
                                           



ABSTRACT

Rashba Spin-Orbit Coupled Quantum Gases

by

Ramachandhran Balasubramanian

Spin-orbit (SO) coupling⇤ leads to many fundamental phenomena in a wide range

of quantum systems from nuclear physics, condensed matter physics to atomic physics.

For instance, in electronic condensed matter systems, SO coupling can lead to quan-

tum spin Hall states or topological insulators, which have potential applications in

quantum devices. Recently, SO coupling has been artificially induced in quantum

gases – ultracold dilute atomic Bose and Fermi gases – by the so-called synthetic gauge

fields. Combined with unprecedented controllability of interactions and geometry in

ultracold atoms, this manipulation of SO coupling opens an entirely new paradigm

for studying strong correlations of quantum many-body systems under Abelian and

non-Abelian gauge fields. In the major portion of this thesis, we theoretically inves-

tigate the ground state and collective excitations of a two-component Bose gas in a

two-dimensional harmonic trap, subject to Rashba SO coupling. Our work represents

an important extension into the regime of non-Abelian gauge field in which the spin

degrees of freedom play an essential role.

⇤This abstract and the thesis are primarily based on our publications in Refs. [1–3]. The discussion
in Appendices is primarily based on our publications in Refs. [4, 5].
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1

Chapter 1

Introduction

1.1 Quantum mechanics: wave-particle duality

In his Physics Nobel prize acceptance speech in 1913, Prof. Heike Kamerlingh Onnes

said “(Progress in cryogenics) can contribute towards lifting the veil which thermal

motion at normal temperature spreads over the inner world of atoms and electrons”

[6]. The cartoon depiction in Fig. 1.1 illustrates the fundamental change in atomic

behavior at lower temperatures. As shown in Fig. 1.1(a), the behavior of a gas of

atoms at room temperature is typically dominated by their random thermal motion

and billiard-ball like particle behavior [7]. Averaged over time, we can characterize

this ensemble of atoms in terms of thermodynamic variables like temperature and

pressure [8].

Figure 1.1 : (a): left, At high temperature, thermal motion dictates behavior with
arrows indicating the random instantaneous velocity v. The average inter-particle
spacing d determines the density n of the gas as d�3. (b): right, At sufficiently lower
temperatures, quantum mechanics dominates behavior. In a simplified description,
the atoms can be regarded as wavepackets with an extension �dB (see text). Image
and caption adapted from the seminal review article by Ketterle et al., Ref. [7].

The energy of an atomic ensemble is related to the (average) speed (v) and mo-
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mentum (p) by E / mv2 / p2/m, with m being the mass of the particle. The mean

thermal energy is given by E / kBT , where kB is the Boltzmann constant and T is

the equilibrium temperature. Thus at thermal equilibrium, the momentum is related

to equilibrium temperature by p ' p
mkBT . It is evident that as the temperature is

lowered, the particle’s thermal motion is reduced. However, atoms do not come to a

complete stop even at zero temperature. Quantum mechanics helps us understand this

non-intuitive behavior by ascribing wave-like attributes to the particle and thereby,

associating a finite uncertainty in simultaneously specifying momentum and position

of the particle. When such a description proves appropriate, the particle’s wavelength

� (manifesting wave-nature) and momentum p (manifesting particle-nature) are in-

timately related. First proposed by Louis de Broglie, the relation takes the form:

� = h/p ' h/
p
mkBT , where h is the Planck constant that accounts for the quantum

mechanical description. This wavelength is typically referred to as the thermal de

Broglie wavelength �dB.

Let us now determine the criteria for quantum mechanical effects to become impor-

tant in an atomic ensemble, largely following Leggett’s elegant description in Ref. [9].

We understand from classical optics that a wave will behave very much like a stream

of particles, if the wavelength � is small compared to the characteristic dimension d

of whatever is obstructing it: an example of this fact is that ‘one cannot see around

doors’ [9]. Therefore, when �dB, due to lowering of temperature, becomes a sub-

stantial fraction of d, we expect that quantum mechanical effects start to become

important. Another important aspect of quantum mechanics is the identical nature

of quantum particles that results in their indistinguishability. As �dB further increases

at lower temperatures, the atomic wavepackets begin to overlap. In such a scenario,

indistinguishability of particles becomes important to the extent that it begins to
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affect their macroscopic statistical distribution.

1.2 Quantum statistics: Bosons and Fermions

To further understand the significance of achieving low temperatures, it is important

that we highlight the fundamental nature of atoms and their statistical distribution

in thermal equilibrium.

Atoms exhibiting classical behavior: For a system of non-interacting distinguish-

able particles, Maxwell-Boltzmann (M-B) statistics describes their average distribu-

tion over various energy states in thermal equilibrium. M-B statistics is applicable

when the temperature is high enough or the particle density is low enough to render

quantum effects negligible [10]. The expected number of particles hNii with energy

"i in state i is

Maxwell-Boltzmann statistics : hNii = gi
e("i�µ)/kBT

. (1.1)

Here, "i is the energy of the ith state and gi is the degeneracy of energy level i, i.e.

number of states with energy "i. The chemical potential µ is obtained from the nor-

malization condition that
P

ihNii = N , where N is the total number of particles. In

Fig. 1.2(a), we illustrate Equation (1.1) with the occupation distribution at different

temperatures as a function of state energy (with respect to µ). As the temperature is

continuously lowered, it is evident that an increasing number of atoms tend to occupy

states with smaller energy (as an exponentially decreasing function of ("i �µ)/kBT ).

When particles are further cooled to lower temperatures, they no longer obey

M-B statistics. As described in Sec. 1.1, below a certain critical temperature, quan-

tum mechanical nature of particles becomes dominant, and a description in terms
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Figure 1.2 : Occupation distribution at different temperatures as a function of state
energy "i (with respect to µ): (a) Maxwell-Boltzmann statistics (b) Bose-Einstein
statistics (c) Fermi-Dirac statistics (d) A comparison of different statistical functions
(at a fixed temperature) clearly illustrates the macroscopic manifestation of quantum
statistics. The degeneracy of energy level gi is assumed to be unity in all plots, and
in the accompanying discussion⇤.

of atomic wavepackets becomes appropriate. As atomic wavepackets begin to over-

lap, the atomic ensemble may be classified into two distinct classes based on their

quantum statistics - Bosons and Fermions.

Fermionic atoms: Fundamental particles such as electrons, protons, and neutrons

are identical quantum particles, each with an intrinsic half-integer quantum spin.

⇤At first sight, distributions at a temperature of T = 300K may seem too high to display
macroscopic quantum statistical effects. As elaborated in Sec. 1.5, what matters is not an absolute
temperature scale, but rather the temperature relative to other energy scales in the system.
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They are grouped in a generic class as fermions and obey the Pauli-exclusion principle

that includes the condition that no two identical particles occupy the same state. An

atom with a cumulative odd integer sum of these fundamental particles will have a

net half-integer spin, and hence acts as a composite fermion. For example, 6Li atom

is a composite fermion since it has 3 electrons, 3 protons, and 3 neutrons.

If an ensemble of fermionic atoms is assumed to have negligible mutual interaction,

the many-particle system may be described in terms of single-particle energy states.

Even in such a simple setup, the Pauli-exclusion principle has a considerable effect on

the properties of the system at low temperatures. The result is the Fermi-Dirac (F-D)

distribution of fermionic atoms in thermodynamic equilibrium, where the expected

number of particles hNii with energy "i is

Fermi-Dirac statistics : hNii = gi
e("i�µ)/kT

+ 1

. (1.2)

While the parameters have similar roles as described in Eqn. (1.1)⇤, µ(T = 0) = Ef

is typically called the Fermi level. The F-D distribution is only valid if the number

of fermions in the system is large enough so that adding one more fermion to the

system has negligible effect on µ [11]. Since the F-D distribution is derived using the

Pauli exclusion principle, which allows at most one electron to occupy each possible

state, the result is that 0 < hNii < 1 (assuming gi = 1). In Fig. 1.2(c), we show

the distribution of identical fermions over single-particle energy states at different

temperatures. As temperature is continuously lowered, the F-D distribution tends

towards a unique transition†: at zero temperature, all states that satisfy the condition

("i � µ) < 0 are occupied by one fermion (hNii = 1) and rest of the states are not

⇤In the function’s denominator, ‘+1’ statistically accounts for the identical nature of fermions.
†Experimental signatures in proximity of this transition are discussed in Sec. 1.3.2.
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occupied (hNii = 0).

Bosonic atoms: An atom with a cumulative even integer sum of half-integer spin

fundamental particles will have a net integer spin, and hence acts as a composite

boson. For example, 7Li is a composite boson, since it has 3 electrons, 3 protons, and

4 neutrons. Similar to their fermionic counterpart, a many-body system of bosons

with negligible mutual interaction may be described in terms of single-particle energy

states. Bosons are identical quantum particles that are statistically allowed to occupy

the same energy state, which has a considerable effect on the properties of the sys-

tem. The result is the Bose-Einstein (B-E) distribution of these quantum particles in

thermodynamic equilibrium, and the expected number of particles hNii with energy

"i is

Bose-Einstein statistics : hNii = gi
e("i�µ)/kT � 1

with µ < 0, (1.3)

where the parameters have the same definitions as in Eqn. (1.1)⇤. In Fig. 1.2(b), we

show the distribution of identical bosons over single-particle energy states at different

temperatures. At low temperatures, bosons behave very differently from fermions

because a macroscopic (in principle, unlimited) number of bosons can occupy the

same low-energy state, a phenomenon called condensation (Sec. 1.3.2).

1.3 Quantum gases: ultracold dilute atomic gases

Largely inspired by Leggett’s definition of quantum liquids, a quantum gas is defined

to be a many-particle system in the gaseous phase in whose behavior not only the

effects of quantum mechanics, but also those of quantum statistics, are important [9].

Based on the considerations in Sec. 1.1 and Sec. 1.2, we see that for a quantum gas

⇤Condition µ < 0 ensures that the function converges; ‘-1’ in the denominator statistically ac-
counts for the identical nature of bosons.
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to manifest itself, the atoms must be cooled until the thermal de Broglie wavelength

is on the order of the spacing between atoms, �dB ' d [7, 9]. In this scenario, the

atomic wavepackets begin to become degenerate and indistinguishability starts to play

a critical role. The densities required to achieve degeneracy in a three-dimensional

atomic gas is determined by the condition �3dBn ' 1. Therefore, we find that the

criterion for a quantum gas to appear is

kBT
⇤ . n2/3~2/m, (1.4)

where ~ = h/2⇡. The temperature, T ⇤, at which this degenerate quantum state

appears is typically referred to as the quantum degeneracy temperature. With the

advent of innovative cooling techniques, physicists now prepare novel quantum gases:

atomic clouds of various species, which are in a metastable gaseous phase at ultra-low

temperatures for a long enough time [7].

1.3.1 Trapping and cooling

To achieve the quantum degeneracy temperature or lower, atoms are trapped with

magnetic fields or with laser light inside ultrahigh vacuum chambers [12, 13]. As

stated by Ketterle et al., such a setting allows atoms to be thermally isolated from

all material walls [7]. Such traps can store atoms for seconds or even minutes, which

is enough time to cool them. The number of atoms typically ranges between a few

thousands to several millions [7]. Thus, trapping of atomic gases is of paramount

importance to confine atoms and achieve cooling. In the words of Ketterle et al.,

pre-cooling is a prerequisite for trapping because conservative atom traps can only

confine neutral atoms with a maximum energy of one Kelvin at best (and in many
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cases the trap depth is just a few milli-Kelvin) [7]. While pre-cooling is usually done

by laser cooling, the final cooling is done by evaporative cooling methods. Several

useful resources exist that illustrate the fundamental physical processes governing

these cooling techniques, as can be found, for example, in Refs. [14–16].

Let us now briefly review the atomic species of interest to ultracold atomic physics

before presening an overview of the frontiers in low-temperature physics research.

Alkali atoms have a simple electronic structure and low-lying excited states, and hence

are ideal systems for cooling and trapping [7]. Among alkali atoms, the two stable

fermionic isotopes, 6Li and 40K, have become the main workhorses in the field [17–19].

Bosonic atomic species of interest are 7Li, 87Rb, and 23Na [20–22]. Recently, there has

been tremendous experimental progress in achieving quantum degeneracy in alkaline

earth metal atoms. In this class, atomic species of interest to ultracold temperature

physics are 173Yb, 87Sr (fermions), and 88Sr (boson) [23–25]. It is important to note

that a given trap configuration confines only certain atomic states, depending upon

their response to the electromagnetic fields. In general, cooling of atomic gases to

ultracold temperatures is very much a species-specific and state-specific technique.

Frontiers of low-temperature physics research: Trapping and cooling of atomic

gases, specifically those of alkali atoms, have played an essential role in achieving ultra-

low temperatures in the recent past. Several of the developments either led to cooling

atoms to new limits or cooling of new species. Since Onnes’s remarkable technolog-

ical achievement in liquefying helium (4He) in 1908, we have witnessed phenomenal

progress towards reaching lower temperatures in the last 100 years. Large-scale cryo-

genic equipment and dilution refrigerators were predominantly used in achieving low

temperatures (in the milli-Kelvin range) in the major part of the 20

th century. This

led to remarkable discoveries that included liquefaction of N
2

and 4He, and observa-
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tion of superfluidity in 4He and 3He. With the discovery of laser cooling of atomic

gases in the 1970’-s, researchers embarked on a route to using atomic species-specific

techniques, as compared to generic cryogenic techniques used earlier. Within the

realm of laser cooling, Doppler and Sisyphus cooling techniques enabled researchers

to slow atoms down and achieve temperatures that were hitherto impossible to reach

(micro-Kelvin range) [12,13]. With the innovative application of evaporative cooling

techniques in the 1990’-s, trapped atomic gases are now routinely cooled down to

ultra-low temperatures (nano-Kelvin range). We emphasize that these achievements

mark the coldest temperatures ever achieved in experiments, nearly 11 orders of

magnitude below room temperature [7,12]. Furthermore, scientists continue to make

commendable strides to achieve even lower temperatures and lower entropies, and to

theoretically understand the intriguing, and often non-intuitive, physical phenomena

that determine the behavior of atoms and electrons at low temperatures.

