scripting language to be able to read and understand this book’s materials.)

2. (Optional) Sign up for the Machine Learning Specialization taught by Emily

Fox and Carlos Guestrin at coursera.org offered by University of Washington:

• This course focuses on applied machine learning algorithms and real world

datasets exposure experience. Most of data insights are only available from

transforming, visualizing, statistically compiling the raw dataset before

feeding them as modeling inputs. Python is a great and versatile tool for

data manipulations.

3. (Optional) I had an internship experience at Amazon over the summer of 2016.

I worked as an applied scientist at the Kindle engineering team in Seattle, WA:

• My project was to build a customer level response-propensity model for

mobile push notifications. I had Kindle app datasets of all customers’
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purchase history, last page read information, interaction response for push

notifications, etc. The dataset is stored on a Yarn cluster as csv format,

with more than 6 billion records (around 10TB).

• The idea was to build a prediction/classification model for future push-

notification responses. Intuitively, if the customer was very active using

the app and making book purchases, the customer would be very likely

to respond to push notifications (such as deals, promotions, or suggested

books, etc.) sent out by campaign owners (marketing team at kindle team).

• Working with an experienced applied scientist (Kannan Shah) as my men-

tor, I learned to aggregate large datasets using Apache Spark in Java,

preprocess and convert the datasets into compressed JSON files and store

them on AWS S3 service. Besides necessary engineering efforts in cod-

ing, we invested our time heavily in feature engineering – a process that

involves a combination of science and product sense to define functions

that can transform and reveal the structure of datasets. We came up with

a sliding-observation time window strategy that identifies the target and

takes into account of historical records within a cutoff time window, and

carefully avoided data leakage problems.

• At modeling stage, we used logistic regression with L1 and L2 regulariza-

tion to learn the training data and perform classifications for test data, and

studied various metrics to evaluate and improve the model performance.

4. Work on a predictive modeling project from a data competition challenge web-

site, such as kaggle.com:

• It is relatively easy for anyone to wrangle the dataset in anyway they want
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and build a model that learns from the training data and makes some

better-than-random prediction for test data. However, it is challenging

yet very important for one to make consistent improvements in reducing

generalization error.

• Kaggle provides such a platform that everyone has access to the same

modeling goal, same training/test dataset, with target information hidden

from test data. A leaderboard (e.g. 3:7 ratio over random split of test data

for public and private leaderboard respectively) helps one to benchmark

and compete against others’ best predictions.

• The forum of each competition is dedicated to experience sharing, code

sharing, and asking questions. The community is flourished by numerous

passionate practitioners of data science and machine learning, and many

of them have either worked on a lot of past competitions, or they are full-

time data scientist or university professors who work on the projects just

for fun and learning new things.

• It is best to learn from doing and coding in the vast fields of machine

learning applications. Theory and concepts are important but one will

typically learn so much clearer and more by actually working on a concrete

problem.

5. Deep learning:

• The field of deep learning has attracted tremendous attention due to its

robust neural network learning functionality and some level of automatic

discovery of “artificial intelligence”.

• From basic mathematical tools, machine learning concepts to most estab-
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lished deep learning algorithms, I would recommend reading the part I

and II of the Deep Learning book by Ian Goodfellow and Yoshua Bengio

and Aaron Courville, MIT Press ∗. Part III emphasizes on deep learning

research that are more advanced yet speculative, which can be left to be

revisited once one feels comfortable with the fundamentals.

• Follow the cs231n course offered by Stanford University and work on

projects using deep learning †

• Kaggle has many data challenges that involve primarily deep learning mod-

elings.

∗ Full HTML format for the web version of the book is available at

http://www.deeplearningbook.org

† Familiarize oneself with TensorFlow and try to reproduce the known model performance from

some famous benchmark datasets, such as MNIST, ImageNet, PASCAL VOC etc.



145

Appendix A

Derivations of 2-body Wavefunctions

In Sec. 2.2, we presented the results concerning the attractive s-wave contact inter-

action between two un-like spins. Solving the two-particle Schrodinger equation is

the key process. Here we present more detailed mathematical derivations, especially

regarding to the generalized Cooper Equations.

A.1 Generalized Cooper Equation

We start from the explicit form of single particle Hamiltonian

H0 =
~
2

2m
(k2x + k2y + k2z) + v1kxσx + v2kyσy + v3kzσz + hσz + δσx + ησy (A.1)

(A.2)

and denote the two body wavefunction as

|Ψ〉q =
∑

k

′ [
ψ↑↓(k)c

†
q

2
+k↑c

†
q

2
−k↓ + ψ↓↑(k)c

†
q

2
+k↓c

†
q

2
−k↑ + ψ↑↑(k)c

†
q

2
+k↑c

†
q

2
−k↑ + ψ↓↓(k)c

†
q

2
+k↓c

†
q

2
−k↓

]
|0〉

(A.3)

where
∑′

k denotes summation over positive momentum k. We solve the two-body

Schrodinger equation
(
H0 + Hint

)
|Ψ〉q = Eq|Ψ〉q by denoting S(p) = ǫp + h + v3pz

and T (p) = ǫp−h−v3pz, U(p) = v1px+ δ− i(v2py+η) , V (p) = v1px+ δ+ i(v2py+η).
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Then we have the single particle Hamiltonian as,

H0 =
∑

p

S(p)c†p↑cp↑ + T (p)c†p↓cp↓ + U(p)c†p↑cp↓ + V (p)c†p↓cp↑

=
∑

p

(
S(p)c†p↑ + V (p)c†p↓

)
cp↑ +

(
T (p)c†p↓ + U(p)c†p↑

)
cp↓

Applying H0 to |Ψ〉q using above notations, we have

H0|Ψ〉q =
∑

k′

ψ↑↓(k
′)[S(

q

2
+ k)c†q

2
+k↑ + V (

q

2
+ k)c†q

2
+k↓]c

†
q
2
−k↓
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q

2
− k)c†q

2
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q

2
− k)c†q

2
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q
2
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2
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2
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2
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and applying the interaction Hamiltonian to |Ψ〉q gives us

Hint|Ψ〉q =
g

V

∑

k′

′[
ψ↑↓(k

′)− ψ↓↑(k
′)
]
c†q

2
+k↑c

†
q

2
−k↓ (A.4)

After grouping terms and some simplifications, we obtain four coupled equations as
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(Ek,q − 2v3kz)ψ↑↓(k) =
g

V

∑

k′

′[
ψ↑↓(k

′)− ψ↓↑(k
′)
]
+
[
V (

q

2
− k)

]
ψ↑↑(k) +

[
U(
q

2
+ k)

]
ψ↓↓(k)
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g

V

∑

k′
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]
+
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q

2
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(Ek,q − 2h− v3qz)ψ↑↑(k) =
[
U(
q

2
− k)

]
ψ↑↓(k) +

[
U(
q

2
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(Ek,q + 2h+ v3qz)ψ↓↓(k) =
[
V (

q

2
+ k)

]
ψ↑↓(k) +

[
V (

q

2
− k)

]
ψ↓↑(k)

where Ek,q = Eq − ǫq

2
+k − ǫq

2
−k.

Let’s introduce ψs(k) = 1√
2
[ψ↑↓(k) − ψ↓↑(k)] and ψt(k) = 1√

2
[ψ↑↓(k) + ψ↓↑(k)],

ψu = 1√
2
(ψ↑↑ + ψ↓↓), ψv = 1√

2
(ψ↑↑ − ψ↓↓), and after some adding and subtracting

equations, we have

Ek,qψt −2v3kzψs = (v1qx + 2δ)ψu + i(v2qy + 2η)ψv (A.5)

Ek,qψs −2v3kzψt =
2g

V

′∑

k′

ψs − 2v1kxψv − 2v2ikyψu (A.6)

Ek,qψu − (2h+ v3qz)ψv = (v1qx + 2δ)ψt + 2iv2kyψs (A.7)

Ek,qψv − (2h+ v3qz)ψu = −2v1kxψs − i(v2qy + 2η)ψt (A.8)

In matrix form, it is written as




−2v3kz Ek,q −(v1qx + 2δ) −i(v2qy + 2η)

Ek,q −2v3kz 2iv2ky 2v1kx

−2iv2ky −(v1qx + 2δ) Ek,q −(2h + v3qz)

2v1kx i(v2qy + 2η) −(2h+ v3qz) Ek,q







ψs

ψt

ψu

ψv




=




0

g
V

∑
k ψs

0

0




Since single particle spectrum Ek = ~2k2

2m
±
√
(v1kx + δ)2 + (v2ky + η)2 + (v3kz + h)2

has lowest energy at finite k value, we assume the q vector as q = (qx, qy, qz). Then
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we have,



Ek,q −(v1qx + 2δ) −i(v2qy + 2η)

−(v1qx + 2δ) Ek,q −(2h + v3qz)

i(v2qy + 2η) −(2h+ v3qz) Ek,q







ψt

ψu

ψv




=




2v3kzψs

2iv2kyψs

−2v1kxψs




By applying the Cramer’s rule in matrix algebra, we have the following relations

ψt = 2

∣∣∣∣∣∣∣∣∣∣

v3kz −(v1qx + 2δ) −i(v2qy + 2η)

iv2ky Ek,q −(v3qz + 2h)

−v1kx −(v3qz + 2h) Ek,q

∣∣∣∣∣∣∣∣∣∣

ψs/M

Ek,qψs −2v3kzψt =
2g

V

′∑

k′

ψs − 2v1kxψv − 2v2ikyψu (A.9)

ψu = 2

∣∣∣∣∣∣∣∣∣∣

Ek,q v3kz −i(v2qy + 2η)

−(v1qx + 2δ) iv2ky −(v3qz + 2h)

i(v2qy + 2η) −v1kx Ek,q

∣∣∣∣∣∣∣∣∣∣

ψs/M

ψv = 2

∣∣∣∣∣∣∣∣∣∣

Ek,q −(v1qx + 2δ) v3kz

−(v1qx + 2δ) Ek,q iv2ky

i(v2qy + 2η) −(v3qz + 2h) −v1kx

∣∣∣∣∣∣∣∣∣∣

ψs/M

where

M =

∣∣∣∣∣∣∣∣∣∣

Ek,q −(v1qx + 2δ) −i(v2qy + 2η)

−(v1qx + 2δ) Ek,q −(v3qz + 2h)

i(v2qy + 2η) −(v3qz + 2h) Ek,q

∣∣∣∣∣∣∣∣∣∣

.

Furthermore, the determinant of M is given by

det(M) = Ek,q[E2k,q − (v1qx + 2δ)2 − (v2qy + 2η)2 − (v3qz + 2h)2] ≡M

Then we have the Cooper equation after some algebra,

1/g =
1

V

∑

k

1

Ek,q − 2v3kz
2M1

M
+ 2v1kx

2M2

M
+ 2v2iky

2M3

M
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where

M1 =

∣∣∣∣∣∣∣∣∣∣

v3kz −(v1qx + 2δ) −i(v2qy + 2η)

iv2ky Ek,q −(v3qz + 2h)

−v1kx −(v3qz + 2h) Ek,q

∣∣∣∣∣∣∣∣∣∣

,

M2 =

∣∣∣∣∣∣∣∣∣∣

Ek,q −(v1qx + 2δ) v3kz

−(v1qx + 2δ) Ek,q iv2ky

i(v2qy + 2η) −(v3qz + 2h) −v1kx

∣∣∣∣∣∣∣∣∣∣

,

M3 =

∣∣∣∣∣∣∣∣∣∣

Ek,q v3kz −i(v2qy + 2η)

−(v1qx + 2δ) iv2ky −(v3qz + 2h)

i(v2qy + 2η) −v1kx Ek,q

∣∣∣∣∣∣∣∣∣∣

Using regularization relation and more compact summation notations, we arrive at

the generalized Cooper equation, which is exactly the same as Eq. 2.21,

m

4π~2as
=

1

V

∑

k




1

Ek,q −
4E2

k,q

∑3
i=1 v

2
i k

2
i−4[

∑3
i=1 viki(viqi+2Λi)]

2

Ek,q(E2
k,q−

∑3
i=1(viqi+2Λi)2)

+
1

2ǫk


 (A.10)

where v = (v1, v2, v3), q = (q1,q2, q3), Λ = (δ, η, h), and singlet wavefunction is

determined from Eq. A.9 accordingly. The unnormalized singlet wavefunction is

given by

ψs =
1

Ek,q −
4E2

k,q

∑3
i=1 v

2
i k

2
i−4(

∑3
i=1 viki(viqi+2Λi))

2

Ek,q(E2
k,q−

∑3
i=1(viqi+2Λi)2)

. (A.11)

It is worthy to point out that the exact solution of two-particle Schrodinger

equation is equivalent to computing the inverse vertex function using the relation

Re
[
Γ−1
2b (q = 0;ω = EB) = 0

]
. The bonus is that two-particle Schrodinger equation

gives singlet and triplet wavefunctions, in addition to binding energy expressions.
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A.2 Inverse Vertex Function

In this section, we show that using functional path integral approach, and performing Gaussian fluctuation expansions,

we are able to show the finite bound state is also stable beyond mean field assumptions.