1.3.2 Quantum degeneracy and condensation

At high temperatures or at low concentrations, all atoms behave classically with

no apparent distinction between bosons and fermions. In this section, we discuss

the manifestation of quantum degeneracy and condensation in fermionic and bosonic

atoms at ultracold temperatures through a cartoon depiction in Fig. 1.3, and through

experimental measurements in Fig. 1.4.

Let us assume that a gas of alkali atoms is trapped in an isotropic harmonic

potential. The atoms distribute themselves in discrete energy levels, whose energy

spacing is determined by the curvature (frequency) of the harmonic trapping poten-

tial, as shown in Fig. 1.3. At temperatures much higher than the quantum degeneracy

temperature, T ⇤, the classical nature of atoms still dominates their motion and statis-
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Figure 1.3 : Illustrating quantum degeneracy and condensation phenomena in ultra-
cold fermionic and bosonic gases upon cooling.

tical distribution. In the vicinity of T ' T ⇤, quantum statistical properties begin to

become dominant, and a distinction between fermionic and bosonic atoms emerges.

Bose-Einstein condensation: In a gas of bosonic atoms, we observe a striking

manifestation of the B-E statistics as illustrated in the bottom panel of Fig. 1.3. B-

E distribution allows multiple atomic occupation of energy levels, and hence atoms

begin to predominantly occupy lower energy levels at temperatures in the proximity

of T ⇤. When bosonic atoms are cooled further to reach a threshold transition tem-

perature, (essentially) all bosonic atoms condense to occupy the lowest energy level,

a distribution referred to as Bose-Einstein condensation. The transition temperature

to this condensed state is referred to as Bose-Einstein condensate (BEC) transition

temperature, TBEC . At zero temperature, all atoms occupy the lowest energy level
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forming a pure BEC.

Table 1.1 : Multi-stage cooling to BEC in the MIT experiment. Through a combina-
tion of optical and evaporative cooling, the temperature of a gas is reduced by a factor
of 109, while the density at the BEC transition is similar to the initial density in the
atomic oven (all numbers are approximate). Courtesy: Ketterle et al. in Ref. [7].

Stage Temperature Density (cm�3) Phase-space density
Oven 500 K 10

14

10

�13

Laser cooling 50 µK 10

11

10

�6

Evaporative cooling 500 nK 10

14 1
BEC 10

7

In order to create a BEC, the atomic gas must be cooled and compressed in a trap

to reach quantum degeneracy. As an illustration of this process in real experiments,

Table. 1.1 shows a typical example of how these cooling techniques together reduce

the temperature of the atoms by a factor of a billion. As stated by Ketterle et

al. in Ref. [7], Bose-Einstein condensation can be regarded as ‘free cooling’, as it

increases the quantum occupancy by another factor of about a million without any

extra effort. This reflects one important aspect of the BEC: the fractional population

of the ground state is no longer inversely proportional to the number of states with

energies smaller than kBT , but quickly approaches unity when the sample is cooled

below the transition temperature [7]. As expected, we observe this behavior in the

illustrative statistical distribution plots in Fig. 1.2(b). Furthermore, it is important to

understand the ‘window’ in density for achieving bosonic degeneracy. Citing Ketterle

et al. in Ref. [7], at densities below 10

11 cm�3, thermalization is extremely slow,

and evaporative cooling can no longer compete with (technical) sources of heating

and loss. At densities above 10

15 cm�3, losses due to three-particle collisional losses

usually become dominant [7].
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Table 1.2 : Various stages towards a quantum degenerate Fermi sea in the MIT
experiment. Through a combination of laser cooling and sympathetic cooling, the
temperature is reduced by 9 orders of magnitude. Courtesy: Inguscio et al. in
Ref. [17].

Stage Temperature Density T/TF

Oven 720 K 10

14

cm

�3

10

8

Laser cooling 1 mK 10

10

cm

�3

10

4

(Zeeman slower & MOT)
Sympathetic cooling 1 µK 10

13

cm

�3

0.3
(Magnetic trap)

Quantum degenerate Fermi sea: When a gas of fermionic atoms is cooled towards

the degeneracy temperature, the quantum statistical nature of the F-D distribution

begins to emerge as illustrated by the cartoon in the top panel of Fig. 1.3. We observe

a striking manifestation of the Pauli-exclusion principle. At temperatures in the

proximity of T ' T ⇤
= Tf , nearly all energy levels below the Fermi energy (E = Ef )

are occupied by one atom each and nearly all levels above Ef are empty. Fluctuations

in the occupation distribution typically occur close to the Fermi energy level Ef . As

the temperature decreases further below Tf and eventually to T = 0, only energy levels

up to Ef are occupied by one atom each. Thus, fermionic atoms reach degeneracy

in this non-intuitive fashion, referred to as the Fermi sea. The ‘window’ in density

and temperature for achieving fermionic degeneracy is similar to the BEC window.

In this density window, fermionic degeneracy is typically achieved at temperatures

between 100 nK and 5 µK [17]. The cooling and trapping techniques to reach such

low temperatures are similar to those that have been developed for BEC. A crucial

difference is the inclusion of fermions (or bosons) of other state or species to cool the

fermions under study, a mechanism rightly termed as sympathetic cooling. Due to

the Pauli-exclusion principle, identical fermions are unable to undergo the collisions



13

necessary to rethermalize the gas during evaporation and therefore unable to undergo

evaporative cooling by themselves. In Table. 1.2, we show a typical example of the

different cooling stages to reach a quantum degenerate Fermi sea with alkali atoms

in the MIT experiment [17].

Figure 1.4 : Two-dimensional false-color images of both 7Li and 6Li clouds. At
T/Tf = 1.0, the two clouds are approximately the same size, but as the atoms are
cooled further, to T/Tf = 0.56, the Bose gas contracts, whereas the Fermi gas exhibits
only subtle changes in size. At T/Tf = 0.25, the size difference between the two gases
is clearly discernible. Figure reprinted with permission from AAAS: Truscott et al.,
Science 291, 2570 (2001) in Ref. [19]. Copyright License Number: 3330250950101.

In a pioneering experiment, Hulet’s group at Rice University illustrated the simul-

taneous condensation of bosonic atoms to a BEC and fermionic atoms to a quantum

degenerate Fermi sea [19]. In Fig. 1.4, we reproduce these seminal results showing

exotic manifestations of macroscopic quantum statistical properties in a mixture con-

taining bosonic 7Li atoms and fermionic 6Li atoms. An important aspect of trapped

atomic gases is their inhomogeneity, which leads to several important consequences,

especially to atomic Bose gases. As illustrated above, BEC shows up not only in
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momentum space, but also in coordinate space, i.e., the BEC may be considered

to be a macroscopic object physically present in the center of the trap, as well as a

macroscopic occupation of atoms in the zero-momentum state in momentum (energy)

space [26]. This double possibility of investigating the effects of condensation is very

interesting from both the theoretical and experimental viewpoints. For instance, this

provides novel methods for investigation of frequencies of collective excitations [26].

1.4 Experimental control and tunability

Ultracold trapped-atom experiments offer the unique possibility to understand many-

body physics beyond what can be explored in typical condensed matter settings [27].

Essentially, they provide clean many-body systems in which attributes like trap di-

mensionality, atomic states, density, and interactions, may be controlled with com-

mendable precision [7, 17, 28]. In this section, we briefly review the techniques and

opportunities to manipulate some of these attributes in experiments.

1.4.1 Trap geometry and dimensionality

In most experimental scenarios, the confining traps are well approximated by har-

monic potentials. The confining trapping potential in 3-dimensions takes the generic

quadratic form: V
ext

(r) = (M/2)(!2

xx
2

+ !2

yy
2

+ !2

zz
2

), where M is the mass of

atom and !x,y,z represent frequencies in different directions. It is typical to use

frequency !ho to represent the geometric mean of trapping frequencies in different

directions. Parameter !ho also provides a characteristic length scale for the system,

aho =
p

~/(M !ho), of the order of a few microns.

The harmonic potential V
ext

(r) holds for generic three-dimensional (3D) trapping

geometries. If experiments are set up such that !x = !y = !z, an isotropic 3D
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spherical harmonic potential is achieved [7]. Furthermore, two-dimensionality can be

readily realized by imposing a strong harmonic potential V (z) = M!2

zz
2/2 along axial

direction, in such a way that µ, kBT ⌧ ~!z [29]. In the bulk of this thesis, we consider

atomic Bose gases confined in two-dimensional (2D) trap geometries. A variety of

interesting many-body quantum phenomena may be explored in such experimental

settings [27]. If the trap geometry is further deformed such that the confinement in

two orthogonal directions is made much tighter compared to that in the third, the

system can be effectively considered to be 1-dimension. In such a case, the trapping

frequency in the tight directions is such that µ, kBT ⌧ ~!
tight

. The ability to simulate

the behavior of atomic gases in one-dimensional (1D) geometries opens the possibility

to study exotic correlations that exclusively occur in 1-dimension [27,30].

In addition to modifying the dimensionality of the trapping potential, there are

other attributes related to trap geometry that can be controlled in experiments.

For example, the tightness of the trap may be controlled by modifying the trap-

ping frequency. This becomes specifically important in multiple-species experiments,

where either species could be confined in tighter traps. Such a consideration is com-

pletely justified as the trapping potential for each species can be independently con-

trolled [17]. Another example of engineering trapping potentials is the creation of

double-well traps. In this case, trapping potential has a finite barrier near the center:

V (r) = (1/2)M !?(x2

+ y2) + (1/2)M !zz2 + V
0

exp(�z2/2�2

). Here, !? (!z) is the

trap frequency in the transverse (longitudinal) direction to the Gaussian beam cre-

ating the trapping potential, and V
0

and � define the barrier peak and beam-width,

respectively. In Appendix A, we illustrate several of these interesting possibilities in

realistic experimental settings and study the behavior of a mixture of Bose and Fermi

superfluids.
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1.4.2 Interaction strengths

Ultracold trapped atomic gases are typically very dilute in nature. For instance,

the average distance between atoms is more than ten times the range of interatomic

forces [26]. As stated by Dalfovo et al. in Ref. [26], despite the inhomogeneity present

in these systems due to trapping potential, which makes the solution of the many-

body problem nontrivial, the dilute nature of the gas allows one to describe the effects

of the interaction in a rather fundamental way. Interestingly, a single parameter that

describes the two-body contact interaction, the s-wave scattering length, is sufficient

to obtain an accurate description of Bose gases [26]. In single-component Fermi gases,

the Pauli-exclusion principle obviates the possibility of s-wave contact interaction, but

a higher order p-wave scattering length is sometimes used in relevant scenarios⇤ (for

example, see Ref. [31]).

In addition to the inherent interatomic forces present in alkali gases, Feshbach

resonances act as an important tool to control and tune the interaction between ul-

tracold atoms. In Fig. 1.5, we briefly review the physical origin and the elementary

properties of a Feshbach resonance. The key features of a magnetically-tuned Fes-

hbach resonance can be captured by a simple expression†, for the s-wave scattering

length a as a function of the magnetic field B:

a(B) = a
bg

✓

1� �

B � B
0

◆

. (1.5)

⇤s-wave contact interaction is allowed in two-component Fermi gases (being non-identical). In
Appendix A, we discuss this scenario and the possible emergence of interaction-driven s-wave su-
perfluidity.

†We note that this simple expression in Eqn. (1.5) applies to resonances without inelastic two-
body channels. Some Feshbach resonances, especially the optical ones, feature inelastic decay pro-
cesses and a more general discussion is given in Appendix B.
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Figure 1.5 : (a): left, Feshbach resonance occurs when two atoms colliding at energy
E in the entrance channel resonantly couple to a molecular bound state with energy
Ec supported by the closed channel potential. In the ultracold domain, collisions
take place near zero-energy, E ! 0. Resonant coupling is then conveniently realized
by magnetically tuning Ec near 0, if the magnetic moments of the closed and open
channels differ. (b): right, s-wave scattering length a near a magnetically tuned
Feshbach resonance. Image adapted and reprinted with permission from “Feshbach
resonances in ultracold gases”: Cheng Chin, Rudolf Grimm, Paul Julienne, and Eite
Tiesinga, Rev. Mod. Phys. 82, 1225-1286 (2010). Copyright (2014) by the American
Physical Society.

Figure 1.5(b) illustrates this resonance expression. Parameters a
bg

, B
0

, and � repre-

sent the background scattering length, resonance position, and the resonance width

respectively.

1.5 Applications with ultracold atomic gases

We have seen enormous progress in cooling atomic gases to ultracold temperatures,

where quantum degeneracy and condensation sets in. As Onnes had rightly pre-

dicted [6], theoretical and experimental progress in reaching ultracold temperatures

continue to help us unearth fundamental aspects about the behavior of matter when

thermal motion is made insignificant. It would be natural to wonder about poten-

tial applications with ultracold atomic gases. It is important to remember that only
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nearly thirty years from the invention of lasers that we started using it in our daily

lives [32]. With similar optimistic projections, we will probably see ultracold atomic

gases finding innovative applications in the near future. That said, several proposals,

prototypes, and benchmark results already exist for practical applications. We shall

review some of these exciting prospects in this section.

Quantum metrology: Quantum metrology is the study of making high-resolution

and highly sensitive physical measurements using principles based on quantum the-

ory [33]. For example, ultracold gases have exciting potential applications towards

precision measurement of fundamental constants. This in-turn has innovative possi-

bilities to improve navigation, mining, and oil exploration, to name a few. Another

possibility is gravimetry, the measurement of the strength of a gravitational field. An

interesting prospect in gravimetry is gravity gradient sensing, which is defined as a

measure of how gravity changes with height. An accurate measurement of gravity

gradients is attractive to, for example, operators in oil and natural gas exploration

and mining, in that it being a passive technology. Atom interferometry, based on

the fact that atoms have wave-like attributes at low temperatures, has some exciting

features that promise to overcome current limitations in gravity gradient sensing. In

Fig. 1.6, we illustrate the basic idea of atom interferometric gravity gradient sen-

sors. The article by Bongs in Ref. [34] and Midlands ultracold atom research centre

(MUARC) webpage in Ref. [35] provide excellent motivations on this prospect.

Furthermore, phenomenal prospects exist for gravimetry applications in space.

Inspirational work is being performed by the Stanford research group of Kasevich, as

elaborated in Refs. [37–41]. Atom interferometers have the potential to make sensitive

gravitational wave detectors which would reinforce our fundamental understanding

of gravity and provide a new means of observing the universe [37]. While techniques
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Figure 1.6 : (a): left, Basic idea of atom interferometric gravity gradient sensors is
simple: they measure the trajectories of two vertically separated ensembles of atoms
under the influence of gravity using a laser ruler. The gravity gradient will show up in
tiny differences in how the two ensembles drop: a density anomaly in the ground will
attract the lower ensemble more than the higher one, leading to the lower ensemble
to drop faster. Image and Caption adapted from Bongs in Ref. [34]. (b): right, 10-
m drop tower: Atom interferometry for high precision quantum metrology. Image
courtesy: Nasa webpage in Ref. [36] and Kasevich group in Ref. [37].

relevant to an atomic gravitational wave interferometric sensor (AGIS) are being in-

vestigated at the Stanford 10-m drop tower – Fig. 1.6(b) – to help in precise detection

of terrestrial gravity waves, corresponding AGIS modules are also being designed for

space gravity wave detection using atom interferometry in space with degenerate

quantum gases. Similarly, several programs are aiming to develop the use of cold

atoms in microgravity measurements and space-based atomic clocks [36,42–44].

Quantum information: As stated by Stajic in Ref. [45] and as illustrated in Fig. 1.7,

quantum information processing (QIP) uses qubits as its basic information units.

QIP has many facets, from quantum simulation, to cryptography, to quantum com-

putation, which is expected to solve problems more complex than those within the
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capabilities of conventional computers. Examples of systems that are engineered to

implement quantum computing include – trapped ions and neutral atomic gases at

ultracold temperatures – and they play a tremendous role in advancing many facets

of QIP.

Figure 1.7 : (a): left, Qubit: A traditional BIT has two states: 0 or 1. Qubit,
the quantum version of a bit, has many more possible states. The states can be
represented by an arrow pointing at a location on a Bloch sphere. The north could
be made equivalent to state |0i, the south pole to state |1i. The other locations
are quantum superpositions of states |0i and |1i. Caption and image adapted from
Refs. [46, 47]. (b): right, Quantum register in an optical lattice: An optical lattice
is formed by the interference of counter-propagating laser beams, creating a spatially
periodic polarization pattern. Atoms are cooled and congregate in the locations of
potential minima. The resulting arrangement of trapped atoms resembles a crystal
lattice [48]. Here, we see the potential realization of a quantum register encoded on
long-lived internal states of cold neutral atoms in an optical lattice potential. Image
and caption adapted from University of Pittsburgh webpage in Ref. [47].

Quantum simulation: Richard Feynman, during his seminal lecture ‘Simulating

Physics with Computers’ in 1981, memorably said: ‘Nature isn’t classical, dammit,

and if you want to make a simulation of nature, you’d better make it quantum mechan-

ical, and by golly it’s a wonderful problem, because it doesn’t look so easy’ [49, 50].

Ultracold quantum gases in optical lattice potentials offer a unique setting for quan-

tum simulation of interacting many-body systems. As stated by Bloch et al. in
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Table 1.3 : Transition temperatures, Fermi temperatures and their ratio TC/TF for a
variety of fermionic superfluids or superconductors. Table adapted from Inguscio et
al. in Ref. [17].

System TC TF TC/TF

Metallic Li at ambient 0.4 mK 55000 K 10

�8

pressure [52]
Metallic superconductors 1 ⇠ 10K 50000 ⇠ 150000K 10

�4···�5

(typical)
3He 2.6 mK 5 K 5 · 10�4

MgB
2

39 K 6000 K 10

�2

High-TC superconductors 35 ⇠ 140 K 2000 ⇠ 5000 K 1 ⇠ 5 · 10�2

Neutron stars 10

10 K 10

11 K 10

�1

Strongly interacting 200 nK 1 µK 0.2
atomic Fermi gases

Ref. [51], the high degree of controllability, the novel detection possibilities, and the

extreme physical parameter regimes that can be reached in these ‘artificial solids’

provide an exciting complementary set-up compared with natural condensed-matter

systems, much in the spirit of Feynman’s vision of a quantum simulator. At first

sight, it may sound ironic then that we could simulate quantum many-body systems

using ultracold atoms at nano-Kelvin temperatures. These nominally low tempera-

tures are often deceiving, because what matters is not an absolute temperature scale,

but rather the temperature relative to other energy scales in the system (for example,

the Fermi energy), and from this perspective, ultracold atom systems are often not

that cold (Table. 1.3). Furthermore, ultracold atomic systems are among the simplest

and most controllable of quantum many-body systems.

As stated by Galitski et al. in Ref. [53], in contrast to solid-state systems, in which

we do not control or even know with certainty all details of the complicated material

structure, ultracold atoms are remarkable in that most aspects of their environment

can be engineered in the laboratory. Also, their tunable interactions and their single-
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particle potentials are both well characterized: the full atomic Hamiltonian is indeed

known [53]. This provides a level of control unprecedented in condensed matter and

allows one to address basic physics questions at the intersection of material science

and many-body theory. “To study material systems, theorists create ‘spherical-cow’

models of real materials, whereas in cold atom physics experimentalists can actu-

ally make spherical cows” [53]. For instance, phenomenal experimental progress has

been achieved with atomic gases loaded in optical lattices to emulate traditionally

condensed-matter Hamiltonians and associated phenomena [17,27,54]. For example,

in a recent effort, physicists at ETH Zurich developed a quantum simulator that allows

arranging atoms in a way such that they mimic the behavior of electrons in magnetic

materials. The experiment opens up the possibility of systematically studying poorly

understood properties of novel materials [55].

Figure 1.8 : In a magnetic material, electrons interact with each other. In this
cartoon depiction of a quantum simulator, atoms (red and blue) may take the role of
electrons. They are depicted to be embedded in a “crystal” (grey) made of interfering
laser beams. Image and caption adapted from ETH Zurich webpage in Ref. [56].

Due to the neutral nature of atomic gases, however, most experimental systems

were limited to exploring quantum phenomena that would occur in the absence of

electromagnetic fields. Recently, even this limitation was overcome, when laser fields
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were used to successfully generate effective magnetic and electric fields in neutral

atoms [57, 58]. Such a manipulation of neutral atoms to experience ‘synthetic’ elec-

tromagnetic fields opens an entirely new paradigm for studying quantum many-body

systems in experiments with ultracold atomic gases. Spin-orbit (SO) coupling is one

such phenomenon that can be simulated with ultracold atoms [59–61]. SO coupling

leads to many fundamental phenomena in a wide range of quantum systems from

nuclear physics, condensed matter physics to atomic physics. In electronic condensed

matter systems, SO coupling can lead to quantum spin Hall states or topological in-

sulators [62], which have potential applications in quantum devices and are expected

to retain their quantum nature up to room temperature. In the bulk of this thesis,

we discuss in detail the underlying physics of SO coupled ultracold trapped atomic

Bose gases. We sincerely believe that our work would further the fundamental un-

derstanding and play a significant role in the quantum simulation of this fascinating

field of study.

1.6 Outline of Thesis

We begin Chapter 2 with the discussion of the basics of SO coupling in conventional

systems in Sec. 2.1 and the realization of SO coupling in ultracold atomic gases in

Sec. 2.2. Beginning with Sec. 2.3, we exclusively focus on Rashba SO coupling in

atomic gases. We introduce the system under study in Sec. 2.3.1. In Sec. 2.3.2,

we discuss the effect of inclusion of Rashba SO coupling in a homogeneous system

and present its key attributes. In Sec. 2.3.3, we discuss the effects of including a

harmonic trapping potential. This represents a significant scenario, since in a real

experiment a confining trapping potential is necessarily present to prevent the atoms

from escaping. In addition to being an experimental necessity, the confining trapping
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potential allows for the emergence of novel physics in ultracold atomic systems. We

derive single-particle solutions at small and large SO coupling strengths to illustrate

that the nature of solutions is fundamentally different in these two limits [1, 2].

In Chapter 3, we present a detailed discussion of ground state phases at parameters

that correspond to the weakly correlated regime. Mean-field theory provides a suitable

approach to analyze this scenario. In Sec. 3.1, we present the system under study

– an interacting many-body system of two-component Bose gases confined in a 2D

isotropic harmonic trapping potential with Rashba SO coupling. In Sec. 3.2, we

present a detailed discussion of the phase diagram of interacting gases at small SO

coupling strengths in the weakly correlated regime. We show that in the presence of

trap, bosons condense into a half-quantum vortex state and qualitatively show that it

occupies a large part of the phase space at small SO coupling strengths. Subsequently

in Sec. 3.3, we present an analogous discussion at large SO coupling strengths and

present the phase diagram of weakly correlated ground state phases [1, 2].

In Chapter 4, we systematically explore the parameter space for the half-quantum

vortex state and analyze its stability. We present the phase diagram as a function

of SO coupling and interatomic interaction strengths. We do this by solving the

Bogoliubov equations and computing the collective excitation spectrum, since they

constitute one of the main sources of information for understanding the physics of

many-body systems. Upon introducing this computational procedure in detail in

Sec. 4.1, we present a discussion of its solutions in Sec. 4.2. In Sec. 4.3, we analyze

the stability of the half-quantum vortex state by monitoring the softening of collective

mode frequencies and by comparing the energy with that of competing states. We

also investigate the dynamical properties of the half-quantum vortex state by directly

simulating the real-time propagation of the mean-field ground state under perturba-
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tions in Sec. 4.4. The collective excitation spectrum obtained from the Bogoliubov

equations is then compared to the results from direct simulation. Finally, the stability

of the half-quantum vortex state against both trap anisotropy and anisotropy in the

SO coupling term is examined [2].

The results discussed in Chapter 3 are only valid for weak correlations with large

number of bosons. Strongly correlated states would emerge with a small number of

bosons and we address this possibility using the exact diagonalization (ED) scheme

in Chapter 5. In Sec. 5.1, we begin by re-iterating the model Rashba SO coupling

Hamiltonian introduced in Sec. 2.3.1 and discuss various symmetries. We proceed to

discuss the implementation of the ED scheme to obtain the low-energy eigenstates

of the interacting Hamiltonian in the regime of large SO coupling strengths. Then,

we introduce various analysis techniques namely, energy spectrum, density distribu-

tion, single-particle density matrix, pair-correlation function, reduced wavefunction,

entanglement spectrum, and entanglement entropy. Each technique would offer its

unique perspective to the overall understanding of the ground state properties. In

Sec. 5.2, we discuss the phase diagram and analyze the ground state properties of the

interacting Hamiltonian at different particle numbers N , and at varied inter-atomic

interaction strengths. At small particle numbers with N = 2, we illustrate the unique

topological and symmetry properties of ground states. In the relatively large particle

number scenario with N = 8, we observe that the ground states fall into two dis-

tinct regimes: (a) at weak interaction strengths (mean-field-like regime), we observe

ground states with topological and symmetry properties that are also obtained via

mean-field theory computations; (b) at intermediate to strong interaction strengths

(strongly correlated regime), we report the emergence of strongly correlated ground

states. We proceed to illustrate the topological, symmetry and strong correlation
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properties of these ground states [3]. Finally in Chapter 6, we summarize and present

concluding remarks.
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Chapter 2

Rashba spin-orbit (SO) coupling

Ultracold atomic gases offer an exceptional platform to explore many-body quantum

phenomena due to outstanding experimental control over interatomic interactions,

system geometry, density, and purity [27, 54]. Numerous research groups have, for

example, successfully demonstrated the manifestation of few-body bound states and

superfluid states in Bose and Fermi gases in trapped atom experiments [63–66]. Fur-

thermore, phenomenal experimental progress has been achieved with atomic gases

loaded in optical lattices to emulate traditionally condensed-matter phenomena like

superfluid-insulator transition, anti-ferromagnetism, and frustrated many-body sys-

tems [67–71]. Until recently, most experimental systems were limited to exploring

quantum phenomena that would occur in the absence of electromagnetic fields. For

instance, condensation of ultracold Bose and Fermi gases (Sec. 1.3.2) occurs despite

the charge neutrality of atoms.

In two seminal publications, Spielman’s group at Joint Quantum Institute gen-

erated synthetic electric and magnetic fields in ultracold Bose gases [57, 58]. To

understand the significance of these realizations, let us consider the simple scenario

of a particle with charge q in a magnetic field B. In the classical electromagnetism

formulation, the Lorentz force for a particle is v ⇥ qB, where v is the velocity of the

particle in the magnetic field. In an equivalent quantum Hamiltonian formalism, we

may write the single-particle Hamiltonian as H = ~2(k � qA/~)2/2M , where M is

the mass and ~k is the canonical momentum [57]. In the latter formalism, potentials
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play defining roles as compared to fields. The vector potential A gives rise to a mag-

netic field, as B = r⇥A. As shown in the experimental realization in Ref. [57], the

authors engineer a Hamiltonian with a spatially dependent vector potential A0 that

produces an artificial magnetic field for neutral atoms: B0
= r ⇥ A0. Similarly in

the experimental realization in Ref. [58], the authors engineer a Hamiltonian with a

time-dependent vector potential A0 that produces an artificial electric field for neu-

tral atoms: E0
= �@A0/@t. This ability to generate synthetic electric and magnetic

fields in neutral atoms has opened an entirely new paradigm for studying quantum

many-body systems in experiments with ultracold atomic gases.