We employ the functional path integral method [83, 84] to study the problem and consider the partition function,

Z =

∫
D[ψ (r, τ) , ψ̄ (r, τ)] exp

{
−S

[
ψ (r, τ) , ψ̄ (r, τ)

]}
, (A.12)

where the action

S
[
ψ, ψ̄

]
=

∫ β

0

dτ

[∫
dr
∑

σ

ψ̄σ (r, τ) ∂τψσ (r, τ) +H
(
ψ, ψ̄

)
]
.

is written as an integral over imaginary time τ . Here β = 1/(kBT ) is the inverse temperature and H
(
ψ, ψ̄

)
is obtained

by replacing the field operators ψ+ and ψ with the grassmann variables ψ̄ and ψ, respectively. We can use the Hubbard-

Stratonovich transformation to transform the quartic interaction term into the quadratic form as:

e−U0
∫

dxdτψ̄↑ψ̄↓ψ↓ψ↑ =

∫
D
[
∆, ∆̄

]
exp

{∫ β

0

dτ

∫
dr

[
|∆(r, τ)|2

U0

+
(
∆̄ψ↓ψ↑+∆ψ̄↑ψ̄↓

)
]}

, (A.13)

from which the pairing field ∆ (r, τ) is defined.

Let us now formally introduce the 4-dimensional Nambu spinor Φ (r,τ) ≡ [ψ↑, ψ↓,ψ̄↑, ψ̄↓]
T and rewrite the action as,

Z =

∫
D[Φ, Φ̄; ∆, ∆̄] exp

{
−
∫
dτ

∫
dr

∫
dτ ′
∫
dr′
[
−1
2
Φ̄(r, τ)G−1Φ(r′, τ ′)− |∆(r, τ)|2

U0

δ(r− r′)δ(τ − τ ′)
]
− β

V

∑

k

ξk

}
,

where V is the quantization volume and G is the single-particle Green function.
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Integrating out the original fermionic fields, we may rewrite the partition function as

Z =

∫
D[∆, ∆̄] exp

{
−Seff

[
∆, ∆̄

]}
,

where the effective action is given by

Seff

[
∆, ∆̄

]
=

∫ β

0

dτ

∫
dr

{
−|∆(r, τ)|2

U0

}
− 1

2
Tr ln

[
−G−1

]
+
β

V

∑

k

ξk.

where the trace is over all the spin, spatial, and temporal degrees of freedom. To proceed, we restrict ourselves to the

Gaussian fluctuation and expand ∆ (r, τ) = ∆0 + δ∆(r, τ). The effective action is then decomposed accordingly as

Seff = S0 +∆S, where the saddle-point action is

S0 =

∫ β

0

dτ

∫
dr

(
−∆

2
0

U0

)
− 1

2
Tr ln

[
−G−1

0

]
+
β

V

∑

k

ξk , (A.14)

where G−1
0 has the same form as G−1 with ∆ replaced by ∆0, and, in the momentum space, the fluctuation action takes

the form [k ≡ (k, iωm) and q ≡ (q, iνn)]: ∆S =
∑

q,iνn

[
− 1
U0
δ∆(q)δ∆̄(q)

]
+ 1

2

(
1
2

)
Trσ

∑
k,q [G0 (k) Σ (q)G0 (k − q) Σ (−q)],

where

Σ (q) =




0 iδ∆(q) σ̂y

−iδ∆̄ (−q) σ̂y 0


 . (A.15)

The low-energy effective two-body interaction is characterized by the vertex function, which we derive in this sec-

tion. We shall consider the normal state where the pairing field vanishes, i.e., ∆0 = 0, in which case the Green
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function reduces to its non-interacting form as G0(k) = Diag{ĝ0(k),−ĝ0(−k)}. The fluctuation action is given by

∆S =
∑

q [−Γ−1 (q)] δ∆(q)δ∆̄(q), where Γ−1(q) is the inverse vertex function.

Γ−1(q, iνn) =
m

4π~2as
− 1

2V

∑

k

[
1

iνn − ǫh,q/2+k,+ − ǫ−h,q/2−k,+

+
1

iνn − ǫh,q/2+k,− − ǫ−h,q/2−k,−
+

1

ǫk

]

+
1

4V

∑

k

[
1 +

(h2 + hvqz + v2(q/2 + k) · (q/2− k))√
(v(qz/2 + kz) + h)2 + v2(q/2 + k)2⊥

√
(v(qz/2− kz)− h)2 + v2(q/2− k)2⊥

]
C̄2b
res(q, iνn;k)

where

C̄2b
res(q, iνn;k) =

1

iνn − ǫh,q/2+k,+ − ǫ−h,q/2−k,+

+
1

iνn − ǫh,q/2+k,− − ǫ−h,q/2−k,−

− 1

iνn − ǫh,q/2+k,+ − ǫ−h,q/2−k,−
− 1

iνn − ǫh,q/2+k,− − ǫ−h,q/2−k,+

where

ǫh,q/2+k,+ =
~
2(q/2 + k)2

2m
+
√
(v(q/2 + k)z + h)2 + v2(q/2 + k)2⊥ (A.16)

=
1

2
(
q2

4
+ k2 + qk cos θ) +

√
(qz/2 + kz + h)2 + (q/2 + k)2 − (qz/2 + kz)2 (A.17)

=
1

2
(
q2

4
+ k2 + qk cos θ) +

√
h2 + 2(qz/2 + kz)h+ (

q2

4
+ k2 + qk cos θ) (A.18)

ǫ−h,q/2−k,+ =
1

2
(
q2

4
+ k2 − qk cos θ) +

√
h2 − 2(qz/2− kz)h+ (

q2

4
+ k2 − qk cos θ) (A.19)

ǫh,q/2+k,− =
1

2
(
q2

4
+ k2 + qk cos θ)−

√
h2 + 2(qz/2 + kz)h + (

q2

4
+ k2 + qk cos θ) (A.20)

ǫ−h,q/2−k,− =
1

2
(
q2

4
+ k2 − qk cos θ)−

√
h2 − 2(qz/2− kz)h+ (

q2

4
+ k2 − qk cos θ) (A.21)



153

Setting Γ−1(q = q0, iνn = EB) = 0 should give us exactly the same form of generalized Cooper equation. However,

the algebra is rather involved to show explicitly, and we checked numerically that it is indeed equivalent.
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Appendix B

Basis Expansion Method

In this appendix, we supplement results presented in Sec. 3.2 with more mathematical derivations regarding the eigenspec-

trum with boundary conditions. before using basis expansion method, I tried one whole week of finite-difference method,

it turns out the finite-difference method does not have good convergence rate for this system in 1D, where length L is

ideally set to infinity, otherwise the finite size effect will kick in where gapless mode will become gapped. Basis expansion

method is a method with global function that automatically satisfies boundary condition. Finite difference method gives

a local update and builds up a sparse matrix, though Hermitian. Former one has exponential convergence rate, whereas

the latter one gives quadratic convergence according to the book “Lecture Notes on Solving Large Scale Eigenvalue Prob-

lems” by Prof. Dr. Peter Arbenz D-INFK ETH Zurich (http://people.inf.ethz.ch/arbenz/ewp/Lnotes/lsevp2010.pdf).

We start from Eq. 3.11 and write out explicitly the thermodynamic potential after momentum space integration as,

Ω

V
= − |∆|

2

8πas
+

1

V

∑

k

[
ξk+qex/2 + ξ−k+qex/2

2
− 1

4

4∑

η=1

|Eη
k|+

|∆|2
2ǫk
− 1

2β

4∑

η=1

ln (1 + exp(−β|Eη
k|))
]

(B.1)

= − |∆|
2

8πas
+

1

(2π)3

∫
d3k

[
k2 +

q2

4
− µ− 1

4

4∑

η=1

|Eη
k|+

|∆|2
2ǫk
− 1

2β

4∑

η=1

ln (1 + exp(−β|Eη
k|))
]

(B.2)
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and Eη
k are diagonalized for given ∆ , q , µ as variational parameters.

For the sake of simplicity in coding, I choose hσz as the Zeeman field and BdG Hamiltonian is given by

HBdG =




ξk+ q
2
ez + v3(kz +

q
2
) + h v1kx − iv2ky 0 −∆

v1kx + iv2ky ξk+ q
2
ez − v3(kz + q

2
)− h ∆ 0

0 ∆ −(ξk− q
2
ez − v3(kz − q

2
) + h) v1kx + iv2ky

−∆ 0 v1kx − iv2ky −(ξk− q
2
ez + v3(kz − q

2
)− h)




where v1 = v2 = v3 = v . I put hard wall boundaris along y direction and at y = 0 and y = L the wavefunction vanishes.




u(y)

α(y)

β(y)

v(y)




=

Nmax∑

n=1

√
2

L
sin(

nπy

L
)




un

αn

βn

vn




(B.3)

Nmax = 200 is a good cutoff. To convert the coupled differential equations into matrix equation, we replace ivky by v∂y,
(
k2x + k2z +

q2

4
+ kzq + v3(kz +

q

2
) + h− ∂yy

)
u(y) + (vkx − v∂y)α(y)−∆v(y) = Eu(y)

(vkx + v∂y)u(y) +

(
k2x + k2z +

q2

4
+ kzq − v3(kz +

q

2
)− h− ∂yy

)
α(y) + ∆β(y) = Eα(y)

∆α(y)−
(
k2x + k2z +

q2

4
− kzq − v3(kz −

q

2
) + h− ∂yy

)
β(y) + (vkx + v∂y)v(y) = Eβ(y)

−∆u(y) + (vkx − v∂y)β(y)−
(
k2x + k2z +

q2

4
− kzq + v3(kz −

q

2
)− h− ∂yy

)
v(y) = Ev(y)
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Then we plug in expression of the quasiparticle wavefunctions to arrive at,

Nmax∑

n=1

√
2

L
sin(

nπy

L
)

(
k2x + k2z +

q2

4
+ kzq + v3(kz +

q

2
) + h + (

nπ

L
)2
)
un +

Nmax∑

n=1

√
2

L

(
vkx sin(

nπy

L
)− vnπ

L
cos(

nπy

L
)
)
αn

−∆
Nmax∑

n=1

√
2

L
sin(

nπy

L
)vn = E

Nmax∑

n=1

√
2

L
sin(

nπy

L
)un

Nmax∑

n=1

√
2

L

(
vkx sin(

nπy

L
) + v

nπ

L
cos(

nπy

L
)
)
un +

Nmax∑

n=1

√
2

L
sin(

nπy

L
)

(
k2x + k2z +

q2

4
+ kzq − v3(kz +

q

2
)− h+ (

nπ

L
)2
)
αn

+∆

Nmax∑

n=1

√
2

L
sin(

nπy

L
)βn = E

Nmax∑

n=1

√
2

L
sin(

nπy

L
)αn

∆
Nmax∑

n=1

√
2

L
sin(

nπy

L
)αn −

Nmax∑

n=1

√
2

L
sin(

nπy

L
)

(
k2x + k2z +

q2

4
− kzq − v3(kz −

q

2
) + h+ (

nπ

L
)2
)
βn

+

Nmax∑

n=1

√
2

L

(
vkx sin(

nπy

L
) + v

nπ

L
cos(

nπy

L
)
)
vn = E

Nmax∑

n=1

√
2

L
sin(

nπy

L
)βn

−∆
Nmax∑

n=1

√
2

L
sin(

nπy

L
)un +

Nmax∑

n=1

√
2

L

(
vkx sin(

nπy

L
)− vnπ

L
cos(

nπy

L
)
)
βn

−
Nmax∑

n=1

√
2

L
sin(

nπy

L
)

(
k2x + k2z +

q2

4
− kzq + v3(kz −

q

2
)− h+ (

nπ

L
)2
)
vn = E

Nmax∑

n=1

√
2

L
sin(

nπy

L
)vn
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Using integral relations

2

L

∫ L

0

sin(
mπ

L
y) sin(

nπ

L
y)dy = δmn (B.4)

2

L

∫ L

0

sin(
mπ

L
y) cos(

nπ

L
y)dy = 0, for m = n (B.5)

=
2m(1− (−1)m+n)

(m2 − n2)π
, for m 6= n (B.6)

we have

(
k2x + k2z +

q2

4
+ kzq + v3(kz +

q

2
) + h + (

mπ

L
)2
)
um + vkxαm −

∑

n 6=m

2vmn

L

(1− (−1)m+n)

(m2 − n2)
αn −∆vm = Eum

vkxum +
∑

n 6=m

2vmn

L

(1− (−1)m+n)

(m2 − n2)
un +

(
k2x + k2z +

q2

4
+ kzq − v3(kz +

q

2
)− h+ (

mπ

L
)2
)
αm +∆βm = Eαm

∆αm −
(
k2x + k2z +

q2

4
− kzq − v3(kz −

q

2
) + h+ (

mπ

L
)2
)
βm + vkxvm +

∑

n 6=m

2vmn

L

(1− (−1)m+n)

(m2 − n2)
vn = Eβm

−∆um + vkxβm −
∑

n 6=m

2vmn

L

(1− (−1)m+n)

(m2 − n2)
βn −

(
k2x + k2z +

q2

4
− kzq + v3(kz −

q

2
)− h+ (

mπ

L
)2
)
vm = Evm

The matrix for coefficients are real and symmetric, and in the diagonalization routine, only lower left part is referenced.