2.1 Basics of SO coupling

The⇤ angular momentum of a classical spinning top can take on any arbitrary con-

tinuous value [53]. In contrast, for example, the electron’s spin angular momentum

along a given direction is discrete and can take only two values: ±~/2. The two spin

states are commonly referred to as spin-up or spin-down states, and are represented

by |"i or |#i respectively. In general, the spin of a quantum particle is its intrinsic

quantum mechanical attribute with no classical counterpart, and is quantized. In

contrast, a quantum particle’s velocity or momentum (linear or orbital momentum)

is directly related to classical particle’s counterpart [53]. An interesting scenario

would then be to consider the coupling of particle’s spin with its momentum, and

study its consequences. Such a scenario is termed as spin-orbit (SO) coupling and

this mechanism has the potential to bring quantum mechanics to the forefront [53].

In materials, this essentially means that the quantum effects could possibly be re-

⇤The following introduction is largely inspired by the seminal review article in Ref. [53]: “Spin-
orbit coupling in quantum gases”: Victor Galitski, and Ian B. Spielman, Nature 494, 49 (2013).
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tained up to room temperature and contribute to exotic phenomena with potentially

spectacular applications [62,72].

Figure 2.1 : (a), In materials, SO coupling requires a broken spatial symmetry. For
example, the growth profile of 2D GaAs electron (or hole) systems can create an
intrinsic electric field, thereby breaking inversion symmetry. (b), Model system in
laboratory frame. The effective model system consists of an electron confined in the
ex � ey plane (in this example moving along ex) in the presence of an electric field
along ez, E = E

0

ez. (c), Model system in electron’s frame. In the rest frame of
the electron, the Lorentz-transformed electric field generates a magnetic field along
ey (yielding a Zeeman shift) that depends linearly on the electron’s velocity. The
generated spin-orbit magnetic field BSO = (E

0

~/Mc2) ⇥ (kxey � kyex) in the frame
of an object moving with momentum ~k, where c is the speed of light in vacuum and
M is the particle’s mass. The resulting momentum-dependent Zeeman interaction
�µ ·BSO ⇡ �̂xky � �̂ykx, with spin-magnetic moment µ written in terms of Pauli spin
matrices �̂, is known as Rashba SO coupling [73]. (d), Dispersion of resulting Rashba
SO coupling. For such systems the SO coupling is linear, and the usual free-particle
mv2/2 = p2/2m dispersion relation is altered in a spin-dependent way. In this case,
pure Rashba SO coupling shifts the free-particle dispersion relations for each spin state
away from zero (red and blue curves). Image and caption adapted with permission
from Macmillan Publishers Ltd: [Nature] “Spin-orbit coupling in quantum gases”:
Victor Galitski, and Ian B. Spielman, Nature 494, 49 (2013). Copyright License
Number: 3327120846161. Copyright (2014).

The presence of SO coupling in conventional atomic physics systems generates

atomic fine-structure splitting. It is from this context that the phenomenon acquires

its name, as a coupling between an electron’s spin and its orbital angular momentum
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about the atom’s nucleus [53]. The charged nucleus produces an electric field in the

stationary laboratory frame. On the other hand, an orbiting electron experiences

a magnetic field in its co-moving frame of reference. In this reference frame, if the

particle possesses a magnetic moment µ parallel to the spin, a Zeeman interaction

energy term is present in the form �µ ·B. Therefore, the Zeeman interaction energy

term represents the simplest way to understand SO coupling [53]. Generalizing this

scenario, we can argue that SO coupling requires symmetry breaking, as the velocity

is measured in a preferred reference frame of the particle. In materials, these usually

originate either from a lack of mirror symmetry in 2D systems leading to the Rashba

SO coupling, or from a lack of inversion symmetry in bulk crystals leading to linear

Dresselhaus SO coupling. For example, Fig. 2.1 illustrates a possible manifestation

of SO coupling in conventional electronic materials.

2.2 SO coupling in ultracold atomic gases

One of the noteworthy aspects of the ability to generate effective vector potentials

in ultracold neutral atomic gases is the possibility to simulate SO coupling. Let us

briefly review the mechanism of generation of SO coupling in ultracold gases using

two-photon Raman transitions⇤. The Raman transition is driven by a pair of laser

beams, each with wavelength �. The two-photon Raman process corresponds to the

absorption of a single photon from one laser beam and the stimulated re-emission of

a photon into the second counter-propagating laser beam [53]. Each photon carries a

recoil momentum pR with magnitude h/�. If we consider the atom-laser setup to be a

closed system, the momentum-conservation principle requires that the atom absorbs

⇤The following introduction is largely inspired by the seminal review article in Ref. [53]: “Spin-
orbit coupling in quantum gases”: Victor Galitski, and Ian B. Spielman, Nature 494, 49 (2013).
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Figure 2.2 : (a), Typical level diagram. A pair of lasers – often counter-propagating
– couple together a selected pair of atomic states labelled by |"i and |#i that together
comprise the atomic ‘spin’. These lasers are arranged in a two-photon Raman config-
uration that uses an off-resonant intermediate state (grey). These lasers link atomic
motion along the x direction to the atom’s spin creating a characteristic spin-orbit cou-
pled energy-momentum dispersion relation. (b), Minima location. Measured location
of energy minimum or minima, where as a function of laser intensity the characteris-
tic double minima of SO coupling dispersion move together and finally merge. The
uncertainties reflect the standard deviation of about 10 measurements. (c), Disper-
sion measured in 6Li. Complete dispersion before and after laser coupling measured
in a 6Li Fermi gas (data for figure reproduced from Ref. [61]), compared with the
predicted dispersion (white dashed curves), showing the typical spin-orbit dispersion
relations depicted in Fig. 2.1(d). Image and caption adapted with permission from
Macmillan Publishers Ltd: [Nature] “Spin-orbit coupling in quantum gases”: Victor
Galitski, and Ian B. Spielman, Nature 494, 49 (2013). Copyright License Number:
3327120846161. Copyright (2014).
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the momentum difference of 2 pR. Even though the absolute magnitude of recoil

momentum may seem quite small, the low energies of ultracold atomic gases ensures

that the recoil momenta play a significant role in determining macroscopic properties

of atoms [53]. Thus, as first put forward by Higbie and Stamper-Kurn in Ref. [74],

Raman transitions can provide the required velocity-dependent link between the spin

and momentum in ultracold neutral atoms.

Fig. 2.2 illustrates a currently implemented technique for creating SO coupling in

ultracold neutral atoms. As shown in Fig. 2.2(a), the first step is in the selection of

two states, from the many available internal states of an atom [53]. Here, they are

represented by pseudo-spin states |"i and |#i that form the atomic spin. Following

up with the afore-mentioned description, the two counter-propagating laser beams

with net recoil momenta 2 pR couple the pseudo-spin states |"i and |#i. Hence, a

coupling between the atomic spin and the momentum is generated and the atom’s

energy-momentum dispersion is altered, as shown in Fig. 2.1(d).

Several configurations of SO couplings can be created, with additional lasers link-

ing together additional internal states [75]. Figure 2.3 shows a realistic example in

which three internal atomic states can be coupled, eventually helping to produce

a tunable combination of Rashba and Dresselhaus SO coupling. However, major

technological challenges remain in experimental realization of such configurations. A

serious challenge is the heating caused by Raman laser beams, which limit achieving

ultracold temperatures required to allow for the manifestation of condensed phases of

matter that are of paramount interest. However, we are optimistic that these tough

experimental challenges would be overcome in the near future [76]. In the rest of this

thesis, we discuss in detail the interesting physics of a system of ultracold bosonic

atoms trapped in a 2D trap with pure Rashba SO coupling.
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Figure 2.3 : Going beyond current experiments, more complicated forms of SO cou-
pling may be created. These require both more laser beams and more internal states.
(a), Coupling scheme. Each state is coupled by a two-photon Raman transition, each
produced by a pair of the beams shown in (b). The configuration depicted in (a) and
(b) could realize a tunable combination of Rashba and Dresselhaus SO coupling in
alkali atoms [75]. Image and caption adapted with permission from Macmillan Pub-
lishers Ltd: [Nature] “Spin-orbit coupling in quantum gases”: Victor Galitski, and
Ian B. Spielman, Nature 494, 49 (2013). Copyright License Number: 3327120846161.
Copyright (2014).

2.3 Rashba SO coupling in Bose gases

2.3.1 System under study

We⇤ consider a two-component Bose gas confined by a 2D isotropic harmonic trapping

potential V (⇢) = M!2

?(x
2

+ y2)/2 = M!2

?⇢
2/2, with a Rashba SO coupling VSO =

�i�R(�̂x@y � �̂y@x). Here, �R is the Rashba SO coupling strength and �̂x, �̂y, and �̂z

are the 2⇥ 2 Pauli matrices. Our study is motivated by the real experiment, where a

harmonic trap is necessary to prevent the atoms from escaping. In addition to being

an experimental necessity, the confining trapping potential allows for the emergence

of novel physics in ultracold atomic systems. For example, a homogeneous system

⇤The following section 2.3.1 is taken largely from our publication in Ref. [2].
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of 2D bosons does not condense and form a BEC. However, the trapping potential

allows for the emergence of BEC [77]. Along similar lines, we shall observe that the

SO coupled Bose gas confined by a 2D harmonic trapping potential allows for the

emergence of novel ground state phases.

The model Hamiltonian is given by,

H =

ˆ
dr [H

0

+H
int

], (2.1)

H
0

=  

†


�~2r2

2M
+ V (⇢) + VSO � µ

�

 ,

H
int

= (g/2)
X

�=",#
 

†
� 

†
� � �+g"# 

†
" " 

†
# #.

Here, r = (x, y) and  = [ "(r), #(r)]T denotes the spinor Bose field operators for

the atomic states |"i and |#i that create the synthetic spin-half system. In a recent

experiment reported by the Spielman group, a spinor (spin-1) Bose gas of 87Rb atoms

with F = 1 ground electronic manifold is used. However, to create SO coupling,

two internal ‘spin’ states have been selected from the F = 1 manifold and have been

labeled as pseudo-spin-up and pseudo-spin-down [59]. This gives an effective spin-

1/2 Bose gas. In experiments, the 2D geometry can be realized by imposing a strong

harmonic potential V (z) = M!2

zz
2/2 along the axial direction, in such a way that

µ, kBT ⌧ ~!z [29].

The term H
0

in Eqn.(2.1) represents the Hamiltonian for the non-interacting

atomic gas with arbitrary SO coupling, and the term H
int

accounts for the inter-

atomic interactions in the SO-coupled atomic gas. The chemical potential µ is to be

determined by the total number of bosons N , i.e.,
´
dr †

 = N . For simplicity, we

have assumed equal intra-species interaction strength, so that g"" = g## = g. The

inter-species interaction strength is represented by g"#. The Hamiltonian in Eqn.(2.1)
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harbors interesting phases of matter and offers an exceptionally rich playground to

study many-body physics in the presence of Rashba SO coupling. The main purpose

of the remainder of this thesis is to discuss these attributes of this Hamiltonian in de-

tail. To begin with, let us discuss the simplified scenario in the absence of interatomic

interactions and external trapping potential.

2.3.2 Homogeneous non-interacting gas with arbitrary SO coupling

The main ingredient of SO coupled atomic Bose gases is the laser-dressed bosonic

states |"i and |#i that create a synthetic spin-half system. As stated by Galitski et

al. in Ref. [53], because the Pauli spin-statistics theorem prohibits the existence of

bosons with real spin-half, this is already a weird and interesting entity. Furthermore,

when many such entities are brought together in a SO coupled system, the weirdness

increases further [53]. As the temperature is lowered, the bosons tend to condense, but

in contrast to the conventional BEC, where the zero-momentum state is the unique

state with lowest energy, spin-orbit bosons can have energy-momentum dispersion

with several lowest-energy states (the ground state is degenerate).

Let us discuss a simple, but important, limiting case of the Hamiltonian in Eqn.(2.1),

when the trapping potential and interatomic interactions are assumed to be absent.

Hence, this corresponds to the scenario of a homogeneous non-interacting spinor Bose

gas with arbitrary strength of Rashba SO coupling. The Hamiltonian in Eqn.(2.1)

then takes the simple form:

H
hom

=

~2k2

2M
+ �R

�

ky�̂x � kx�̂y
�

(2.2)

In the absence of Rashba SO coupling (�R = 0), the energy-momentum relation is
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Figure 2.4 : (a): left, Energy dispersion curves in the absence of Rashba SO coupling.
(b): right, In the presence of Rashba SO coupling, we notice a (blue) ring of states
that represent the minima in momentum space, typically referred to as Rashba ring.

a simple free-particle parabolic dispersion, as shown in Fig. 2.4(a). In the presence

of SO coupling, this limiting scenario allows us to explore single-particle physics in

momentum space for a system that preserves translational invariance. With finite �R,

the pseudo-spin index is no longer a good quantum number, as it starts to precess

about the direction of momentum. As shown in Fig. 2.4(b), the eigenspectrum of the

Hamiltonian in Eqn.(2.2) now has upper and lower branches:

"±(k) =
~2k2

?
2M

± �Rk?, with k? =

q

k2

x + k2

y. (2.3)

The ± denotes a different helicity basis, i.e., the spin-index being either parallel or

anti-parallel to the wave vector k. As illustrated in Fig. 2.4(b), the ground state

is in the negative helicity branch "�(k). We notice a ring of states that represent

the minima in momentum space, typically referred to as Rashba ring, with kx, ky

that satisfy the condition k? = �R/(~2/M) to be degenerate. Hence, the single-
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particle state is infinitely degenerate with allowed momenta in the Rashba ring⇤.

These conclusions are based entirely on single-particle physics, as we see that the

particle statistics play no role. This implies that the dispersion plots in Fig. 2.4 are

as well applicable for fermions.

2.3.3 Trapped non-interacting gas with arbitrary SO coupling

Let† us now proceed to discuss the natural follow-up of the limiting case considered

above, i.e., to include the effects of a harmonic trapping potential. However, we

continue to assume that interatomic interactions are absent. Hence, the discussion

in this section corresponds to the scenario of a trapped non-interacting spinor Bose

gas with arbitrary strength of Rashba SO coupling. We proceed to solve the model

Hamiltonian H
0

and obtain the single-particle solutions. Rewriting the H
0

component

in Eqn. (2.1), the single-particle wavefunction �(r) = [�" (r) ,�# (r)]T with energy ✏

is given by

2

6

4

Hosc �i�R(@y + i@x)

�i�R(@y � i@x) Hosc

3

7

5

2

6

4

�"

�#

3

7

5

= ✏

2

6

4

�"

�#

3

7

5

, (2.4)

where H
osc

⌘ �~2r2/(2M) + V (⇢) [2]. In polar coordinates (⇢,'), we have �i(@y ±
i@x) = e⌥i'

[±@/@⇢�(i/⇢)@/@']. We define two characteristic lengths, a? =

p

~/(M!?)

for the harmonic trap and a� = ~2/(M�R) for the SO coupling. The dimensionless SO

coupling strength can be then defined as �SO =

˜� = a?/a� =

p

(M/~3)�R/
p
!? [1].

Because of the isotropic harmonic potential V (⇢), the single-particle wave-function

⇤This is in contrast with the more conventional case of spinor BECs, which include two or more
spin states, but do not alter the energy-momentum dispersion relation.

†The following section 2.3.3 is taken largely from our publications in Refs. [2, 3].
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has a well-defined azimuthal angular momentum lz = m, and takes the form

�m(r) =

2

6

4

�"(⇢)

�#(⇢)ei'

3

7

5

eim'

p
2⇡

. (2.5)

This state also has a well-defined total angular momentum jz = lz+sz = m+1/2 [2].

In general, we may denote the energy spectrum as ✏nm, where n = (0, 1, 2...) is the

quantum number for the transverse (radial) direction. There is an interesting two-fold

degeneracy of the energy spectrum: any eigenstate �(r) = [�"(r),�#(r)]T is degenerate

with its time-reversal partner T �(r) ⌘ (i�yC)�(r) = [�⇤
#(r),��⇤

"(r)]
T . Here C is the

complex conjugate operation. This Kramers doublet is the direct consequence of

the time-reversal symmetry satisfied by the model Hamiltonian [2]. This symmetry

is even preserved in the presence of interatomic interactions. As a result, we may

restrict the quantum numbers m to be non-negative integers, since a negative m can

always be regarded as the time-reversal partner for a state with m � 0 [2].

To numerically solve the single-particle spectrum, we adopt a basis-expansion

method. To this end, we first expand,

�"(⇢) =

X

k

AkRkm (⇢) , (2.6)

�#(⇢) =

X

k

BkRkm+1

(⇢) , (2.7)

where

Rkm =

1

a?

s

2k!

(k + |m|)!
✓

⇢

a?

◆|m|
e
� ⇢2

2a2?L|m|
k (

⇢2

a2?
) (2.8)

is the radial wave-function of a 2D harmonic oscillator Hosc with energy (2k + |m|+
1)~!?, and L|m|

k is the associated Legendre polynomial [2]. Then we have the following
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Figure 2.5 : Plots (a) and (b) show wavefunctions �"(⇢) of single-particle states in
the n = 0 manifold at small, and large SO coupling strengths respectively. m = 0

(solid black), m = 1 (dotted red), m = 2 (dash-dotted black) and m = 3 (dashed
red). Image from Ref. [3].

secular matrix,
2

6

4

H
osc" MT

M H
osc#

3

7

5

2

6

4

Ak

Bk

3

7

5

= ✏

2

6

4

Ak

Bk

3

7

5

, (2.9)

where the matrix elements are given by (for m � 0)

H
osc",kk0 = ~!? [2k +m+ 1] �kk0 ,

H
osc#,kk0 = ~!? [2k + (m+ 1) + 1] �kk0 ,

Mkk0 = ~!?�SO
hp

k0
+m+ 1�kk0 +

p
k0�kk0�1

i

.

Diagonalization of the secular matrix Eq. (2.9) leads to the single-particle spectrum

and single-particle wave-functions [2]. In numerical calculations, it is necessary to

impose a cut-off k
max

for the radial quantum number k of the 2D harmonic oscillator.
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For �SO  20, we find that k
max

= 256 is sufficiently large to have an accurate energy

spectrum. With this cut-off, the dimension of the secular matrix in Eq. (2.9) is

2k
max

= 512 [2].
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Figure 2.6 : Plots (a) and (b) show energy spectrum of single-particle states at small
and large SO coupling strengths respectively: n = 0 ! 7 (bottom!top) and m =

�16 ! +15. While energies of states within each n are represented by a specific
symbol, it is evident that states with higher n have progressively higher energies.
Image from Ref. [3].

In Fig. 2.5, we show wavefunctions of single-particle eigenstates at representative

values of small and large SO coupling strengths [2]. It is evident that a larger SO

coupling strength leads to increased oscillations and increased localization at radii

determined by |m| in the radial direction. Corresponding wavefunctions �#(⇢) also

have similar characteristics [2]. In Fig. 2.6, we show the energy spectrum for single-

particle states at small and large SO coupling strengths. From Fig. 2.6(a), it is

evident that the energy spectrum is strongly dispersive in m at small SO coupling

strengths, with a large overlap between the energies of single-particle states with

different radial quantum number n [2]. Qualitatively, the energy spectrum at small
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SO coupling strengths may be understood as a weak perturbation of the harmonic

oscillator energy levels of the two pseudo-spin components. On the other hand, we

observe from Fig. 2.6(b) that the energy spectrum is weakly dispersive or nearly flat

in m at large SO coupling strengths. For the range of m shown here, there is no

overlap between the energies of single-particle states belonging to different radial

quantum numbers n, i.e., each n manifold represents single-particle states labelled by

their azimuthal angular momenta m with no overlap with adjacent n manifolds [2].

Furthermore, the harmonic trapping potential may be qualitatively understood as

a weak perturbation to the energy spectrum at large SO coupling strengths of the

corresponding translationally invariant system [2].

At large SO coupling (i.e., �SO > 5), to a good approximation we numerically find

that the low-lying spectrum forms discrete manifolds with spacing ~!?(indexed by

an integer n � 0),

✏nm '
h

�˜�2 + (2n+ 1) +m (m+ 1)/˜�2
i

~!?/2 . (2.10)

There are about 2

p
2

˜� levels within each manifold with the smallest level spacing

�E = ~!?/˜�2 [1]. The discrete manifolds of spectrum are similar to the well-known

Landau levels, formed when a charged particle moves in magnetic fields. However,

the reasons for their formation are very different [1]. In our case of large SO coupling,

without trap the spectrum is characterized by a continuous momentum k and is

given by ✏k = [�˜�2/2+ (k± ˜�)2/2]~!?, with infinite degeneracy along the azimuthal

direction [1]. The inclusion of trapping potential quantizes the radial motion for k and

the azimuthal motion, giving the standard quantization contribution of (n+1/2)~!?

and (m+ 1/2)2 /(2˜�2)~!? to the energy, respectively [1].
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In summary, we identify from Figs. 2.5 and 2.6 that the nature of solutions is

fundamentally different at small and large SO coupling strengths. In the forthcoming

chapter, we present a detailed discussion of the mean-field theoretical study of weakly

correlated ground state phases of the interacting many-particle system at small and

large SO coupling strengths.
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Chapter 3

Mean-field theoretical study of weakly correlated
phases⇤

We study an interacting many-body system of two-component Bose gases confined in

a 2D isotropic harmonic trapping potential with Rashba SO coupling. As outlined

in Sec. 2.3, the degenerate ground states of a Rashba SO coupled Hamiltonian offers

an interesting platform for exploring novel condensed phases of matter. Based on

the model Rashba SO coupling Hamiltonian in Eqn. (2.2), we discussed the non-

interacting limit and derived single-particle solutions at small and large SO coupling

strengths in Sec. 2.3. We illustrated that the nature of solutions is fundamentally

different at small and large SO coupling strengths. In this chapter, we present a

detailed discussion of ground state phases at system parameters that correspond to

the weakly correlated regime. Mean-field theory provides a suitable approach to

analyze this scenario. Firstly, we present a detailed discussion of the phase diagram

of interacting gases at small SO coupling strengths in the weakly correlated regime.

Subsequently, we present an analogous discussion at large SO coupling strengths.

In Sec. 1.4.2, we discussed that in a dilute and cold gas, only binary collisions

at low energy are relevant. These collisions are characterized by a single parameter,

the s-wave scattering length a, independent of the details of the two-body potential.

The inter-atomic interaction strength g between identical spin states in 3D space

takes the form: g = 4⇡~2a/M (for example, see Ref. [16]). In the present scenario

⇤Chapter 3 taken largely from our publications in Refs. [1, 2].
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of two-component Bose gases confined in a 2D isotropic harmonic trapping potential,

we perform dimensional-reduction to derive interaction strengths in 2-dimensions:

g =

p
8⇡(~2/M)(a/az) and g"# =

p
8⇡(~2/M)(a"#/az). Here az =

p

~/(M!z) is the

characteristic oscillator length in the z-direction, a is the intra-component scatter-

ing length, and a"# is the inter-component scattering length [2]. Note that here we

consider a weakly interacting regime with az � a, a"# [2]. In the strongly interacting

regime where az ⇠ a, a"#, one needs to include the confinement induced resonance in

the calculation of 2D interaction paraemeters g and g"# [78].

3.1 Theory formalism

For a weakly interacting trapped Bose gas at zero temperature, we assume that all

the bosons condense into a single quantum state �(r) =[�"(r),�#(r)]T . Following

the standard mean-field theory approach [79–81], we separate the field operator into

a condensate and a fluctuation part,  �(r) =��(r)+˜

 �(r). Keeping up to quadratic

terms in ˜

 �(r), this separation leads to an approximate Hamiltonian H =

´
dr[H

GP

+

HT ]. Here, the condensate part is given by,

H
GP

= �

†
[H

osc

+ VSO � µ]�

+

g

2

�|�"|4 + |�#|4
�

+ g"# |�"�#|2 , (3.1)

where H
osc

⌘ �~2r2/(2M) + V (⇢), and V
so

⌘ �i�R(@y + i@x) [2]. The fluctuation

part is HT =

˜

 

†H
Bog

˜

 , where H
Bog

is the Bogoliubov matrix and we have introduced

a 4⇥ 1 Nambu spinor ˜

 = [

˜

 "(r), ˜ #(r),˜ 
†
"(r), ˜ 

†
#(r)]

T . We postpone the discussion

of the Bogoliubov formalism and the associated solutions until Ch. 4. However, the

information about the nature of condensed ground state phases can be obtained by
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exclusively analyzing the H
GP

part of the Hamiltonian.

The condensate wave-function can be obtained from the mean-field GP equations

�H
GP

/��(r) = 0 [79–81], or explicitly,

2

6

4

Hs" �i�R(@y + i@x)

�i�R(@y � i@x) Hs#

3

7

5

2

6

4

�" (r)

�# (r)

3

7

5

= 0. (3.2)

Here, Hs" ⌘ H
osc

+g |�"|2+g"# |�#|2�µ, and Hs# ⌘ H
osc

+g"# |�"|2+g |�#|2�µ. At zero

temperature, we assume a single condensate state with zero quantum depletion, so

that the condensate wave-function is normalized by
´
dr[|�"|2+ |�#|2] = N , where N

is the total number of bosons. The equation is simplified if we write �" = N1/2�" and

�# = N1/2�# and use corresponding interaction strengths g(N�1) and g"#(N�1) [2].

The normalization condition becomes
´
dr [|�"|2 + |�#|2] = 1. In harmonic traps, it

is natural to use trap units, i.e. to take ~!? as the unit for energy and the harmonic

oscillator length a? =

p

~/(M!?) as the unit for length. This is equivalent to

setting ~ = kB = M = !? = 1. The unit of interaction strength g(N � 1) or

g"#(N � 1) is then ~!?a2? = ~2/M [2]. Analogously, we introduce an SO coupling

length a� = ~2/(M�R) and consequently define a dimensionless SO coupling strength

�SO = a?/a� =

p

(M/~3)�R/
p
!?. In an SO coupled spin-1/2 BEC of 87Rb atoms as

realized recently by the NIST group [59], �SO is about 10. In the typical experiment

for 2D spin-1/2 87Rb BECs [29], the interatomic interaction strengths are about

g(N � 1) ⇡ g"#(N � 1) = 10

2 ⇠ 10

3

(~!?a2?) [2]. These coupling strengths, however,

can be tuned by changing the number of trapped atoms or by properly choosing

the parameters of the laser fields that lead to the harmonic confinement and the SO

coupling.
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3.2 Interacting Bose gas with small SO coupling

Bosonic⇤ atoms in a weakly interacting spin-1/2 Bose gas in a 2D harmonic trap would

condense into a non-trivial half-integer angular momentum state with a skyrmion-

type spin texture. For convenience purposes, the half-integer angular momentum

condensed state is referred to as a half-quantum vortex state. In this section, we

solve the mean-field GP equation for the density distributions and spin textures. The

condensation of an SO coupled spin-1/2 Bose gas into a half-quantum vortex config-

uration was first suggested by Congjun Wu et al. in Ref. [82], and its existence was

discussed under the condition that the interaction is SU(2) symmetric, i.e., g = g"# .

Here, we explore systematically the parameter space for the half-quantum vortex state

and analyze its stability qualitatively [2]. We postpone the discussion of a detailed

quantitative stability analysis and the ground state phase diagram to Chapter 4. In

general, we observe that at small SO coupling strengths, the half-quantum vortex

state is stable and thrives in a much larger phase space.