However, the subblock within the SOC term is antisymmetric, or skew symmetric: A = −AT .

For the Hamiltonian in PRA85, 021603(R) by Hui Hu et al, with ∆ = ∆e−iθ, the reason for relative phase between
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wavefunctions is the following:

x = r cos θ (B.7)

y = r sin θ (B.8)

∂x = cos θ∂r −
sin θ

r
∂θ (B.9)

∂y = sin θ∂r +
cos θ

r
∂θ (B.10)

∇2 =
1

r

∂

∂r
(r
∂

∂r
) +

1

r2
∂2

∂θ2
≡ Dr +

1

r2
∂2

∂θ2
(B.11)

Then,

VSO = λ(ky + ikx) = −iλ(∂y + i∂x) = e−iθλ(∂r −
i

r
∂θ) (B.12)

V †
SO = λ(ky − ikx) = −iλ(∂y − i∂x) = −eiθλ(∂r +

i

r
∂θ) (B.13)

From

HBdG =




H↑ Vso 0 −∆

V †
so H↓ ∆ 0

0 ∆∗ −H↑ V †

−∆∗ 0 Vso −H↓




(B.14)
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we have

(H↑ +Dr +
1

r2
∂2

∂θ2
)u(r) + e−iθ(∂r −

i

r
∂θ)α(r)−∆e−iθv(r) = Eu(r) (B.15)

−eiθλ(∂r +
i

r
∂θ)u(r) + (H↓ +Dr +

1

r2
∂2

∂θ2
)α(r) + ∆e−iθβ(r) = Eα(r) (B.16)

∆eiθα(r) + (−H↑Dr +
1

r2
∂2

∂θ2
)β(r)− eiθλ(∂r +

i

r
∂θ)v(r) = Eβ(r) (B.17)

−∆eiθu(r) + e−iθ(∂r −
i

r
∂θ)β(r) + (−H↓ +Dr +

1

r2
∂2

∂θ2
)v(r) = Ev(r) (B.18)

The construction of wavefunctions can be decomposed into different angular momentum m, but we need to pay attention

to the relative phase, in order to have an eigenvalue matrix equation:

u(r) =
eimθ√
2π
u(r)e−iθ (B.19)

α(r) =
eimθ√
2π
α(r) (B.20)

β(r) =
eimθ√
2π
β(r)e+iθ (B.21)

v(r) =
eimθ√
2π
v(r) (B.22)

For cylindrical boundary condition in the plane of x-y with radius r = L, we use basis expansion as (m ≥ 0 , integer.),
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assuming states with different m are decoupled




u(r)

α(r)

β(r)

v(r)




= eikzz
Nmax∑

n=1




un√
N (m)

n

Jm(κ
(m)
n

r
L
)

αn√
N (m+1)

n

Jm+1(κ
(m+1)
n

r
L
)eiθ

βn√
N (m+1)

n

Jm+1(κ
(m+1)
n

r
L
)eiθ

vn√
N (m)

n

Jm(κ
(m)
n

r
L
)




eimθ√
2π

(B.23)

where κ
(m)
n are the nth root of Bessel function Jm. For states with m < 0, we have instead J−m(x) = (−1)mJm(x), which

is NOT linearly independent solution of Bessel equation. States at r = 0 should not diverge, the second kind of Bessel

function Nm(x) should be discarded.

SOC terms are written as

VSO = vkx − ivky = −iv(∂x − i∂y) = −ve−iθ(i∂r +
1

r
∂θ) (B.24)

V †
SO = vkx + ivky = −iv(∂x + i∂y) = veiθ(−i∂r +

1

r
∂θ) (B.25)
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we have

(
k2z +

q2

4
+ kzq + v3(kz +

q

2
) + h− (

1

r

∂

∂r
(r
∂

∂r
) +

1

r2
∂2

∂θ2
)

)
u(r)− ve−iθ(i∂r +

1

r
∂θ)α(r)−∆v(r) = Eu(r)(B.26)

veiθ(−i∂r +
1

r
∂θ)u(r) +

(
k2z +

q2

4
+ kzq − v3(kz +

q

2
)− h− (

1

r

∂

∂r
(r
∂

∂r
) +

1

r2
∂2

∂θ2
)

)
α(r) + ∆β(r) = Eα(r)(B.27)

∆α(r)−
(
k2z +

q2

4
− kzq − v3(kz −

q

2
) + h− (

1

r

∂

∂r
(r
∂

∂r
) +

1

r2
∂2

∂θ2
)

)
β(r) + veiθ(−i∂r +

1

r
∂θ)v(r) = Eβ(r)(B.28)

−∆u(r)− ve−iθ(i∂r +
1

r
∂θ)β(r)−

(
k2z +

q2

4
− kzq + v3(kz −

q

2
)− h− (

1

r

∂

∂r
(r
∂

∂r
) +

1

r2
∂2

∂θ2
)

)
v(r) = Ev(r)(B.29)

Normalization of Bessel function is given by

N (m)
n =

∫ L

0

Jm(κ
(m)
n

r

L
)Jm(κ

(m)
n

r

L
)rdr =

1

2
L2
(
Jm+1(κ

(m)
n )

)2
(B.30)

Then Eq. B.23 becomes, 


u(r)

α(r)

β(r)

v(r)




= eikzz
Nmax∑

n=1

√
2

L

eimθ√
2π




Jm(κ
(m)
n

r
L
)

|Jm+1(κ
(m)
n )|

un

Jm+1(κ
(m+1)
n

r
L
)

|Jm+2(κ
(m+1)
n )|

αne
iθ

Jm+1(κ
(m+1)
n

r
L
)

|Jm+2(κ
(m+1)
n )|

βne
iθ

Jm(κ
(m)
n

r
L
)

|Jm+1(κ
(m)
n )|

vn




(B.31)

Orthogonal condition for Bessel function,

∫ L

0

Jm(κ
(m)
n

r

L
)Jm(κ

(m)
l

r

L
)rdr = 0 (B.32)
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for n 6= l. Derivative relations for Bessel functions:

∂

∂r
J0(κ

(0)
n

r

L
) = −κ

(0)
n

L
J1(κ

(0)
n

r

L
) (B.33)

∂

∂r
Jm(κ

(m)
n

r

L
) =

κ
(m)
n

2L

(
Jm−1(κ

(m)
n

r

L
)− Jm+1(κ

(m)
n

r

L
)
)
, for m ≥ 1 (B.34)

1

r

∂

∂r
(r
∂

∂r
J0(κ

(0)
n

r

L
)) = −κ

(0)
n

L

1

r

∂

∂r
(rJ1(κ

(0)
n

r

L
))

= −κ
(0)
n

L

(
J1(κ

(0)
n

r
L
)

r
+
κ
(0)
n

2L

(
J0(κ

(0)
n

r

L
)− J2(κ(0)n

r

L
)
))

= ... = −(κ
(0)
n

L
)2

1

r

∂

∂r
(r
∂

∂r
J1(κ

(1)
n

r

L
)) =

κ
(1)
n

2L

1

r

∂

∂r
(r
(
J0(κ

(1)
n

r

L
)− J2(κ(1)n

r

L
)
)
)

=
κ
(1)
n

2L

1

r

(
J0(κ

(1)
n

r

L
)− J2(κ(1)n

r

L
)
)
+
κ
(1)
n

2L

∂

∂r

(
J0(κ

(1)
n

r

L
)− J2(κ(1)n

r

L
)
)

=
κ
(1)
n

2L

1

r

(
J0(κ

(1)
n

r

L
)− J2(κ(1)n

r

L
)
)
+

1

2

(
κ
(1)
n

L

)2(
−J1(κ(1)n

r

L
)− 1

2

(
J1(κ

(1)
n

r

L
)− J3(κ(1)n

r

L
)
))

=
κ
(1)
n

2L

J0(κ
(1)
n

r
L
)

r
− 3

4

(
κ
(1)
n

L

)2

J1(κ
(1)
n

r

L
)− κ

(1)
n

2L

J2(κ
(1)
n

r
L
)

r
+

1

4

(
κ
(1)
n

L

)2

J3(κ
(1)
n

r

L
)

(B.35)
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1

r

∂

∂r
(r
∂

∂r
Jm(κ

(m)
n

r

L
)) =

κ
(m)
n

2L

1

r

∂

∂r
(r
(
Jm−1(κ

(m)
n

r

L
)− Jm+1(κ

(m)
n

r

L
)
)
)

=
κ
(m)
n

2L

1

r

(
Jm−1(κ

(m)
n

r

L
)− Jm+1(κ

(m)
n

r

L
)
)
+
κ
(m)
n

2L

∂

∂r

(
Jm−1(κ

(m)
n

r

L
)− Jm+1(κ

(m)
n

r

L
)
)

=
κ
(m)
n

2L

1

r

(
Jm−1(κ

(m)
n

r

L
)− Jm+1(κ

(m)
n

r

L
)
)

+

(
κ
(m)
n

2L

)2 ((
Jm−2(κ

(m)
n

r

L
)− Jm(κ(m)

n

r

L
)
)
−
(
Jm(κ

(m)
n

r

L
)− Jm+2(κ

(m)
n

r

L
)
))

=

(
κ
(m)
n

2L

)2

Jm−2(κ
(m)
n

r

L
) +

κ
(m)
n

2L

Jm−1(κ
(m)
n

r
L
)

r
− 2

(
κ
(m)
n

2L

)2

Jm(κ
(m)
n

r

L
)

− κ
(m)
n

2L

Jm+1(κ
(m)
n

r
L
)

r
+

(
κ
(m)
n

2L

)2

Jm+2(κ
(m)
n

r

L
), for m ≥ 2

Actually, the above second order derivatives are not necessary. Because Bessel function automatically satisfies Bessel

equation

1

r

∂

∂r
(r
∂

∂r
Jm(κ

(m)
n

r

L
)) =

(
m2

r2
− (

κ
(m)
n

L
)2

)
Jm(κ

(m)
n

r

L
) (B.36)

It can be checked straightforwardly that the RHS of above second order derivatives are actually quite simple, using the

recursion relation

Jm+1(x) + Jm−1(x) = 2mJm(x)/x (B.37)

which is essentially derived from the Bessel equation. This helps us to facilitate the conversion into coefficient matrix

equations:
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for m ≥ 1, using Bessel Eq. B.36 and recursion relation Eq. B.37, we can simplify the SOC term a little bit,

Nmax∑

n=1


k2z +

q2

4
+ kzq + v3(kz +

q

2
) + h+

(
κ
(m)
n

L

)2

 un√

N (m)
n

Jm(κ
(m)
n

r

L
)

−iv
Nmax∑

l=1

αl√
N (m+1)
l

κ
(m+1)
l

L
Jm(κ

(m+1)
l

r

L
)

−∆
Nmax∑

n=1

vn√
N (m)
n

Jm(κ
(m)
n

r

L
) = E

Nmax∑

n=1

un√
N (m)
n

Jm(κ
(m)
n

r

L
) (B.38)

iv
Nmax∑

l=1

ul√
N (m)
l

κ
(m)
l

L
Jm+1(κ

(m)
l

r

L
)

+
Nmax∑

n=1


k2z +

q2

4
+ kzq − v3(kz +

q

2
)− h+

(
κ
(m+1)
n

L

)2

 αn√

N (m+1)
n

Jm+1(κ
(m+1)
n

r

L
)

+∆

Nmax∑

n=1

βn√
N (m+1)
n

Jm+1(κ
(m+1)
n

r

L
) = E

Nmax∑

n=1

αn√
N (m+1)
n

Jm+1(κ
(m+1)
n

r

L
) (B.39)

∆
Nmax∑

n=1

αn√
N (m+1)
n

Jm+1(κ
(m+1)
n

r

L
)

(B.40)
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−
Nmax∑

n=1


k2z +

q2

4
− kzq − v3(kz −

q

2
) + h+

(
κ
(m+1)
n

L

)2

 βn√

N (m+1)
n

Jm+1(κ
(m+1)
n

r

L
)

+iv

Nmax∑

l=1

vl√
N (m)
l

κ
(m)
l

L
Jm+1(κ

(m)
l

r

L
) = E

Nmax∑

n=1

βn√
N (m+1)
n

Jm+1(κ
(m+1)
n

r

L
) (B.41)

−∆
Nmax∑

n=1

un√
N (m)
n

Jm(κ
(m)
n

r

L
)