3.2.1 Appearance of the half-quantum vortex state

In Fig. 3.1(a), we show the single-particle energy spectrum at �SO = 1. For an ar-

bitrary SO interaction strength, we find numerically that the doublet single-particle

ground state always occurs at m = 0 (or m = �1 for its time-reversal partner state)

[2]. The single-particle state with m = 0, �
0

(r) = [�"(⇢),�#(⇢)ei']T/
p
2⇡, has a half-

quantum vortex configuration [82, 83], as the spin-up component stays in the s-state

while the spin-down component is in the p-state. In the absence of interactions, how-

ever, there is a degenerate time-reversed state, T �
0

(r) = [�#(⇢)e�i',��"(⇢)]T/
p
2⇡,

⇤Contents of section 3.2 is taken largely from our publication in Ref. [2].
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Figure 3.1 : (color online). (a) Single-particle energy spectrum at �SO = 1. (b)
The density profiles for the single-particle state with m = 0 at �SO = 1. (c) The
W -function for the m = 0 single-particle state as a function of SO coupling strength.
It is always positive at arbitrary SO coupling strength. Image from Ref. [2].

which is also a half-quantum vortex state [2]. Therefore, in general, the ground single-

particle state is a superposition of two degenerate half-quantum vortex states, �
0

(r)

and T �
0

(r), which takes the form �s(r) = ↵�
0

(r) + �T �
0

(r), or explicitly,

�s(r) =
1p
2⇡

2

6

4

↵�"(⇢) + ��#(⇢)e�i'

↵�#(⇢)ei' � ��"(⇢)

3

7

5

. (3.3)

Here ↵ and � are two arbitrary complex numbers satisfying |↵|2 + |�|2 = 1 [2].

In the presence of very weak interatomic interactions such that g(N � 1), g"#(N �
1) ⌧ �✏a2?, where �✏ is the energy difference between the single-particle ground

state �
0

(r) and the first excited state �
1

(r), we may determine the superposition

coefficients ↵ and � by minimizing the GP energy, E
GP

[�s(r)] =
´
drH

GP

[�s(r)] [2].
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After simple algebra, we find that,

�E = E
GP

[�s(r)]� E
GP

[�
0

(r)], (3.4)

= (g"# � g) (N � 1) |↵�|2 W [�
0

(r)], (3.5)

where the W -function is given by,

W [�(r)] =

ˆ
dr[(|�"|2 � |�#|2)2 � 2�2

"�
2

#]. (3.6)

Therefore, a half-quantum vortex state is preferable if (g"#� g)W > 0 [2]. Otherwise,

an equal-weight superposition of two degenerate half-quantum vortex states with

|↵| = |�| = 1/
p
2 will be the ground state. As shown in Fig. 3.1(c), the W -function

for �
0

(r) is positive for arbitrary SO coupling. We thus conclude that a half-quantum

vortex state should appear for weak interatomic interactions provided that the inter-

species interaction is larger than the intra-species interaction (g"# > g) [2].

The afore-mentioned qualitative stability analysis gives an approximate indication

of the phase space available for the half-quantum vortex state. To obtain a more ac-

curate phase diagram, it would be useful to include quantitative discussions about the

critical interaction strengths at which various instabilities relevant to half-quantum

vortex state would occur. We postpone this detailed quantitative discussion of the

phase diagram to Chapter 4.

3.2.2 Density distributions

Let us now consider finite interatomic interactions, by solving the GP equation for

density distributions and spin-textures. For the half-quantum vortex condensate state
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with m = 0, the GP equation becomes LGP [�" (⇢) ,�# (⇢)] = 0, where

LGP =

2

6

4

Hs,0 + ḡ�2

" + ḡ"#�2

# �R (@⇢ + 1/⇢)

�R (�@⇢) Hs,1 + ḡ"#�2

" + ḡ�2

#

3

7

5

. (3.7)

Here ḡ ⌘ g(N � 1)/(2⇡) and ḡ"# ⌘ g"#(N � 1)/(2⇡), while the single-particle Hamil-

tonian operator is:

Hs,m ⌘ � ~2
2M



@2

@⇢2
+

1

⇢

@2

@⇢2
@⇢ � m2

⇢2

�

+ V (⇢)� µ . (3.8)

The numerical procedure for solving GP equation is very similar to that for single-

particle states in Eqn. (2.9) [2]. We expand �"(⇢) =

P

k AkRk0 (⇢) and �#(⇢) =

P

k BkRk1 (⇢), and obtain the secular matrix (with m = 0),

2

6

4

Hosc" + I" MT

M Hosc# + I#

3

7

5

2

6

4

Ak

Bk

3

7

5

= µ

2

6

4

Ak

Bk

3

7

5

, (3.9)

where

I",kk0 =

ˆ 1

0

⇢d⇢Rk0 (⇢)
�

ḡ�2

" + ḡ"#�2

#
�

Rk00 (⇢) , (3.10)

I#,kk0 =

ˆ 1

0

⇢d⇢Rk1 (⇢)
�

ḡ"#�2

" + ḡ�2

#
�

Rk01 (⇢) . (3.11)

The chemical potential is given by the lowest eigenvalue of the secular matrix. Due to

the non-linear terms I",kk0 and I",kk0 , we have to update the condensate wave-functions

and densities iteratively [2]. To overcome the large non-linearity, we use a simple

mixing scheme by setting a small parameter 0 < � < 1 and replacing the previous

density �2

�,old by (1� �)�2

�,old+��
2

�, where �2

� is the density calculated in the current
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step [84]. The choice of � depends on the interaction strength. It becomes smaller for

larger ḡ and ḡ"# [2]. We run this iteration until convergence is achieved within a set

tolerance. We have checked that this procedure of solving GP equation is stable for

interaction strengths up to g(N�1), g"#(N�1) < 10

3

(~!?a2?) [2]. For even larger non-

linearity, it seems to be impractical to expand the condensate wave-function using the

2D harmonic oscillator basis. Therefore for large interaction strengths, we use a time-

splitting spectral method (TSSP) technique to solve the coupled GP equations and

obtain the ground state by imaginary-time propagation [85–87]. For small interaction

strengths, results obtained from TSSP are identical to those obtained from the basis-

expansion method [2].

Figure 3.2 : (color online). Density distributions at �SO = 1 and g(N � 1) =

40(~!?a2?) (a) and at �SO = 4 and g(N�1) = ~!?a2? (b). Here, the ratio g"#/g = 1.1.
Image from Ref. [2].

In Fig. 3.2, we present the radial density distributions of the half-quantum vor-

tex condensate state at two SO coupling strengths: �SO = 1 and �SO = 4. The

increased SO coupling leads to more oscillations in the radial direction. By compar-
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ing Fig. 3.2(a) with Fig. 3.1(b), one finds that the density distributions are flattened

significantly by interatomic interactions, as anticipated [2].

3.2.3 Spin textures

To gain more insight into the half-quantum vortex state, it is useful to calculate the

spin vector

S (r) =
1

2

�

†��

|�|2 =

1

2

n (r) (3.12)

and the skyrmion density

n
skyrmion

(r) =
1

4⇡
n · [@xn⇥ @yn] . (3.13)

The skyrmion density is a measure of the winding of the spin profile [2]. If it integrates

to 1 or �1, a topological knot exists in the spin texture [88,89]. In Fig. 3.3, we graph

the three components of the spin vector at �SO = 1, g(N � 1) = 40(~!?a2?) and

g"#/g = 1.1. The transverse spin texture is shown in Figs. 3.4(a) and 3.4(b) by

arrows, with length representing the magnitude of the transverse spin vector (Sx,Sy)

or (Sx,Sz).

Figure 3.3 : (color online). Contour plots of the three components of the spin vector
S (r) at �SO = 1, g(N � 1) = 40(~!?a2?) and g"#/g = 1.1. Image from Ref. [2].
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Figure 3.4 : (color online) (a) and (b), Two-dimensional vector plot of the transverse
spin vector (Sx,Sy) and (Sx,Sz) at �SO = 1, g(N � 1) = 40(~!?a2?) and g"#/g = 1.1.
The length of the arrows gives the magnitude of (Sx,Sy) or (Sx,Sz). The corresponding
skyrmion density n

skyrmion

(r) is plotted in (c) and (d). Image from Ref. [2].

Let us highlight key attributes of this interesting spin texture. “The spins are

locally parallel and produces a smooth topological defect in the spin orientation” [90].

This topological defect is known as skyrmion by analogy with related objects in the

Skyrme model of nuclear physics [91]. As stated by Girvin in Ref. [90], for instance,

rather than having a single spin suddenly flip over, this object gradually turns over

the spin as the center is approached. As shown in Fig. 3.4(a) and (b), the spin

is down (up) at the origin and gradually turns up (down) at a finite radius. It is

readily seen that the spin vector spirals in space to form a skyrmion-type texture.

At intermediate distances, the spin components exhibit a vortex-like configuration.
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However, unlike a U(1) vortex, there is no singularity at the origin because the spins

are able to rotate downwards out of the xy plane [90]. Quantitatively, this is most

clearly illustrated in Figs. 3.4(c) and 3.4(d), where we plot the 2D contour and

1D radial distribution of skyrmion density. The nonzero skyrmion density oscillates

between positive and negative. Moreover, the skyrmion number � =

´
nskyrmion(r)dr

is quantized to +1. We note that for the time-reversal half-quantum vortex condensate

state with m = �1, the skyrmion number is -1 [2].

3.3 Interacting Bose gas with large SO coupling

Over⇤ the past few years there have been great theoretical efforts to determine quan-

tum states of an SO coupled spinor BEC [92–99] in this parameter regime. In a

recent work by Wang et al. [95], two distinct phases are identified for a ‘homoge-

neous’ 2D spin-1/2 BEC. Depending on the relative magnitude of intra-species (g)

and inter-species (g"#) interactions, all bosons can condense into either a single plane-

wave state (g < g"#) or a density-stripe state (g > g"#). In this section, we show

that the presence of a harmonic trap can change dramatically the phase diagram

of SO coupled BECs [1]. As shown in Fig. 2.6, at large SO coupling, the single-

particle spectrum decomposes into discrete manifolds, analogous to discrete Landau

levels, separated by ~!?, where !? is the trapping frequency. Non-trivial quantum

states with skyrmion lattices emerge when all bosons occupy into the lowest manifold

(LM) [1]. For a weakly interacting gas, quantum states with skyrmion lattice patterns

emerge spontaneously and preserve either parity symmetry or combined parity-time-

reversal symmetry. While these properties are fundamentally different from that of a

⇤Contents of section 3.3 is taken largely from our publication in Ref. [1].
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homogeneous system, these phases can potentially be observed in a SO coupled gas

of 87Rb atoms in a highly oblate trap [1].

3.3.1 Significance of lowest Landau level manifold

We consider N -bosons in a 2D harmonic trap V (⇢) = M!2

?⇢
2/2 with a Rashba SO

coupling Vso = �i�R(@y�̂x � @x�̂y), where �̂x,y,z are the Pauli matrices. The model

Hamiltonian in Eqn. (2.2) may be re-written as H = H
0

+Hint, where

H
0

=

ˆ
dr +

⇥�~2r2/(2M) + V (⇢) + Vso

⇤

 , (3.14a)

H
int

=

ˆ
dr

h

(g + g"#)n̂2

+ (g � g"#) ˆS2

z

i

/4 , (3.14b)

 = [ "(r), #(r)]T denotes collectively the spinor Bose field operators, and n̂, ˆSz =

 

+

"  "± +

#  # [1]. We define two characteristic lengths, a? =

p

~/(M!?) for the

harmonic trap and a� = ~2/(M�R) for the SO coupling. The dimensionless SO

coupling strength can be then defined as �SO =

˜� = a?/a� =

p

(M/~3)�R/
p
!? [1].

The Hamiltonian is invariant under two symmetry operations, associated respectively

with the anti-unitary time-reversal operator T = i�yC, where C takes the complex

conjugate, and the unitary parity operator P = �zI, where I is the spatial inversion

operator. The Hamiltonian is also invariant under the combined PT operator, which

is unitary since P and T anti-commute with each other, i.e., {P , T } = 0 [1].

In polar coordinates (⇢,'), the single-particle eigen-wavefunctions of H
0

may be

written in the form, �m(r) = [�"(⇢)eim',�#(⇢)ei(m+1)'
]

T , which is energetically de-

generate with its time reversed partner T �m(r) = [�#(⇢)e�i(m+1)',��"(⇢)e�im'
]

T [1].

This degeneracy is a direct consequence of the Kramers’ Theorem. Here we may

restrict m to be non-negative integers, as a negative m state can be regarded as the
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time reversal partner for a state with m � 0. In this construction, �m and T �m are

both parity eigenstates with corresponding eigenvalues (�1)

m and (�1)

m+1, respec-

tively. However, they break the PT symmetry [1]. As discussed in Sec. 3.2, the lowest

single-particle state occurs at m = 0 and has a half-quantum vortex configuration.

Due to the degeneracy, any linear superposition of �m and T �m — which breaks the

parity symmetry — is also an eigenstate of the system. In particular, we may choose

the equal-weight superposition as (�m + T �m)/
p
2 which can be easily shown to be

eigenstates of PT [1].

Figure 3.5 : (color online). (a) Single-particle energy spectrum. The lines show the
empirical Eq. (3.15). (b) The W -function for the lowest four single-particle states in
the LM. Image from Ref. [1].

The wavefunctions and the corresponding eigenenergies can be found numerically.

At large SO coupling (i.e., �SO > 5), to a good approximation we find numerically

that the low-lying spectrum forms discrete manifolds with spacing ~!?(indexed by

an integer n � 0),

✏nm '
h

�˜�2 + (2n+ 1) +m (m+ 1)/˜�2
i

~!?/2 . (3.15)
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As discussed in Sec. 2.3.3, the discrete manifolds of spectrum are similar to the

well-known Landau levels, formed when a charged particle moves in magnetic fields.