−iv
Nmax∑

l=1

βl√
N (m+1)
l

κ
(m+1)
l

L
Jm(κ

(m+1)
l

r

L
)

−
Nmax∑

n=1


k2z +

q2

4
− kzq + v3(kz −

q

2
)− h +

(
κ
(m)
n

L

)2

 vn√

N (m)
n

Jm(κ
(m)
n

r

L
) = E

Nmax∑

n=1

vn√
N (m)
n

Jm(κ
(m)
n

r

L
) (B.42)

for m = 0, special care is needed for first order derivative, but the result can be recovered by replacing m = 0 in the

above equations.
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Then using orthonormal condition, we have equations for the coefficients, m ≥ 0,

H(m)
11nun − iv

Nmax∑

l=1

A(m)
nl αl −∆vn = Eun (B.43)

iv
Nmax∑

l=1

B(m)
nl ul +H

(m)
22nαn +∆βn = Eαn (B.44)

∆αn +H(m)
33nβn + iv

Nmax∑

l=1

B(m)
nl vl = Eβn (B.45)

−∆un − iv
Nmax∑

l=1

A(m)
nl βl +H

(m)
44nvn = Evn (B.46)

H(m)
11n =


k2z +

q2

4
+ kzq + v3(kz +

q

2
) + h+

(
κ
(m)
n

L

)2

 (B.47)

H(m)
22n =


k2z +

q2

4
+ kzq − v3(kz +

q

2
)− h+

(
κ
(m+1)
n

L

)2

 (B.48)

H(m)
33n = −



k2z +
q2

4
− kzq − v3(kz −

q

2
) + h+

(
κ
(m+1)
n

L

)2


 (B.49)

H(m)
44n = −



k2z +
q2

4
− kzq + v3(kz −

q

2
)− h +

(
κ
(m)
n

L

)2


 (B.50)
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A(m)
nl =

κ
(m+1)
l

L
I
(1)
nl√

N (m+1)
l

√
N (m)
n

(B.51)

B(m)
nl =

κ
(m)
l

L
I
(2)
nl√

N (m)
l

√
N (m+1)
n

(B.52)

where

∫ L

0

rJm(
κ
(m)
n

L
r)Jm(

κ
(m+1)
l

L
r)dr = I

(1)
nl (B.53)

∫ L

0

rJm+1(
κ
(m+1)
n

L
r)Jm+1(

κ
(m)
l

L
r)dr = I

(2)
nl (B.54)

Using Eq. (2) in page 414 of the book “Introduction to Special Functions” by Zhuxi Wang and Dunren Guo

∫ x

0

tJν(at)Jν(bt)dt =
x

a2 − b2
(
Jν(ax)

dJν(bx)

dx
− Jν(bx)

dJν(ax)

dx

)
(B.55)

for ν > −1, which can be easily proved by considering two Bessel Equations

1

t

d

dt
(t
dJν(at)

dt
) + (a2 − ν2

t2
)Jν(at) = 0

1

t

d

dt
(t
dJν(bt)

dt
) + (b2 − ν2

t2
)Jν(bt) = 0

Multiply the two equations by tJν(bt) and tJν(at) individually and subtract them and integrate it from 0 to x, to obtain

(a2 − b2)
∫ x

0

tJν(at)Jν(bt)dt =

(
tJν(at)

dJν(bt)

dt
− tJν(bt)

dJν(at)

dt

)
|t=xt=0 (B.56)
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and it is easy to see the RHS is zero when t = 0, which concludes our proof of Eq. B.55. From this, we can easily have
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Then, we can further simplify coefficients of SOC term
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= − 2
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(B.59)

where m = 0 term should be treated slightly differently, concerning the derivative rule for Jm(x) in Eq. B.33 and B.34.

The matrix for coefficients is actually self-adjoint/Hermitian and in the diagonalization routine, only lower left part

is referenced.
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If we consider states with negative angular momentum, we need expansion as ( m ≤ −1, i.e. |m| ≥ 1 ),




u(r)

α(r)

β(r)

v(r)




= eikzz
Nmax∑

n=1




un√
N (−|m|)

n

J−|m|(κ
(−|m|)
n

r
L
)

αn√
N (−|m|+1)

n

J−|m|+1(κ
(−|m|+1)
n

r
L
)eiθ

βn√
N (−|m|+1)

n

J−|m|+1(κ
(−|m|+1)
n

r
L
)eiθ

vn√
N (−|m|)

n

J−|m|(κ
(−|m|)
n

r
L
)




e−i|m|θ
√
2π

= eikzz
Nmax∑

n=1




un√
N (|m|)

n

(−1)|m|J|m|(κ
(|m|)
n

r
L
)

αn√
N (|m|−1)

n

(−1)|m|−1J|m|−1(κ
(|m|−1)
n

r
L
)eiθ

βn√
N (|m|−1)

n

(−1)|m|−1J|m|−1(κ
(|m|−1)
n

r
L
)eiθ

vn√
N (|m|)

n

(−1)|m|J|m|(κ
(|m|)
n

r
L
)




e−i|m|θ
√
2π

where relation J−m(x) = (−1)mJm(x) and κ(−m)
n = κ

(m)
n has been used, and normalization is given by

N (−|m|)
n =

∫ L

0

J−|m|(κ
(−|m|)
n

r

L
)J−|m|(κ

(−|m|)
n

r

L
)rdr (B.60)

= (−1)2|m|
∫ L

0

J|m|(κ
(|m|)
n

r

L
)J|m|(κ

(|m|)
n

r

L
)rdr (B.61)

=
1

2
L2
(
J|m|+1(κ

(|m|)
n )

)2
(B.62)

= N (|m|)
n (B.63)
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Following the above procedures, we obtain equations for coefficients ( m ≤ −1 )

L(m)
11nun − iv

Nmax∑

l=1

C(m)
nl αl −∆vn = Eun (B.64)

iv

Nmax∑

l=1

D(m)
nl ul + L

(m)
22nαn +∆βn = Eαn (B.65)

∆αn + L(m)
33nβn + iv

Nmax∑

l=1

D(m)
nl vl = Eβn (B.66)

−∆un − iv
Nmax∑

l=1

C(m)
nl βl + L

(m)
44nvn = Evn (B.67)

where

L(m)
11n =



k2z +
q2

4
+ kzq + v3(kz +

q

2
) + h +

(
κ
(|m|)
n

L

)2


 (B.68)

L(m)
22n =



k2z +
q2

4
+ kzq − v3(kz +

q

2
)− h+

(
κ
(|m|−1)
n

L

)2


 (B.69)

L(m)
33n = −


k2z +

q2

4
− kzq − v3(kz −

q

2
) + h +

(
κ
(|m|−1)
n

L

)2

 (B.70)

L(m)
44n = −


k2z +

q2

4
− kzq + v3(kz −

q

2
)− h +

(
κ
(|m|)
n

L

)2

 (B.71)
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C(m)
nl =

κ
(|m|−1)
l

L

∫ L
0
rJ|m|(κ

(|m|)
n

r
L
)J|m|(κ

(|m|−1)
l

r
L
)dr

√
N (|m|−1)
l

√
N (|m|)
n

(B.72)

D(m)
nl =

κ
(|m|)
l

L

∫ L
0
rJ|m|−1(κ

|m|−1
n

r
L
)J|m|−1(κ

(|m|)
l

r
L
)dr

√
N (|m|)
l

√
N (|m|−1)
n

(B.73)

which will be evaluated as before,

C(m)
nl = − 1

L

κ
(|m|)
n κ

(|m|−1)
l

(κ
(|m|)
n )2 − (κ

(|m|−1)
l )2

J|m|(κ
(|m|−1)
l )

(
J|m|−1(κ

(|m|)
n )− J|m|+1(κ

(|m|)
n )

)

|J|m|(κ
(|m|−1)
l )| · |J|m|+1(κ

(|m|)
n )|

, (B.74)

D(m)
nl = − 1

L

κ
(|m|)
l κ

(|m|−1)
n

(κ
|m|−1
n )2 − (κ

(|m|)
l )2

J|m|−1(κ
(|m|)
l )

(
J|m|−2(κ

|m|−1
n )− J|m|(κ

|m|−1
n )

)

|J|m|+1(κ
(|m|)
l )| · |J|m|(κ

(|m|−1)
n )|

, m ≤ −2 (B.75)

= − 2

L

κ
(|m|)
l κ

(|m|−1)
n

(κ
|m|−1
n )2 − (κ

(|m|)
l )2

J|m|−1(κ
(|m|)
l )

(
−J|m|(κ

|m|−1
n )

)

|J|m|+1(κ
(|m|)
l )| · |J|m|(κ

(|m|−1)
n )|

, m = −1 (B.76)

The self-adjoincy can be verified by interchanging n and l in C(m)
nl and D(m)

nl .

From the numerical calculation, we observe the symmetry of E → −E when m→ −m− 1 and kz → −kz, assuming

m ≥ 0 here. In the following, we analytically prove this is indeed true.

1. To get started, we observe the relation of eigen matrix elements between the two classes of m ≥ 0 and m ≤ −1. For

clarity, I assume m to be non-negative. Of note is that H(−m−1)
11n (−kz) = −L(m)

33n(kz), H(−m−1)
22n (−kz) = −L(m)

44n(kz),

H(−m−1)
33n (−kz) = −L(m)

11n(kz), H(−m−1)
44n (−kz) = −L(m)

22n(kz). And more lengthy derivation gives A(−m−1)
nl = −D(m)

ln ,

B(−m−1)
nl = −C(m)

ln , where Eq. B.114 has been used.
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2. BdG equation has particle hole symmetry, Eq. C.26, which shall be written as




un

αn

βn

vn




↔




β∗
n

v∗n

u∗n

α∗
n




(B.77)

in basis expansion coefficients.

With these two properties, we write Eq. B.43 as

−L(m)
33nβ

∗
n + iv

∑

l

D(m)
ln v∗l −∆α∗

n = E ′β∗
n

where E ′ denotes the new eigenenergy after the symmetry operation. We then take the conjugate of the equation to

obtain

∆αn + L(m)
33nβn + iv

∑

l

D(m)
nl vl = −E ′βn

which is identical to Eq. B.66 by recognizing E ′ = −E. Similarly, Eq. B.44 changes to Eq. B.67, Eq. B.45 changes to

Eq. B.64, and Eq. B.46 changes to Eq. B.65.
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For concreteness, we check the special case with Nmax = 1, m = 0, L = 1. We have the ansatz




u(r)

α(r)

β(r)

v(r)




=
eikzz√
2π




u
√

N (0)
1

J0(κ
(0)
1 r)

α
√

N (1)
1

J1(κ
(1)
1 r)eiθ

β
√

N (1)
1

J1(κ
(1)
1 r)eiθ

v
√

N (0)
1

J0(κ
(0)
1 r)




≡ eikzz√
2π




1
A
J0(ar)u

eiθ

B
J1(br)α

eiθ

B
J1(br)β

1
A
J0(ar)v




(B.78)

where we have abbreviated [un, αn, βn, vn] into [u, α, β, v], a = κ
(0)
1 ≈ 2.40483, b = κ

(1)
1 ≈ 3.83171, and

N (0)
1 =

∫ 1

0

J0(κ
(0)
1 r)J0(κ

(0)
1 r)rdr =

1

2

(
J1(κ

(0)
1 )
)2
≡ A2 ≈ 0.134757 (B.79)

N (1)
1 =

∫ 1

0

J1(κ
(1)
1 r)J1(κ

(1)
1 r)rdr =

1

2

(
J2(κ

(1)
1 )
)2
≡ B2 ≈ 0.081107 (B.80)
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Then we recast the eigen equation of BdG Hamiltonian into coefficient matrix, by using the following relations

−(1
r

∂

∂r
(r
∂

∂r
) +

1

r2
∂2

∂θ2
)J0(ar) = a2J0(ar) (B.81)

−(1
r

∂

∂r
(r
∂

∂r
) +

1

r2
∂2

∂θ2
)J1(br) = b2J1(br) (B.82)

−λe−iθ(i∂r +
1

r
∂θ)
(
J1(br)e

iθ
)

= −λe−iθ
(
i
b

2
(J0(br)− J2(br))eiθ +

i

r
J1(br)e

iθ

)

= −iλ
(
J0(br)− J2(br)

2
+

1

r
J1(br)

)

= −iλ
(
b

2
(J0(br)− J2(br)) +

1

r
J1(br)

)

= −iλ
(
b

2
(J0(br)− J2(br)) +

b

2
(J2(br) + J0(br))

)
(B.83)

= −iλbJ0(br) (B.84)

veiθ(−i∂r +
1

r
∂θ)J0(ar) = λeiθ(−i(−a)J1(ar))