However, the reasons for their formation are very different [1].

3.3.2 Density distributions and spin textures

For a weakly interacting BEC with gN, g"#N ⌧ ~!?, only the LM is occupied.

It is thus convenient to expand the field operator  =

P

m�m(r)am, where �m(r)

is the single-particle wavefunctions at the LM with energy ✏m [1]. The many-body

Hamiltonian may then be rewritten as,

H =

X

m

✏ma
+

mam +

X

ijkl

Vijkla
+

i a
+

j akal, (3.16)

where the interaction elements Vijkl can be calculated straightforwardly for the contact

interatomic interactions. We solve Eq. (3.16) numerically by using both mean-field

theory [100] and exact diagonalization [101], for a conserved total angular momen-

tum
P

m(m + 1/2)a+mam = Nmtot. Within mean-field, we replace am by a com-

plex number N1/2cm and minimize the GP energy EGP/N =

P

m ✏m |cm|2 + (N �
1)

P

ijkl Vijklc⇤i c
⇤
jckcl, under the constraints

P

m |cm|2 = 1 and
P

m(m + 1/2) |cm|2 =

mtot. In practice, we truncate the angular momentum to |m|  mc (up to mc = 16) [1].

Symmetry of condensate states: In the presence of the interaction represented by

Eq. (3.14b), the many-body Hamiltonian still possesses both P and PT symmetries.

As we have shown above, for a non-interacting system, we may choose the single-

particle ground state to be an eigenstate of P , or of PT , or of neither operator [1]. In

the mean-field level, this freedom of choosing different symmetry eigenstates may be
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removed by inter-atomic interactions. In other words, the symmetry of condensate

states would be determined spontaneously by interaction [1]. We have found that in

the weakly interacting limit we are interested in here, the ground state is either an

eigenstate of P , or that of PT . Which symmetry the ground state will possess can be

determined in the following way. Let us consider an eigenstate of P with wavefunction

�P = [�"(r),�#(r)]T . The corresponding eigenstate of PT can be constructed as

�PT = (�P ± T �P)/
p
2 [1]. The mean-field energy difference between these two

states is determined by the S2

z term in Eq. (3.14b) which breaks the spin rotational

symmetry in the interaction Hamiltonian:

�Esp (�) = E(�PT )� E(�P) = (g"# � g)W (�) /4, (3.17)

where W (�) ⌘ ´ dr[( |�"|2 � |�#|2)2 � (�"�# + �⇤
"�

⇤
#)

2

] [1]. The ground state will be a

P-eigenstate if �Esp (�) > 0 for which we have n�(r) = n�(�r), or a PT -eigenstate

if �Esp (�) < 0 for which we have n"(r) = n#(�r). The W -functions of several parity

eigenstates are shown in Fig. 3.5(b). Equation (3.17) also shows that the symmetry of

the ground state is sensitive to the relative magnitude of the interaction parameters

g and g"# [1].

3.3.3 Ground state phase diagram

Phase diagram in the LM: Our symmetry argument suggests that all the conden-

sate states could be classified by its P or PT symmetry, to be referred to respectively

as phases I and II hereafter. We now check numerically this argument in the quantum

Hall like regime with all bosons occupying into the LM, as shown in Fig. 3.8(a) for

˜� = 20 [1]. The characteristic density distributions for spin-up bosons in each phase
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are shown in Fig. 3.6.

Figure 3.6 : (color online). Density patterns of spin-up bosons in the different ground
states at three intra-species interactions g(N � 1)a2?: (a,d) 0.02~!?, (b,e) 0.1~!?,
and (c,f) 0.2~!?. Image from Ref. [1].

At sufficiently weak interactions, where the characteristic interaction energy g(N�
1)a2? is smaller than the lowest intra-manifold spacing�E = ~!?/˜�2, only the ground

single-particle state is occupied. The condensate state is thus either half-quantum

vortex states of �
0

(or T �
0

) or their superposition [1]. As W (�

0

) > 0 as shown in

Fig. 3.5(b), we conclude that the ground state is a PT -eigenstate for g > g"# (IIA)

and it is a half-quantum vortex state (a P-eigenstate) for g < g"# (IA). Their spin-up
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density patterns are shown in Figs. 3.6(a) and (d), respectively [1].

Figure 3.7 : (color online). Spin texture S = (1/2)�+�� corresponding to the state
represented in Fig. 3.6(f). The arrows represent the transverse spin vector (Sx, Sy)
with color and length representing the orientation and the magnitude of the transverse
spin. The contour plot shows the axial spin Sz = (1/2)

�

�2

" � �2

#
�

. Image from Ref. [1].

When the interaction becomes larger, more and more single-particle states are

occupied. The occupation of the first excited single-particle state (�
1

and T �
1

) occurs

at gc(N � 1)a2? ' 0.0367~!?, where the critical interaction strength gc is determined

from the equation ✏
0

+ (N � 1)V
0000

= ✏
1

+ (N � 1)V
1111

[1]. As W (�m) < 0 for

m � 1, we find an interesting reversal of the phase diagram when g > gc: the P-

preserving phase (IA) changes into a PT -preserving phase (IIB) at g < g"#, while

the PT -preserving phase (IIA) changes into a P-preserving phase (IA0 and IB) if

g > 0.2g"#. The phases IA0 and IB differ in the total angular momentum mtot and

density distribution [1]. In Phase IB, mtot is suppressed to zero by large interatomic

interactions. Note that in the phases (IIB) and (IB), we observe regular lattice

patterns. In particular, a hexagonal lattice form gradually in the phase IIB, as shown
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clearly in Figs. 3.6(e) and (f). In Fig. 3.7, we show the corresponding spin texture of

the state, from which one can see that the system represents a lattice of skyrmions.

Skyrmion lattice can be generated by rotating a spinor condensate [102, 103]. Here

the skyrmion texture is induced by the SO coupling without rotation [1].

Figure 3.8 : (color online). (a) Phase diagram of a trapped 2D BEC with a large SO
coupling ˜� = 20, where the single-particle spectrum forms discrete manifolds. For
the weak interaction considered here, only the LM is occupied. The phases I and
II preserve, respectively, the parity and parity-time-reversal symmetries. There are
several sub-phases indicated by A, A0 and B, which differ in the density profile and/or
angular momentum. The mean-field density patterns in different phases of spin-up
bosons are shown in Fig. 3.6. (b) and (c) Phase diagram at weak SO coupling. Here
the phases are determined without the restriction to the LM approximation. The
insets illustrate the density profiles of the two spin components in phases IA and IIA.
Image from Ref. [1].

The symmetry of the ground state at g = g"# cannot be determined within mean-

field theory, since in this case �Esp (�) = 0 [see Eq. (3.17)] and the energy becomes
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invariant for different mtot. However, it can be ordered by quantum fluctuations [82],

which are well captured by exact diagonalization [1]. We have calculated the energy

as a function of mtot at g(N � 1)a2?/(~!?) = 0.02 and 0.1 for N = 4, 8, and 12. With

increasing N , the exact diagonalization result approaches the mean-field prediction.

We find that the ground state at g(N � 1)a2? = 0.02~!? has a spontaneous angular

momentum mtot = �1/2 or +1/2, while the ground state at g(N � 1)a2? = 0.1~!?

occurs at mtot = 0 [1]. Therefore, we identify that the phases at g = g"# follow those

at g < g"#. This is in agreement with the result of Ref. [82], which employs a different

“order from disorder” argument.

Summary: Our main results are summarized in Fig. 3.8, which shows the ground

state as a function of interatomic interaction at a specific dimensionless SO coupling

strength ˜� [1]. By using mean-field theory and exact diagonalization, we find that: (i)

The ground state falls into two classes of quantum phases, I and II, preserving respec-

tively the parity (P) and parity-time-reversal (PT ) symmetries. Both symmetries are

satisfied by the model Hamiltonian [see Eqs. (3.14)]. (ii) In each class, there are sev-

eral sub-phases (IA, IA0, IB and IIA, IIB) differing in the density distribution and/or

total angular momentum [1]. (iii) The transition between different phases depends

on interatomic interactions. At weak intra-species interactions below a critical value,

g < gc, the ground state is a half-quantum vortex state (IA) if g < g"# and a superpo-

sition of two degenerate half-quantum vortex states (IIA) otherwise. The phases IA

and IIA vanish in the limit of large SO coupling, but dominate the phase diagram in

the opposite [1]. When the intra-species interactions becomes larger (g > gc), there

is an interesting reversal of the symmetry class, i.e., interactions change the phase IA

into IIB and the phase IIA into IA0 and then IB. In the phases IIB and IB, skyrmion

lattices emerge spontaneously without rotation [1]. (iv) At g = g"# , the phases are or-
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dered by quantum fluctuations. Using exact diagonalization, we find that the phases

follow those at g < g"# [1].

Phase diagram beyond LM: So far we have clarified the phase diagram at a par-

ticular SO coupling ˜� = 20 in the weakly-interacting LM regime [1]. However, the

qualitative picture of diagram may persist beyond the regime of LM, as far as our

symmetry argument holds. To check this, we performed a direct numerical calculation

based on the full GP equation using the TSSP technique derived from Eqs. (3.14)

without making the LM assumption [1]. In the regime as shown in Fig. 3.8(a), the

results are in good agreement with the LM calculation. At larger interaction strength

when higher manifolds get mixed in the ground state, we have found from the GP

calculation that Phase IIB in Fig. 3.8(a) will change to a density-stripe phase with

P symmetry, while Phase IB will change to a plane-wave phase with PT symme-

try [1]. The density-stripe and the plane-wave phases have earlier been shown to

be the mean-field ground state for a homogeneous system [95]. For the trapped sys-

tem as studied here, at large interaction strength, the effect of the trap becomes less

important and our results are therefore consistent with those reported in Ref. [95].

With decreasing ˜�, the phases IA and IIA will gradually become dominant in the

diagram, as we find numerically that gc / 1/˜�2 increases very rapidly. The skyrmion

lattice phase, related to the LM formation, would disappear. This is confirmed by

the GP calculation for smaller SO coupling and the results are represented in Fig. 3.8

(b) and (c). The half-quantum vortex state and its superposition dominate over a

much larger parameter space as compared to the large SO coupling case [1]. A more

detailed study of the complete phase diagram and the properties of different phases

will be presented in Chapter 4.
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Experimental relevance: We finally consider the experimental feasibility. A Rashba

SO coupling can be induced in spinor 87Rb gases [59]. The interaction strengths of

87Rb atoms may be tuned by properly choosing the parameters of the laser fields

that induce the SO coupling [97]. The two-dimensionality in such system has now

been routinely realized by imposing a large harmonic confinement V (z) = M!2

zz
2/2

along the z-direction with !z � !?. The critical temperature for an ideal 2D SO

BEC is given by Tc = (c�/⇡)
p
3N~!?/kB, where the pre-factor c� < 1 takes into

account the suppression due to the SO coupling [1]. Taking parameters from a re-

cent experiment [29] with !? = 2⇡ ⇥ 20.6 Hz and N ⇠ 10

5, we find at ˜� = 10,

c� ⇠ 0.6 and kBTc ' 120 nK. Experimentally, a BEC temperature below 0.5 nK has

been recorded [104], which is also lower than ~!?/kB. The mean-field LLL regime is

therefore potentially attainable in future experiments [1].

Several technical challenges remain to be overcome as summarized, for example,

by Mueller in Ref. [105]. As shown in Fig. 2.2, lasers are employed to couple atomic

motion and hyperfine states (atomic pseudo-spin states). Thus, to allow the transi-

tion between the chosen atomic pseudo-spin states, experimentalists must tune the

lasers near a multiplet of excited states. As discussed by Mueller in Ref. [105], the

laser detuning from resonant frequency between the chosen pseudo-spin states must

be the same order of magnitude as the fine structure splitting of that multiplet.

However, there is a finite probability that an optically allowed transition may occur,

which in-turn causes resonant absorption and eventual heating of the quantum gas.

An important parameter that determines this heating, often referred to as Raman

heating, is the ratio of the linewidth of the resonance to the fine structure splitting

of the multiplet [105]. As the ratio is larger for lighter atoms, 87Rb atoms are more
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suitable than 40K atoms, which in-turn are more suitable than 6Li atoms. Further-

more, it is likely that the pair of laser-dressed pseudo-spin states are not the lowest

energy states. Hence, collisional deexcitation can rapidly transfer population into the

actual ground state [75]. In addition, to realize pure Rashba SO coupling, continuous

rotational symmetry must be preserved. Several interesting experimental proposals

have been put forward to overcome these challenges and to realize SO coupling [76].

In specific, Campbell et al. put forward a scheme to overcome (albeit partially) the

limitations of Raman heating, collisional decay, and lack of rotational symmetry by

introducing a cyclic 4-state topology [75].

In summary, we have investigated the phase diagram of a spin-orbit coupled spinor

BEC in harmonic traps, by using mean-field theory and exact diagonalization method.

We have predicted that the condensate states preserve the parity or parity-time-

reversal symmetry and exhibit spontaneous vortex and skyrmion lattice structure in

the lowest energy manifold which is induced by large spin-orbit coupling. Our results

are valid for weak correlations with large number of bosons. Strongly correlated

states would emerge with small number of bosons [106]. We address this potential

possibility using exact diagonalization scheme in Chapter 5.
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Chapter 4

Bogoliubov theory and dynamical simulation of
collective excitations⇤

Collective excitations constitute one of the main sources of information for under-

standing the physics of many-body systems [107]. Measurement of low-lying collective

oscillations in response to perturbations of the trap potential acts as an important

experimental probe for the many-body physics of ultracold gases (for example, see

Refs. [107, 108]). At the moment, the collective oscillations of trapped BECs [26]

and two-component atomic gases with s-wave interactions in three dimensions [109]

are both understood fairly well. For instance, experimental data from the study of

low energy excitations of trapped Bose gases are found to be very good agreement

with the ones derived from a simple linearization of the time-dependent GP equa-

tion [107, 110–112]. Therefore, it is only natural that we expect to learn more about

the many-body physics of Rashba SO coupled Bose gases through a discussion of its

collective excitations.