= iλaeiθJ1(ar) (B.85)

where in order to get Eq. B.83 we have used Eq. B.37. With these simplifications, we plug Eq. B.78 into Eq. B.43,
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B.27, B.28, B.29, to arrive at
(
k2z +

q2

4
+ kzq + λ(kz +

q

2
) + h+ a2

)
1

A
J0(ar)u− iλb

1

B
J0(br)α−∆

1

A
J0(ar)v = E

1

A
J0(ar)u (B.86)

iλaeiθ
1

A
J1(ar)u+

(
k2z +

q2

4
+ kzq − λ(kz +

q

2
)− h+ b2

)
eiθ

B
J1(br)α+∆

eiθ

B
J1(br)β = E

eiθ

B
J1(br)α (B.87)

∆
eiθ

B
J1(br)α−

(
k2z +

q2

4
− kzq − v3(kz −

q

2
) + h+ b2

)
eiθ

B
J1(br)β + iλeiθ

1

A
aJ1(ar)v = E

eiθ

B
J1(br)β (B.88)

−∆ 1

A
J0(ar)u− iλb

1

B
J0(br)β −

(
k2z +

q2

4
− kzq + v3(kz −

q

2
)− h+ a2

)
1

A
J0(ar)v = E

1

A
J0(ar)v (B.89)

We multiply both sides of Eq. B.86 and B.89 by
∫ 1

0
1
A
J0(ar)rdr and Eq. B.87 and B.88 by

∫ 1

0
1
B
J1(br)rdr, we will have

(
k2z +

q2

4
+ kzq + λ(kz +

q

2
) + h+ a2

)
u− iλ b

AB

∫ 1

0

rdrJ0(ar)J0(br)α−∆v = Eu (B.90)

iλ
a

AB

∫ 1

0

rdrJ1(br)J1(ar)u+

(
k2z +

q2

4
+ kzq − λ(kz +

q

2
)− h+ b2

)
α +∆β = Eα (B.91)

∆α−
(
k2z +

q2

4
− kzq − v3(kz −

q

2
) + h+ b2

)
β + iλ

a

AB

∫ 1

0

rdrJ1(br)J1(ar)v = Eβ (B.92)

−∆u− iλ b

AB

∫ r

0

rdrJ0(ar)J0(br)β −
(
k2z +

q2

4
− kzq + v3(kz −

q

2
)− h + a2

)
v = Ev (B.93)

which can be further casted into



H11 −iλA 0 −∆

iλB H22 ∆ 0

0 ∆ H33 iλB

−∆ 0 −iλA H44







u

α

β

v




= E




u

α

β

v




(B.94)
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where

H11 = k2z +
q2

4
+ kzq + λ(kz +

q

2
) + h+ a2 (B.95)

H22 = k2z +
q2

4
+ kzq − λ(kz +

q

2
)− h + b2 (B.96)

H33 = −
(
k2z +

q2

4
− kzq − v3(kz −

q

2
) + h+ b2

)
(B.97)

H44 = −
(
k2z +

q2

4
− kzq + v3(kz −

q

2
)− h+ a2

)
(B.98)

A =
b

AB

∫ 1

0

rdrJ0(ar)J0(br) (B.99)

=
b

AB

1

a2 − b2 (−J0(b)
dJ0(ar)

dr
|r=1) (B.100)

=
ab

AB

1

a2 − b2J0(b)J1(a) (B.101)

≈ 2.0709759318690697 (B.102)

B =
a

AB

∫ 1

0

rdrJ1(br)J1(ar) (B.103)

=
a

AB

1

b2 − a2 (−J1(a)
dJ1(br)

dr
|r=1) (B.104)

=
ab

AB

1

a2 − b2J1(a)
1

2
(J0(b)− J2(b)) (B.105)

≈ 2.0709759318690693 (B.106)

And A = B at least to the accuracy of 10−15.

Straightforwardly, we can check other special cases, by using Eq. B.57 and Eq. B.59.
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• m = 3, n = 5, l = 2 :

A = −0.041749239919106576 (B.107)

B = −0.04174923991910716 (B.108)

• m = 1, n = 2, l = 2 :

A = 0.081446190044653 (B.109)

B = 0.08144619004465767 (B.110)

• m = −3, n = 6, l = 2 :

A = −0.04536913491022942 (B.111)

B = −0.045369134910227024 (B.112)

• This means in Eq. B.57 and Eq. B.59, A = B after interchanging n and l:

Jm(κ
(m+1)
l )Jm−1(κ

(m)
n ) = Jm+1(κ

(m)
n )Jm+2(κ

(m+1)
l ), m ≥ 1 (B.113)

Jm(κ
(m+1)
l ) = −Jm+2(κ

(m+1)
l ) (B.114)

where κ
(m)
n is the nth non-zero root of the first kind of Bessel Function Jm(x).
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• Eq. B.114 can be proved easily with recursion relation and the definition of κ
(m)
n for m ≥ 0. Then apply the

relation to Jm+1 and multiply both sides of the equations, then Eq. B.113 follows naturally.
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Appendix C

Time-dependent BdG formalism

In this appendix, we supplement the main results presented in Chapter 4 with more mathmatical derivations. We start

from the Hamiltonian with the general form of spin-orbit coupling (SOC) HSOC = v1σxkx+ v2σyky+ v3σzkz and Zeeman

field in z-direction, H = H0 +Hint, where (vi are real constants, i = 1, 2, 3)

H0 =

∫
dx

[
ψ†
↑(x) ψ†

↓(x)

]


ξk + v3kz + h v1kx − iv2ky
v1kx + iv2ky ξk − v3kz − h






ψ↑(x)

ψ↓(x)


 (C.1)

Hint = U0

∫
dxψ†

↑(x)ψ
†
↓(x)ψ↓(x)ψ↑(x) (C.2)
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And we write Heisenberg equation of motion (EOM) as, (~ = 1) (remember that [A,BC] = {A,B}C − B{A,C} for

Fermions while [A,BC] = [A,B]C +B[A,C] for Bosons)

i
∂

∂t
ψ↑(x) = (ξk + v3kz + h)ψ↑(x) + (v1kx − iv2ky)ψ↓(x) + U0ψ

†
↓(x)ψ↓(x)ψ↑(x)

≈ (ξk + v3kz + h)ψ↑(x) + (v1kx − iv2ky)ψ↓(x)−∆(x)ψ†
↓(x) (C.3)

i
∂

∂t
ψ↓(x) = (ξk − v3kz − h)ψ↓(x) + (v1kx + iv2ky)ψ↑(x)− U0ψ

†
↑(x)ψ↓(x)ψ↑(x)

≈ (ξk − v3kz − h)ψ↓(x) + (v1kx + iv2ky)ψ↑(x) + ∆(x)ψ†
↑(x) (C.4)

where approximation comes from mean-field approximation by defining order parameter ∆(x) = −U0〈ψ↓ψ↑〉. We solve

the EOM in terms of Bogoliubov transformation,

ψσ(x) =
1

V

∑

k

[
ukσ(x, t)ckσ + v∗kσ̄(x, t)c

†
kσ̄ + αkσ̄(x, t)ckσ̄ + β∗

kσ(x, t)c
†
kσ

]
(C.5)

where σ =↑, ↓ and correspondingly σ̄ =↓, ↑,

ukσ(x, t) = ukσ(x)e
−iEkσt, vkσ(x, t) = vkσ(x)e

−iEkσt, αkσ(x, t) = αkσ(x)e
−iEkσt, βkσ(x, t) = βkσ(x)e

−iEkσt

u∗kσ(x, t) = u∗kσ(x)e
+iEkσt, v∗kσ(x, t) = v∗kσ(x)e

+iEkσt, α∗
kσ(x, t) = α∗

kσ(x)e
+iEkσt, β∗

kσ(x, t) = β∗
kσ(x)e

+iEkσt
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Denote

h+0 = ξk + v3kz + h

h−0 = ξk − v3kz − h

Λ = v1kx − iv2ky

Then from Eq. C.3, we have

i
∑

k

[
u̇k↑(x)ck↑ + v̇∗k↓(x)c

†
k↓ + α̇k↓(x)ck↓ + β̇∗

k↑(x)c
†
k↑

]

=
∑

k

[
h+0 uk↑(x)ck↑ + h+0 v

∗
k↓(x)c

†
k↓ + h+0 αk↓(x)ck↓ + h+0 β

∗
k↑(x)c

†
k↑

]

+
∑

k

[
Λuk↓(x)ck↓ + Λv∗k↑(x)c

†
k↑ + Λαk↑(x)ck↑ + Λβ∗

k↓(x)c
†
k↓

]

+
∑

k

[
−∆u∗k↓(x)c†k↓ −∆vk↑(x)ck↑ −∆α∗

k↑(x)c
†
k↑ −∆βk↓(x)ck↓

]
(C.6)

i
∑

k

[
u̇k↓(x)ck↓ + v̇∗k↑(x)c

†
k↑ + α̇k↑(x)ck↑ + β̇∗

k↓(x)c
†
k↓

]

=
∑

k

[
h−0 uk↓(x)ck↓ + h−0 v

∗
k↑(x)c

†
k↑ + h−0 αk↑(x)ck↑ + h−0 β

∗
k↓(x)c

†
k↓

]

+
∑

k

[
Λ†uk↑(x)ck↑ + Λ†v∗k↓(x)c

†
k↓ + Λ†αk↓(x)ck↓ + Λ†β∗

k↑(x)c
†
k↑

]

+
∑

k

[
∆u∗k↑(x)c

†
k↑ +∆vk↓(x)ck↓ +∆α∗

k↓(x)c
†
k↓ +∆βk↑(x)ck↑

]
(C.7)
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From Eq. C.6, we have

iu̇k↑(x) = h+0 uk↑(x) + Λαk↑(x)−∆vk↑(x)

iv̇∗k↓(x) = h+0 v
∗
k↓(x) + Λβ∗

k↓(x)−∆u∗k↓(x)⇒ −iv̇k↓(x) = (h+0 )
∗vk↓(x) + Λ∗βk↓(x)−∆∗uk↓(x)

iα̇k↓(x) = h+0 αk↓(x) + Λuk↓(x)−∆βk↓(x)

iβ̇∗
k↑(x) = h+0 β

∗
k↑(x) + Λv∗k↑(x)−∆α∗

k↑(x)⇒ −iβ̇k↑(x) = (h+0 )
∗βk↑(x) + Λ∗vk↑(x)−∆∗αk↑(x)

iu̇k↓(x) = h−0 uk↓(x) + Λ†αk↓(x) + ∆vk↓(x)

iv̇∗k↑(x) = h−0 v
∗
k↑(x) + Λ†β∗

k↑(x) + ∆u∗k↑(x)⇒ −iv̇k↑(x) = (h−0 )
∗vk↑(x) + (Λ†)∗βk↑(x) + ∆∗uk↑(x)

iα̇k↑(x) = h−0 αk↑(x) + Λ†uk↑(x) + ∆βk↑(x)

iβ̇∗
k↓(x) = h−0 β

∗
k↓(x) + Λ†v∗k↓(x) + ∆α∗

k↓(x)⇒ −iβ̇k↓(x) = (h−0 )
∗βk↓(x) + (Λ†)∗vk↓(x) + ∆∗αk↓(x)

where we have used Λ† = v1kx+ iv2ky, Λ
∗ = −(v1kx+ iv2ky), (Λ†)∗ = −v1kx+ iv2ky (note: k = i~∂/∂x, k† = k, k∗ = −k,

so k† = −k∗).
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Written in matrix form,

i
∂

∂t




uk↑(x)

αk↑(x)

βk↑(x)

vk↑(x)




=




h+0 Λ 0 −∆

Λ† h−0 ∆ 0

0 ∆∗ −(h+0 )∗ −Λ∗

−∆∗ 0 −(Λ†)∗ −(h−0 )∗







uk↑(x)

αk↑(x)

βk↑(x)

vk↑(x)




(C.8)

=




ξk + v3kz + h v1kx − iv2ky 0 −∆

v1kx + iv2ky ξk − v3kz − h ∆ 0

0 ∆∗ −(ξk − v3kz + h) v1kx + iv2ky

−∆∗ 0 v1kx − iv2ky −(ξk + v3kz − h)







uk↑(x)

αk↑(x)

βk↑(x)

vk↑(x)




(C.9)

i
∂

∂t




αk↓(x)

uk↓(x)

vk↓(x)

βk↓(x)




=




h+0 Λ 0 −∆

Λ† h−0 ∆ 0

0 ∆∗ −(h+0 )∗ −Λ∗

−∆∗ 0 −(Λ†)∗ −(h−0 )∗







αk↓(x)

uk↓(x)

vk↓(x)

βk↓(x)




(C.10)

=




ξk + v3kz + h v1kx − iv2ky 0 −∆

v1kx + iv2ky ξk − v3kz − h ∆ 0

0 ∆∗ −(ξk − v3kz + h) v1kx + iv2ky

−∆∗ 0 v1kx − iv2ky −(ξk + v3kz − h)







αk↓(x)

uk↓(x)

vk↓(x)

βk↓(x)




(C.11)
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And normalization is given by
∫
dx [|ukσ(x)|2 + |αkσ(x)|2 + |βkσ(x)|2 + |vkσ(x)|2] = 1.

∆(x) = −U0〈ψ↓(x)ψ↑(x)〉

= −U0
1

V

∑

k

[
uk↓(x)v

∗
k↓(x)〈ck↓c†k↓〉+ uk↑(x)v

∗
k↑(x)〈c†k↑ck↑〉+ αk↑(x)β

∗
k↑(x)〈ck↑c†k↑〉+ αk↓(x)β

∗
k↓(x)〈c†k↓ck↓〉

]

= −U0
1

V

∑

k

′ [uk↓(x)v∗k↓(x)f(−Ek↓) + uk↑(x)v
∗
k↑(x)f(Ek↑) + αk↑(x)β

∗
k↑(x)f(−Ek↑) + αk↓(x)β

∗
k↓(x)f(Ek↓)

]

n↑(x) = 〈ψ†
↑(x)ψ↑(x)〉

=
1

V

∑

k

[
|uk↑(x)|2〈c†k↑ck↑〉+ |vk↓(x)|2〈ck↓c†k↓〉+ |αk↓(x)|2〈c†k↓ck↓〉+ |βk↑(x)|2〈c†k↑ck↑〉

]

=
1

V

∑

k

′ [|uk↑(x)|2f(Ek↑) + |vk↓(x)|2f(−Ek↓) + |αk↓(x)|2f(Ek↓) + |βk↑(x)|2f(−Ek↑)
]

n↓(x) = 〈ψ†
↓(x)ψ↓(x)〉

=
1

V

∑

k

[
|uk↓(x)|2〈c†k↓ck↓〉+ |vk↑(x)|2〈ck↑c†k↑〉+ |αk↑(x)|2〈c†k↑ck↑〉+ |βk↓(x)|2〈c†k↓ck↓〉

]

=
1

V

∑

k

′ [|uk↓(x)|2f(Ek↓) + |vk↑(x)|2f(−Ek↑) + |αk↑(x)|2f(Ek↑) + |βk↓(x)|2f(−Ek↓)
]

This involves the full solution of ukσ(x), vkσ(x), αkσ(x), βkσ(x), and
1
V

∑
k
′ summation only involves k > 0 (which is

understood as requiring kx, ky, kz > 0 simultaneously). However, the construction of BdG formalism is redundant, and
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we can reduce half of computation by recognizing the one-to-one correspondence,

Ek↑ ↔ Ek↓


uk↑(x)

αk↑(x)

βk↑(x)

vk↑(x)




↔




αk↓(x)

uk↓(x)

vk↓(x)

βk↓(x)




Therefore, we only need to solve the spin-up part, and remove the spin index, by denoting uk↑(x) ≡ uk(x), vk↑(x) ≡ vk(x),

αk↑(x) ≡ αk(x), βk↑(x) ≡ βk(x), and Ek↑ ≡ Ek. Eq. C.9 becomes,

i
∂

∂t




uk(x, t)

αk(x, t)

βk(x, t)

vk(x, t)




=




ξk + v3kz + h v1kx − iv2ky 0 −∆(x)

v1kx + iv2ky ξk − v3kz − h ∆(x) 0

0 ∆∗(x) −(ξk − v3kz + h) v1kx + iv2ky

−∆∗(x) 0 v1kx − iv2ky −(ξk + v3kz − h)







uk(x, t)

αk(x, t)

βk(x, t)

vk(x, t)




(C.12)

which is

Ek




uk(x)

αk(x)

βk(x)

vk(x)




=




ξk + v3kz + h v1kx − iv2ky 0 −∆(x)

v1kx + iv2ky ξk − v3kz − h ∆(x) 0

0 ∆∗(x) −(ξk − v3kz + h) v1kx + iv2ky

−∆∗(x) 0 v1kx − iv2ky −(ξk + v3kz − h)







uk(x)

αk(x)

βk(x)

vk(x)




(C.13)
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where spin-down part of contribution should be written out for the sake of self-consistency,

∆(x) = −U0
1

V

∑

k

′ [uk↑(x)v∗k↑(x)f(Ek↑) + αk↑(x)β
∗
k↑(x)f(−Ek↑)

]

≡ −U0
1

V

∑

k

′ [uk(x)v
∗
k(x)f(Ek) + αk(x)β

∗
k(x)f(−Ek)] (C.14)

n↑(x) =
1

V

∑

k

′ [|uk↑(x)|2f(Ek↑) + |βk↑(x)|2f(−Ek↑)
]

≡ 1

V

∑

k

′ [|uk(x)|2f(Ek) + |βk(x)|2f(−Ek)
]

(C.15)

n↓(x) =
1

V

∑

k

′ [|vk↑(x)|2f(−Ek↑) + |αk↑(x)|2f(Ek↑)
]

=
1

V

∑

k

′ [|vk(x)|2f(−Ek) + |αk(x)|2f(Ek)
]

(C.16)

Denote

m11(k) = ξk + v3kz + h

m22(k) = ξk − v3kz − h

m33(k) = −ξk + v3kz − h

m44(k) = −ξk − v3kz + h

For the homogeneous system we study here, we use plane-wave as the basis and wavefunctions take the following
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form, 


uk(x)

αk(x)

βk(x)

vk(x)




=




uke
+iqz/2

αke
+iqz/2

βke
−iqz/2

vke
−iqz/2




eik·x (C.17)

Don’t forget the momentum operator is yet to be operated upon plane-wave states. For instance,

Ekuke
i(k+ q

2
ez)·x = m11(k̂)uke

i(k+ q
2
ez)·x + Λ(k̂)αke

i(k+ q
2
ez)·x −∆(x)vke

i(k− q
2
ez)·x

= m11(k+
q

2
ez)uke

i(k+ q
2
ez)·x + (v1kx − iv2ky)αke

i(k+ q
2
ez)·x −∆(x)vke

i(k− q
2
ez)·x

⇓

Ekuk = m11(k+
q

2
ez)uk + (v1kx − iv2ky)αk −∆(x)e−iqzvk (C.18)

And similarly, we have other three terms,

Ekαk = (v1kx + iv2ky)uk +m22(k+
q

2
ez)αk +∆(x)e−iqzβk (C.19)

Ekβk = ∆∗(x)e+iqzαk +m33(k−
q

2
ez)βk + (v1kx + iv2ky)vk (C.20)

Ekvk = −∆∗(x)uke
+iqz + (v1kx − iv2ky)βk +m44(k−

q

2
ez)vk (C.21)
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Putting everything together, we further have

M




uk

αk

βk

vk




= Ek




uk

αk

βk

vk




(C.22)

where

M =




ξk+ q
2
ez + v3(kz +

q
2
) + h v1kx − iv2ky 0 −∆(x)e−iqz

v1kx + iv2ky ξk+ q
2
ez − v3(kz + q

2
)− h ∆(x)e−iqz 0

0 ∆∗(x)e+iqz −(ξk− q
2
ez − v3(kz − q

2
) + h) v1kx + iv2ky

−∆∗(x)e+iqz 0 v1kx − iv2ky −(ξk− q
2
ez + v3(kz − q

2
)− h)




and Eq. C.14, C.15, C.16 become

∆(z) = −e+iqzU0
1

V

∑

k

′ [ukv
∗
kf(Ek) + αkβ

∗
kf(−Ek)] (C.23)

n↑ =
1

V

∑

k

′ [|uk|2f(Ek) + |βk|2f(−Ek)
]

(C.24)

n↓ =
1

V

∑

k

′ [|vk|2f(−Ek) + |αk|2f(Ek)
]

(C.25)
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We shall further note the BdG equation has particle-hole symmetry, where equations are invariant under interchange of

Ek ↔ −E−k


uk

αk

βk

vk




↔




β∗
−k

v∗−k

u∗−k

α∗
−k




(C.26)

For instance, we start from

m11(k+
q

2
ez)uk + (v1kx − iv2ky)αk −∆(x)e−iqzvk = Ekuk (C.27)

and we make the particle-hole interchange,

m11(k+
q

2
ez)β

∗
−k + (v1kx − iv2ky)v∗−k −∆(x)e−iqzα∗

−k = −E−kβ
∗
−k (C.28)

and take the conjugate on both sides (note here every variable in the equation is complex number and there is no more

operator involved, except E±k is real),

m11(k+
q

2
ez)

∗β−k + (v1kx − iv2ky)∗v−k −∆∗(x)e+iqzα−k = −E−kβ−k

⇓
(
ξk+ q

2
ez + v3(kz +

q

2
) + h

)
β−k + (v1kx + iv2ky)v−k −∆∗(x)e+iqzα−k = −E−kβ−k (C.29)
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Then, we change the sign of momentum k and arrive at (note ξk = ξ−k, ξk = ǫk − µ = ~2k2

2m
− µ)

−
(
ξ−k+ q

2
ez + v3(−kz +

q

2
) + h

)
βk − (−v1kx − iv2ky)vk +∆∗(x)e+iqzαk = Ekβk

⇓

−
(
ξk− q

2
ez − v3(kz −

q

2
) + h

)
βk + (v1kx + iv2ky)vk +∆∗(x)e+iqzαk = Ekβk (C.30)

which is identical to the third line in Eq. C.22. It is interesting to note that m33(k− q
2
ez) = −m11(−k+ q

2
ez)

∗ that has

been used in the above derivation (also m44(k − q
2
ez) = −m22(−k + q

2
ez)

∗). The sequence of operation is summerized

as “take conjugate-negate k-negate equation” and order of operation does not matter (the proof can go backwards).

Similarly, other equations in Eq. C.22 follow the particle-hole symmetry.

We can make use of the particle-hole symmetry to simplify Eq. C.23, C.24, C.25 into

∆(z) = −e+iqzU0

2

1

V

∑

k

[ukv
∗
kf(Ek) + αkβ

∗
kf(−Ek)] (C.31)

n↑ =
1

2

1

V

∑

k

[
|uk|2f(Ek) + |βk|2f(−Ek)

]
(C.32)

n↓ =
1

2

1

V

∑

k

[
|vk|2f(−Ek) + |αk|2f(Ek)

]
(C.33)

where 1
V

∑
k runs over all momentum space, which will be convinient in numerical calculations. The factor of 1/2 comes
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from the following proof,

∆(z) = −e+iqzU0
1

V

∑

k>0

[ukv
∗
kf(Ek) + αkβ

∗
kf(−Ek)] (C.34)

= −e+iqzU0
1

V

∑

k<0

[
u−kv

∗
−kf(E−k) + α−kβ

∗
−kf(−E−k)

]
(C.35)

where we just simply rewritten k as −k and sum over the other half of momentum space with k < 0. Then, it’s time to

make use of particle-hole symmetry to rewrite Eq. C.35 as

∆(z) = −e+iqzU0
1

V

∑

k<0

[β∗
kαkf(−Ek) + v∗kukf(Ek)] (C.36)

which is identical to Eq. C.34 except for the momentum space summation. Together with Eq. C.34 and C.36, we arrive

at Eq. C.31 where 1
V

∑
k runs over all momentum space. Similar proof can be followed for Eq. C.32 and C.33.

C.1 Ground state solutions

We first start from ground state solutions using saddle point approach and assume a plane-wave form of order parameter

(we assume ∆0 is a real number)

∆(z) = ∆0e
+iqz (C.37)
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instead of summing over quasiparticle contributions from Eq. C.31. Then Eq. C.22 is simplified into




m11(k + q
2
ez) v1kx − iv2ky 0 −∆0

v1kx + iv2ky m22(k+ q
2
ez) ∆0 0

0 ∆0 m33(k− q
2
ez) v1kx + iv2ky

−∆0 0 v1kx − iv2ky m44(k− q
2
ez)







uk

αk

βk

vk




= Ek




uk

αk

βk

vk




(C.38)

where ∆0, q, µ are determined from minimizing thermodynamic potential Ω under requirement of number conservation,

∂Ω

∂∆0
= 0,

∂Ω

∂q
= 0, −∂Ω

∂µ
= n =

1

3π2
(for 3D gas) (C.39)

where expression of Ω is found from previous paper [2013 New J. Phys. 15 075014]

Ω

V
= −|∆0|2m

4π~2as
+

1

V

∑

k

[
ξk+qez/2 + ξ−k+qez/2

2
− 1

4

4∑

η=1

|Eη
k|+

|∆0|2
2ǫk

− 1

2β

4∑

η=1

ln (1 + exp(−β|Eη
k|))
]

(C.40)

and Eη
k are diagonalized from Eq. C.38 for given ∆0, q, µ as variational parameters.

If the system we consider has v3 = 0, then we can directly solve gap and number equations without resorting to Eq.

C.39, since the expression for Eη
k can be analytically derived.

C.2 Time evolution

Once we have the saddle point solution of ∆0, q, µ, we can determine the set of initial values uηk, α
η
k, β

η
k, v

η
k and Eη

k from

Eq. C.38. Next, we study the time-dependent behaviour of order parameter and spin population, i.e. ∆(t), n↑(t), n↓(t),
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by quenching h, v1, v2, v3, or as. The set of evolution equation is given by (simplified from Eq. C.22),




m11(k+ q
2
ez) v1kx − iv2ky 0 −∆(t)

v1kx + iv2ky m22(k+ q
2
ez) ∆(t) 0

0 ∆∗(t) m33(k− q
2
ez) v1kx + iv2ky

−∆∗(t) 0 v1kx − iv2ky m44(k− q
2
ez)







uηk(t)

αηk(t)

βηk(t)

vηk(t)




= i
∂

∂t




uηk(t)

αηk(t)

βηk(t)

vηk(t)




(C.41)

where according to Eq. C.31, C.32, C.33

∆(t) ≡ ∆(z)e−iqz (C.42)

= −U0

2

1

V

4∑

η=1

∑

k

[uηk(t)v
η∗
k (t)f(Ek(t)) + αηk(t)β

η∗
k (t)f(−Eη

k(t))] (C.43)

n↑(t) =
1

2

1

V

4∑

η=1

∑

k

[
|uηk(t)|2f(Eη

k(t)) + |βηk(t)|2f(−Eη
k(t))

]
(C.44)

n↓(t) =
1

2

1

V

4∑

η=1

∑

k

[
|vηk(t)|2f(−Ek(t)) + |αηk(t)|2f(Eη

k(t))
]

(C.45)

and Eη
k(t) should be fixed at t = 0, because in the formulation of BdG theory, the population of quasiparticles do not

change over time, but rather the wave-functions.
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C.3 Case study: Rashba SOC with Zeeman field.

In this case study, we set v3 = 0, v2 = v2 = λ, T = 0 and consequently we assume q = 0. The quasiparticle energy is

written as E±
k,± = ±

√
ξ2k +∆2 + h2 + λ2k2⊥ ± 2

√
(h2 + λ2k2⊥)ξ

2
k + h2∆2, from which the number and gap equation can

be derived as

n =
1

V

∑

k

{
1 +

∑

α=±

−ξk
2Ekα

[
1 + α

h2 + λ2k2⊥√
(h2 + λ2k2⊥)ξ

2
k + h2∆2

]}
(C.46)

m

4π~2as
=

1

V

∑

k,α=±

−1
4Ek,α

[
1 + α

h2√
(h2 + λ2k2⊥)ξ

2
k + h2∆2

]
+

1

V

∑

k

1

2ǫk
(C.47)

In dimensionless form, we have

1

3π2
=

1

4π2

∫ ∞

0

k⊥dk⊥

∫ ∞

−∞
dkz

{1− ξk
2Ek+

[
1 +

h2 + λ2k2⊥√
(h2 + λ2k2⊥)ξ

2
k + h2∆2

]
-
ξk

2Ek−

[
1− h2 + λ2k2⊥√

(h2 + λ2k2⊥)ξ
2
k + h2∆2

]
}

1

8πaskF
=

1

4π2

∫ ∞

0

k⊥dk⊥

∫ ∞

−∞
dkz(

1

2(k2⊥ + k2z)
− 1

4

[
1 + h2√

(h2+λ2k2⊥)(k2⊥+k2z−µ)2+h2∆2

]

Ek+
− 1

4

[
1− h2√

(h2+λ2k2⊥)(k2⊥+k2z−µ)2+h2∆2

]

Ek−
)

from which we shall solve ∆ and µ for given h, λ, as.

For the gap and number equations, we discuss about the numerical procedures in details here. The accuracy of

momentum integrals is crucial to the precision of parameter values and phase boundaries in general. We first introduce
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some notations.

1

3π2
=

1

4π2

∫ ∞

0

k⊥dk⊥

∫ ∞

−∞
dkzA(k⊥, kz) (C.48)

=
1

4π2

∫ ∞

0

dk

∫ 1

−1

dxA(k, x) (C.49)

1

8πaskF
=

1

4π2

∫ ∞

0

k⊥dk⊥

∫ ∞

−∞
dkzB(k⊥, kz) (C.50)

=
1

4π2

∫ ∞

0

dk

∫ 1

−1

dxB(k, x) (C.51)

where k⊥ = k sin θ, kz = k cos θ, and

A(k⊥, kz) = 1− ξk
2Ek+

[
1 +

h2 + λ2k2⊥√
(h2 + λ2k2⊥)ξ

2
k + h2∆2

]
-
ξk

2Ek−

[
1− h2 + λ2k2⊥√

(h2 + λ2k2⊥)ξ
2
k + h2∆2

]
(C.52)

A(k, x) = k2(1− ξk
2Ek+

[
1 +

h2 + λ2k2 sin2 θ√
(h2 + λ2k2 sin2 θ)ξ2k + h2∆2

]
-
ξk

2Ek−

[
1− h2 + λ2k2 sin2 θ√

(h2 + λ2k2 sin2 θ)ξ2k + h2∆2

]
)(C.53)

B(k⊥, kz) =
1

2(k2⊥ + k2z)
− 1

4

[
1 + h2√

(h2+λ2k2⊥)(k2⊥+k2z−µ)2+h2∆2

]

Ek+
− 1

4

[
1− h2√

(h2+λ2k2⊥)(k2⊥+k2z−µ)2+h2∆2

]

Ek−
(C.54)

B(k, x) = k2(
1

2k2
− 1

4

[
1 + h2√

(h2+λ2k2 sin2 θ)(k2−µ)2+h2∆2

]

Ek+
− 1

4

[
1− h2√

(h2+λ2k2 sin2 θ)(k2−µ)2+h2∆2

]

Ek−
) (C.55)

where x = cos θ. We further have A(k, x) = A(k,−x) and B(k, x) = B(k,−x). Then, we rewrite gap and number
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equation as,

1

3π2
=

2

4π2

∫ 1

0

dx

(∫ kc

0

dkA(k, x) +

∫ ∞

kc

dk

(
a1(x)

k2
+
a2(x)

k4
+
a3(x)

k6
+ ...

))
(C.56)

=
2

4π2

∫ 1

0

dx

(∫ kc

0

dkA(k, x) +

(
a1(x)

kc
+
a2(x)

3k3c
+
a3(x)

5k5c
+ ...

))
(C.57)

1

8πaskF
=

2

4π2

∫ 1

0

dx

(∫ kc

0

dkB(k, x) +

∫ ∞

kc

dk

(
b1(x)

k2
+
b2(x)

k4
+
b3(x)

k6
+ ...

))
(C.58)

=
2

4π2

∫ 1

0

dx

(∫ kc

0

dkB(k, x) +

(
b1(x)

kc
+
b2(x)

3k3c
+
b3(x)

5k5c
+ ...

))
(C.59)

where we have made use of the fact that both A(k, x) and B(k, x) scales as 1/k2 at large k. We determine the coefficients

of ai(x) and bi(x) by calculating

y1 = k61A(k1, x) (C.60)

y2 = k62A(k2, x) (C.61)

y3 = k63A(k3, x) (C.62)
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and then at large momentum, they are related as




y1

y2

y3




=




k41 k21 1

k42 k22 1

k43 k23 1







a1

a2

a3




(C.63)




a1

a2

a3




=




k41 k21 1

k42 k22 1

k43 k23 1




−1


y1

y2

y3




(C.64)

=
1

det




∣∣∣∣∣∣∣

k22 1

k23 1

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

1 k21

1 k23

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

k21 1

k22 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 k42

1 k43

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

k41 1

k43 1

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

1 k41

1 k42

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k42 k22

k43 k23

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

k21 k41

k23 k43

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

k41 k21

k42 k22

∣∣∣∣∣∣∣







y1

y2

y3




(C.65)

=
1

det




k22 − k23 k23 − k21 k21 − k22
k43 − k42 k41 − k43 k42 − k41

k42k
2
3 − k22k43 k43k

2
1 − k23k41 k41k

2
2 − k21k42







y1

y2

y3




(C.66)
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and det = −(k21 − k22)(k22 − k23)(k23 − k21). Similiar expressions for




b1

b2

b3




=
1

det




k22 − k23 k23 − k21 k21 − k22
k43 − k42 k41 − k43 k42 − k41

k42k
2
3 − k22k43 k43k

2
1 − k23k41 k41k

2
2 − k21k42







z1

z2

z3




(C.67)

where

z1 = k61B(k1, x) (C.68)

z2 = k62B(k2, x) (C.69)

z3 = k63B(k3, x) (C.70)

We can take k1 = kc ≫ 1, k2 = 1.5kc ≫ 1, and k3 = 2kc ≫ 1 for instance.

Then we take the initial values as ∆(0) and µ(0) and plug them back into




ξk + h λ(kx − iky) 0 −∆(0)

λ(kx + iky) ξk − h ∆(0) 0

0 ∆(0) −(ξk + h) λ(kx + iky)

−∆(0) 0 λ(kx − iky) −(ξk − h)







uηk(0)

αηk(0)

βηk(0)

vηk(0)




= Eη
k




uηk(0)

αηk(0)

βηk(0)

vηk(0)




(C.71)

and straightforwardly diagonalize it for given momentum k and obtain wave-functions of uηk, α
η
k, β

η
k, v

η
k and eigenenergy

Eη
k (check if it is the same as E±

k±). With the initial values (as benchmarks), we quench value of h and evolve the
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functions according to



ξk + h λ(kx − iky) 0 −∆(t)

λ(kx + iky) ξk − h ∆(t) 0

0 ∆∗(t) −(ξk + h) λ(kx + iky)

−∆∗(t) 0 λ(kx − iky) −(ξk − h)







uηk(t)

αηk(t)

βηk(t)

vηk(t)




= i
∂

∂t




uηk(t)

αηk(t)

βηk(t)

vηk(t)




(C.72)

where

∆(t) = −U0

2

1

V

4∑

η=1

∑

k

[uηk(t)v
η∗
k (t)f(Eη

k(t = 0)) + αηk(t)β
η∗
k (t)f(−Eη

k(t = 0))] (C.73)

where we need to use renormalization 1/U0 = m/(4π~2as)−
∑

k 1/2ǫk.

For two dimensional system, the renormalization is given by

1

U0

= − 2π

(2π)2

∫ kc

0

kdk
1

Eb + 2ǫk
(C.74)

= − 1

2π

1

4
log(2k2 + Eb)|kc0 (C.75)

= − 1

8π
log(1 +

2k2c
Eb

) (C.76)

where I have used 1
V

∑
k = 1

(2π)2

∫ kc
0
kdk

∫ 2π

0
dθ and as for BdG matrix elements, kx = k cos θ, ky = k sin θ.

As a result of particle-hole symmetry, integration in ∆(t) can be reduced to radial direction only, since the relative

phase between kx and ky would not matter.

∆(t) = −1
2

1

V

4∑

η=1

1

2π

∫ kc

0

kdk [uηk(t)v
η∗
k (t)f(Eη

k(t = 0)) + αηk(t)β
η∗
k (t)f(−Eη

k(t = 0))]
1

− 1
8π

log(1 + 2k2c
Eb

)
(C.77)
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To get accurate time-dependent results, the momentum integral meshgrid number is expected to be above 2000 points,

and time step shall be around 0.0005.

C.4 Floquet spectrum

For a periodically driven Hamiltonian Ĥ(t) with period T , Floquet operator is defined as,

F̂ = T̂ exp{−i
∫ Ti+T

Ti

dtĤ(t)} (C.78)

where T̂ denotes time-order, and Ti is the initial time. The eigenvalue and eigenstates of F̂ is given by

F̂ |ϕn〉 = e−iεnT |ϕn〉, (C.79)

where −π/T < εn < π/T is the quasi-energy.

The time-ordering operator can be written in terms of ordered product of exponentials in the infinite limit of number

of terms

F̂ = T̂ exp{−i
(∫ Ti+∆T

Ti

dtĤ(Ti) +

∫ Ti+2∆T

Ti+∆T

dtĤ(Ti +∆T ) + ...+

∫ Ti+T

Ti+T−∆T

dtĤ(Ti + T −∆T )

)
} (C.80)

= T̂ exp{−i∆T
(
Ĥ(Ti) + Ĥ(Ti +∆T ) + ... + Ĥ(Ti + T −∆T )

)
} (C.81)

= lim
M→∞

(
e−iĤ(tM−1)∆T e−iĤ(tM−2)∆T . . . e−iĤ(t0)∆T

)
(C.82)

≈ exp{−iĤ(Ti + T −∆T )∆T} exp{−iĤ(Ti + T − 2∆T )∆T}... exp{−iĤ(Ti)∆T} (C.83)

≡ exp{−iĤ(tM−1)∆T} exp{−iĤ(tM−2)∆T}... exp{−iĤ(t0)∆T} (C.84)



202

where we have devided the time interval from Ti to Ti + T into M moments ∆T = T/M and tj = Ti + jT/M and

j = 0, 1, ...M − 1. Numerically, we will introduce a cutoff Mmax for finite terms. We can make use of eigenvalue

decomposition

H(t) = V (t)D(t)V (t)† (C.85)

e−iH(t)∆t = V (t)e−iD(t)∆tV (t)† (C.86)

(it is worth to note that this method is more stable than Taylor expansion to 2nd, 4th(RK) order, similiar to algorithm

used in MATLAB function of expm or exp subroutine in the unsupported module of Eigen C++ library) then we have ,

F = lim
M→∞

(
V (tM−1)e

−iD(tM−1)∆tV (tM−1)
†V (tM−2)e

−iD(tM−2)∆tV (tM−2)
† . . . V (t0)e

−iD(t0)∆tV (t0)
†) (C.87)

where exponential of D is evaluated only for the diagonal terms, which are the eigenvalue terms.

If we have time-independent HamiltonianH , then V andD are also time-independent and we shall have V (tM−1)
†V (tM−2) =

I and V (tM−1) = V (t0) = V . Then it follows that F = V
(
ΠM−1
j=0 e

−iDT/M) V † = V e−iD
∑M−1

j=0 T/MV † = V e−iDTV † = e−iHT

and its spectrum is given by e−iεnT , where εn is the spectrum ofH . However, note that from the spectrum ofH , the result

of log(e−iεnT )/(−iT ) is not necessarily the same as εn because |εnT | can have components larger than π and this fact

leads to “spectrum folding” where spectrums belong to different branches in the complex plane are taken into account.

The same thing applies to phase(e−iεnT )/(−T ) is not necessarily the same as εn. In order to circumvent this artifact for

time-independent Hamiltonian, we need to restrict T to be small for large cutoff in H matrix, where the end results of

high εnT are restricted within the bounds of [−π, π].
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Appendix D

Partition Function for Superradient Phase

In this appendix, we supplement results presented in Sec. 5.4 with more mathematical derivations regarding the free

energy per particle in the thermodynamic limit.

Using first quantized form of the Hamiltonian, we can write

H = δRc
†c+

N∑

j=1

[
~
2k2

2m
Ij +

(
~
2

m
krkz + δ

)
σzj +

Ω

2

1√
V

(
σ+
j c+ c†σ−

j

)]
(D.1)

where δR = ωc−ωR and Ij is identity matrix, σ±
j are raising and lowering operators for the j-th particle’s spin state. The

thermodynamic functions can be calculated from the canonical partition function, Z(N, T ) = Tr[e−βH ]. A convenient

basis to calculate the trace of the partition function is the Glauber’s coherent state |α〉 for the photon field, then we have

Z(N, T ) =
∑

s1=↑,↓
...
∑

sN=↑,↓

V

(2π)3

∫
dk1...

V

(2π)3

∫
dkN

∫
d2α

π
〈k1s1; ...;kNsN |〈α|e−βH |α〉|k1s1; ...;kNsN 〉 (D.2)

where atomic field is denoted by atom index j and momentum k and spin σ =↑, ↓. It follows then that the expectation

value becomes,

〈α|e−βH|α〉 = exp

{
−βδR|α|2 − β

N∑

j=1

h(kj)

}
(D.3)
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h(kj) = (h↑(kj)|kj ↑〉〈kj ↑ |+ h↓(kj)|kj ↓〉〈kj ↓ |) +
Ω

2

1√
V

(|kj ↑〉〈kj ↓ |α + α∗|kj ↓〉〈kj ↑ |) (D.4)

where h↑(k) =
~
2k2

2m
+ ~

2

m
krkz + δ, h↓(k) =

~
2k2

2m
− ~

2

m
krkz − δ and using the property [h(ki), h(kj)] = 0, we can reduce

integrand of Eq. D.2 to

〈k1s1; ...;kNsN |〈α|e−βH|α〉|k1s1; ...;kNsN〉 = e−βδR|α|2〈k1s1; ...;kNsN |e−β
∑N

j=1 h(kj)|k1s1; ...;kNsN〉 (D.5)

= e−βδR|α|2〈k1s1; ...;kNsN |
N∏

j=1

e−βh(kj)|k1s1; ...;kNsN〉 (D.6)

= e−βδR|α|2
N∏

j=1

〈kjsj |e−βh(kj)|kjsj〉 (D.7)

From Eq. D.2 and Eq. D.7, we have

Z(N, T ) =
∑

s1=↑,↓
...
∑

sN=↑,↓

V

(2π)3

∫
dk1...

V

(2π)3

∫
dkN

∫
d2α

π
e−βδR|α|2

(
N∏

j=1

〈kjsj |e−βh(kj)|kjsj〉
)

(D.8)

=

∫
d2α

π
e−βδR|α|2





V

(2π)3

∫
dkjTrσ exp


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


h↑(kj)
Ω
2

1√
V
α

Ω
2

1√
V
α∗ h↓(kj)


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






N

(D.9)

where the Trace is only for spin degrees of freedom. The eigenvalue of the 2× 2 matrix is given by

ǫ±j (kj) =
~
2k2

j

2m
±
√(

~2

m
krkjz + δ

)2

+

(
Ω

2

1√
V

)2

|α|2 ≡ ~
2k2

j

2m
± |µ(kj)| (D.10)
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Then from Eq. D.9 we have,

Z(N, T ) =

∫
d2α

π
e−βδR|α|2

[
V

(2π)3

∫
dkj

(
e−βǫ

+
j (kj) + e−βǫ

−
j (kj)

)]N
(D.11)

=

∫
d2α

π
e−βδR|α|2

[
V

(2π)3

∫
dk exp(−β~

2k2

2m
)
(
e−β|µ(k)| + eβ|µ(k)|

)]N
(D.12)

=

∫
d2α

π
e−βδR|α|2


 V

(2π)3

∫
dk exp(−β~

2k2

2m
)2 coshβ

√(
~2

m
krkz + δ

)2

+

(
Ω

2

1√
V

)2

|α|2


N

(D.13)

=

[
V

(2π)3

∫
dkx

∫
dky exp(−β

~
2(k2x + k2y)

2m
)

]N
(D.14)

×
∫
d2α

π
e−βδR|α|2




∫
dkz exp(−β

~
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)2 cosh(β

√(
~2

m
krkz + δ

)2

+

(
Ω

2

1√
V

)2

|α|2)




N

(D.15)

=

(
V

(2π)3
2πm

~2β

)N
2
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re−βδRr
2
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
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m
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+

(
Ω

2

1√
V

)2

r2)


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N

(D.16)

In canonical ensemble and thermodynamic limit, free energy per particle is given by

f(T,Ω, ωc, δ) = −
1

β
lim
N→∞

logZ(N, T )

N
(D.17)

and we need to seek phase transition property by studying saddle point solution to F energy landscapes.

We shall make use of Laplace’s method to further reduce the integrals. The formal statement of Lapace’s method
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is: Assume that f(x) is a twice differentiable function on [a, b] with x0 ∈ [a, b] the unique point such that f(x0) =

max[a,b] f(x). Assume additionally that f ′′(x0) < 0, then

lim
N→+∞




∫ b
a
eNf(x)dx

eNf(x0)
√

2π
−Nf ′′(x0)


 = 1 (D.18)

We denote,

S =

∫
dkz exp(−β

~
2k2z
2m

)2 cosh(β

√√√√
(
~2

m
krkz + δ

)2

+

(√
NΩ

2

1√
V

)2
|α|2
N

) (D.19)

Then, partition function is formally written as

Z(N, T ) =

(
V

(2π)3
2πm

~2β

)N
2

∫ ∞

0

re−N
βδRr2

N eN logSdr (D.20)

= N

(
V

(2π)3
2πm

~2β

)N ∫ ∞

0

dy exp {N [−βδRy + log S]} (D.21)

where we have denoted y = |α|2
N

. By Laplace’s method, the integral is given by

Z(N, T ) = N
1√
N

√
2π

−φ′′(y0)

(
V

(2π)3
2πm

~2β

)N
max

0≤y≤∞
exp {Nφ(y)} (D.22)

where y0 is the point that gives maximum and φ(y) = −βδRy + logS. We note that,

φ′(y) = −βδR +

β
∫
dkz exp(−β ~2k2z

2m
) sinh

(
β

√
(
~2

m
krkz + δ

)2
+
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NΩ
2

1√
V

)2
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)
(√
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2

1√
V

)2

√

(

~2

m
krkz+δ

)2
+
(√

NΩ
2

1√
V

)2
y

S (D.23)
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Putting φ′(y) = 0 we get an integral equation of η =

√
(
~2

m
krkz + δ

)2
+
(√

NΩ
2

1√
V

)2
y, and we shall denote Ω̃ =

√
NΩ 1√

V
=

√
ρΩ is the Tavis-Cummings coupling constant, an enhancement of coupling strength which scales as

√
N , but remains

finite in the thermodynamic limit that N →∞, V →∞ such that ρ = N
V

is finite.

δR

∫
dkz exp(−β

~
2k2z
2m

)2 cosh(βη) =

∫
dkz exp(−β

~
2k2z
2m

) sinh(βη)

(√
NΩ
2

1√
V

)2

η
(D.24)

where kz is yet to be integrated out. Then,

−βf(β, Ω̃, δR, δ) = lim
N→∞

1

N
log

[
N

1√
N

√
2π

−φ′′(y0)

(
V

(2π)3
2πm

~2β

)N
exp {Nφ(y0)}

]
(D.25)

= lim
N→∞

log
(√

N
√

2π
−φ′′(y0)

)

N
+ log

(
V

(2π)3
2πm

~2β

)
+ φ(y0) (D.26)

= log

(
V

(2π)3
2πm

~2β

)
+ φ(y0) (D.27)

= log

(
V

(2π)3
2πm

~2β

)
− βδRy0 + log

∫
dkz exp(−β

k2z
2
)2 cosh(β

√√√√(krkz + δ)2 +

(
Ω̃

2

)2

y0) (D.28)

Second order derivative can be checked straightforwardly,

φ′′(y) =

∂Q
∂y
S −Q2

S2
(D.29)
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where Q ≡ ∂S
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= β
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= β

(√
NΩ

2

1√
V

)4 ∫
dkz exp(−β

~
2k2z
2m

)

β
2
cosh(βη)− sinh(βη)

2η

η2
(D.31)

In numerical calculations, we use dimensionless unit, by setting ~ = m = kB = 1 and choose a typical frequency

ω = 1MHz. Then it follows from the estimate, kr = 2π/λ and in dimensionless unit

kr
√

~/(mω) =
2π

773× 10−9m

√
1.05× 10−34J · s

(85× 1.67× 10−27kg)× (106Hz)
≈ 0.22

for a Rb atom. For K atom, kr ∼ 0.33; for Na atom, kr ∼ 0.42; for Li atom, kr ∼ 0.77. Temperature T is measured in

1/kB, Ω̃ =
√
ρΩ and δR are measured in ω. Although δR = ωc−ωR can be either positive or negative, partition function

Eq. D.2 can only be convergent when δR > 0 (by analogy to positive electronic energy states) in the thermodynamic

limit.
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With the partition function, it is easy to compute the average photon number,

〈c
†c

N
〉 =

Tr[c†ce−βH/N ]

Z(N, T )
(D.32)

=
|α|2
N

(D.33)

= y0 (D.34)

Thus, super-radiant phase occurs for y0 > 0 where |α|2 would be an infinitely large value in the thermodynamic limit

N →∞. Here we show average photon number in the parameter space of T and Ω .

If we consider the Hamiltonian without kinetic and SOC term, then

Z(N, T ) =

∫
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(D.35)
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Let’s denote φ(y) = −βδRy + log

[
2 cosh

(
βδ
√
1 + ( Ω̃

2δ
)2y

)]
and use Laplace’s method to calculate Eq. D.35. Putting

φ′(y) = 0, it is easy to see that the max is taken at δRδ

Ω̃2/8
η = tanh(βδη) where η =

√
1 + ( Ω̃

2δ
)2y. If Ω̃2 < 8δRδ, there

is no phase transition even at zero temperature; however, if Ω̃2 ≥ 8δRδ, there is a critical temperature Tc which is

given by δRδ

Ω̃2/8
= tanh( δ

kBTc
). For β > βc, the unique solution is given by a nonzero y0 value that is determined by

δRδ

Ω̃2/8

√
1 + ( Ω̃

2δ
)2y0 = tanh(βδ

√
1 + ( Ω̃

2δ
)2y0). (This derivation agrees with the paper PRA 7, 831(1973). Eq. 32)

If we set kr = 0, it recovers the Dicke phase diagram (which is equivalent to setting both kinetic energy and kr to 0,

in which case kinetic energy does not contribute to the super-radient phase transition). However, for non-zero kr value,

the phase boundary displays a non-monochromatic relation in Ω− T .
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[96] B. M. Anderson, G. Juzeliūnas, V. M. Galitski, and I. B. Spielman Phys. Rev.

Lett., vol. 108, 2012.

[97] B. M. Anderson, I. B. Spielman, and G. Juzeliūnas Phys Rev. Lett., vol. 111,
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