In Chapter 3, we discussed the mean-field GP equation to understand the ground

state density distributions and spin textures of a Rashba SO coupled Bose gas in a 2D

isotropic trapping potential. Furthermore, we discussed the condensation into a half-

quantum vortex state that was qualitatively shown to occupy a large part of the phase

space at small SO coupling strengths. Now, we proceed to systematically explore the

parameter space for the half-quantum vortex state and analyze its stability. We

⇤Chapter 4 taken largely from our publication in Ref. [2].
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present the phase diagram as a function of the SO coupling and the interatomic

interaction strengths. We do this by solving the Bogoliubov equations and computing

the collective excitation spectrum. Upon presenting this computational procedure in

detail, we analyze the stability of the half-quantum vortex state by monitoring the

softening of collective mode frequencies and by comparing the energy with that of

competing states. We also investigate the dynamical properties of the half-quantum

vortex state by directly simulating the corresponding time-dependent GP equation

via the real-time propagation of the mean-field ground state under perturbations.

The collective excitation spectrum obtained from the Bogoliubov equation is then

compared to the results from direct simulation. Finally, the stability of the half-

quantum vortex state against both trap anisotropy and anisotropy in the SO coupling

term is examined.

4.1 Theory formalism

The theory of collective excitations in a one-component Bose gas with no SO cou-

pling is described, for example, in the seminal review article by Dalfovo et al. in

Ref. [26]. In this section, we elaborate on the analogous theory on Bogoliubov for-

malism for SO coupled two-component Bose gas⇤. For a weakly interacting trapped

Bose gas at zero temperature, we assume that all the bosons condense into a sin-

gle quantum state �(r) =[�"(r),�#(r)]T . Following the standard mean-field theory

approach, we separate the field operator into a condensate and a fluctuation part,

 �(r) =��(r)+˜

 �(r) [2]. Keeping up to quadratic terms in ˜

 �(r), this separation

leads to an approximate Hamiltonian H =

´
dr[H

GP

+ HT ], where the condensate

⇤The remainder of this chapter is taken largely from our publication in Ref. [2].



67

part is given by,

H
GP

= �

†
[H

osc

+ VSO � µ]�

+

g

2

�|�"|4 + |�#|4
�

+ g"# |�"�#|2 , (4.1)

and the fluctuation part is HT =

˜

 

†H
Bog

˜

 with

H
Bog

=

2

6

6

6

6

6

6

6

4

Hs" + g |�"|2 V
so

+ g"#�"�⇤
# g�2

" g"#�"�#

V †
so

+ g"#�⇤
"�# Hs# + g |�#|2 g"#�"�# g�2

#

g
�

�

⇤
"
�

2

g"#�⇤
"�

⇤
# Hs" + g |�"|2 �V †

so

+ g"#�⇤
"�#

g"#�⇤
"�

⇤
# g

�

�

⇤
#
�

2 �V
so

+ g"#�"�⇤
# Hs# + g |�#|2

3

7

7

7

7

7

7

7

5

.

(4.2)

Here H
osc

⌘ �~2r2/(2M) + V (⇢), Hs" ⌘ H
osc

+ g |�"|2 + g"# |�#|2 � µ, Hs# ⌘
H

osc

+ g"# |�"|2 + g |�#|2 �µ, V
so

⌘ �i�R(@y + i@x) and V †
so

⌘ �i�R(@y � i@x), and we

have introduced a 4⇥ 4 Nambu spinor ˜

 = [

˜

 "(r), ˜ #(r),˜ 
†
"(r), ˜ 

†
#(r)]

T [2].

While the condensate wave-function can be obtained from the GP equations

�H
GP

/��(r) = 0, the quasi-particle wave-functions with energy ~! satisfy the Bo-

goliubov equations [79–81],

HBog

2

6

6

6

6

6

6

6

4

u" (r)

u# (r)

v" (r)

v# (r)

3

7

7

7

7

7

7

7

5

= ~!

2

6

6

6

6

6

6

6

4

+u" (r)

+u# (r)

�v" (r)

�v# (r)

3

7

7

7

7

7

7

7

5

, (4.3)

and are normalized by
´
dr [|u"|2 + |u#|2 � |v"|2 � |v#|2] = 1. These Bogoliubov quasi-

particles correspond to collective density oscillation modes around the condensate
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with frequency ! [113]. It is easy to see that the wave-function [v⇤" (r) , v
⇤
# (r) , u

⇤
" (r) , u

⇤
# (r)]

T

is also a solution of Eq. (4.3), but with energy �~! [2]. This is an unphysical solution,

due to the Bogoliubov transformation which enlarges the Hilbert space for quasipar-

ticles. Physically, we should restrict to a non-negative mode frequency, ! � 0. For

the fermionic Bogoliubov transformation, we have exactly the same situation [2].

The fermionic Bogoliubov equation has the same “particle-hole” symmetry or dual-

ity [114–116]. In that case, one needs to remove the particle-hole redundancy by

multiplying a factor of 1/2 in the calculation of physical quantities such as density

and order parameter [114–116].

4.2 Solutions of Bogoliubov equations

Given the wave-function of the half-quantum vortex state, [�" (⇢) ,�# (⇢) ei']T/
p
2⇡,

we now turn to consider its collective excitations, as described by the coupled Bogoli-

ubov equations (4.3). As a result of rotational symmetry, it is easy to see that the

Bogoliubov wave-functions have a good azimuthal quantum number m and hence can

be written as, [u" (⇢) , u# (⇢) ei', v" (⇢) , v# (⇢) e�i'
]

T eim'/
p
2⇡ [2]. Therefore, we have

H
Bog

2

6

6

6

6

6

6

6

4

u" (⇢)

u# (⇢)

v" (⇢)

v# (⇢)

3

7

7

7

7

7

7

7

5

= ~!

2

6

6

6

6

6

6

6

4

+u" (⇢)

+u# (⇢)

�v" (⇢)

�v# (⇢)

3

7

7

7

7

7

7

7

5

, (4.4)

where

H
Bog

=

2

6

4

Lm + U U
U L�m + U

3

7

5

, (4.5)
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with

Lm =

2

6

4

Hs,m + ḡ�2

" + ḡ"#�2

# �R [@⇢ + (m+ 1)/⇢]

�R (�@⇢ +m/⇢) Hs,m+1

+ ḡ"#�2

" + ḡ�2

#

3

7

5

, (4.6)

and

U =

2

6

4

ḡ�2

" ḡ"#�"�#

ḡ"#�"�# ḡ�2

#

3

7

5

. (4.7)

Following the prescription described in Secs. 3.1 and 3.2, various parameters are made

dimensionless for computational convenience.

To solve the Bogoliubov equations, as before we expand the wave-functions using

a 2D harmonic oscillator basis,

u" (⇢) =

X

k

akRkm (⇢) , (4.8)

u# (⇢) =

X

k

bkRkm+1

(⇢) , (4.9)

v" (⇢) =

X

k

ckRkm (⇢) , (4.10)

v# (⇢) =

X

k

dkRkm�1

(⇢) . (4.11)

This leads to a secular matrix of H
Bog

, whose elements can be calculated directly

using the 2D harmonic oscillator basis [2]. We note that to obtain the Bogoliubov

quasiparticles we cannot diagonalize the secular matrix directly, because of the minus

sign before v" (⇢) and v# (⇢) on the right-hand side of Eq. (4.4) [2]. To remove the mi-

nus sign, we may multiply a matrix Diag{+1,+1,�1,�1} on both sides of Eq. (4.4).

Therefore, we should diagonalize a non-symmetric matrix Diag{+1,+1,�1,�1}H
Bog

and normalize the quasi-particle wave-functions according to

ˆ 1

0

⇢d⇢[u2

" + u2

# � v2" � v2#] = 1 . (4.12)
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The number of resulting eigenvalues is two times the number that we want,

since the Bogoliubov transformation enlarges the Hilbert space for quasiparticles.

As we mentioned earlier, there are two branches of eigenvalues, one positive and

the other negative, as a result of the “particle-hole” duality between the solution

[u" (r) , u# (r) , v" (r) , v# (r)]T (with energy +~!) and [v⇤" (r) , v
⇤
# (r) , u

⇤
" (r) , u

⇤
# (r)]

T (with

energy �~!) [2]. We should take the positive branch, since the Bogoliubov quasi-

particle corresponds to the collective oscillation of the cloud and should have the

positive oscillation frequency. Note that, because of the “particle-hole” duality, in our

case with rotational symmetry the Bogoliubov quasiparticles at negative azimuthal

quantum number m may be obtained from the negative energy branch of the solution

with m > 0 [2].

4.2.1 Monopole and dipole modes

In the case of monopole mode (m = 0), also referred to as breathing mode, where the

matrix takes the form:

H
Bog

=

2

6

4

L
GP

+ U U
U L

GP

+ U

3

7

5

, (4.13)

there is an alternative way to solve the Bogoliubov equation, following Hutchinson,

Zaremba, and Griffin (HZG) [117]. By denoting collectively u = [u" (⇢) , u# (⇢)] and

v = [v" (⇢) , v# (⇢)], we have,

(L
GP

+ 2U) (u+ v) = ~! (u� v) , (4.14)

L
GP

(u� v) = ~! (u+ v) . (4.15)
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Let us now expand the wave-functions u± v in terms of the eigenfunctions  ↵ of L
GP

with energy ✏↵ (i.e., L
GP

 ↵ = ✏↵ ↵),

u� v =

X

↵ 6=0

c↵

✏1/2↵

 ↵, (4.16)

u+ v =

X

↵ 6=0

✏1/2↵ c↵
~!  ↵. (4.17)

Here, the lowest eigenstate of L
GP

with zero energy should be removed, as it simply

corresponds to the condensate mode. It is easy to see that (L
GP

+ 2U)LGP (u� v) =

(~!)2(u� v) and L
GP

(L
GP

+ 2U)(u+ v) = (~!)2(u+ v). Inserting the expansion of

u� v or u+ v, one finds the secular equation,

X

�

n

✏2↵�↵� + 2✏1/2↵ U↵�✏
1/2
�

o

c� = (~!)2 c↵, (4.18)

where

U↵� =

ˆ 1

0

⇢d⇢  †
↵ (⇢)U � (⇢) . (4.19)

By diagonalizing the secular matrix, one obtains the mode frequency ! and the coef-

ficients c↵. The latter should be normalized as
P

↵ c
2

↵ = ~!, in accord with the nor-

malization condition for u and v. We have numerically checked that the HZG solution

leads to exactly the same result as the direct diagonalization of the non-symmetric

matrix Diag{+1,+1,�1,�1}H
Bog

, if we discard the zero-frequency condensate mode

in the latter method.

In Fig. 4.1, we graph the monopole (m = 0) and the dipole mode (m = ±1)

frequencies as a function of the interaction strength. With increasing interaction, the

mode frequency decreases and appears to saturate at sufficiently large interactions [2].
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Figure 4.1 : (color online). The mode frequency of monopole (m = 0) and dipole
(m = ±1) modes as a function of interaction strength at a fixed SO coupling �SO = 1

and at g"# = 1.1g. Image from Ref. [2].

Figure 4.2 : (color online). The mode frequency of monopole (m = 0) and dipole
(m = ±1) modes as a function of SO coupling at a fixed interaction strength g(N �
1) = 40(~!?a2?) and at g"# = 1.1g. Image from Ref. [2].

This may be anticipated from the point of view of two-fluid hydrodynamic behavior

in the Thomas-Fermi regime. In Fig. 4.2, we report the dependence of the mode

frequencies on SO coupling. In the absence of SO coupling, the monopole mode with

! = 2!? and the dipole mode with ! = !? are the exact solutions of quantum

many-body systems in a harmonic trap [2]. At a finite SO coupling we find that these

two solutions are no longer exact. The relative deviations of the monopole mode and

dipole mode at �SO = 1 are about 10% and 30%, respectively, from the exact solution
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of ! = 2!? and ! = !? in the absence of SO coupling [2].

Figure 4.3 : (color online). Bogoliubov wave-functions of the lowest four monopole
modes at �SO = 1, g(N � 1) = 40(~!?a2?) and g"# = 1.1g. The mode frequencies are
indicated in Fig. 7b by solid symbols. Image from Ref. [2].

In Fig. 4.3, we plot the Bogoliubov wave-functions of the lowest four monopole

modes at �SO = 1, g(N � 1) = 40(~!?a2?) and g"# = 1.1g. We find that the density

response is mainly carried by u"(⇢) and u#(⇢) components. With increasing mode

frequency, more nodes appear in u"(⇢) and u#(⇢). In contrast, the response in v"(⇢)

and v#(⇢) is relatively weak, and the curve shape is nearly unchanged as the mode

frequency increases [2].

4.3 Instability analysis and phase diagram

We are now ready to analyze the parameter space for the existence of half-quantum

vortex state. We observe that it becomes unstable with respect to increasing inter-

action strength or decreasing coupling ratio, g"#/g. We explain the instability either

by energy considerations and by the softening of collective density modes.
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4.3.1 Dipole instability

As mentioned earlier, for any half-quantum vortex state, �(r) = [�"(⇢),�#(⇢)ei']T/
p
2⇡,

there is a degenerate time-reversal partner state, T �(r) = [�#(⇢)e�i',��"(⇢)]T/
p
2⇡

[2]. This leads to an instability for the half-quantum vortex state with respect to a

superposition state, which with equal weight takes the form,

�s(r) =
1p
4⇡

2

6

4

�"(⇢) + �#(⇢)e�i('�'0)

�#(⇢)ei('�'0) � �"(⇢)

3

7

5

. (4.20)

Here '
0

is an arbitrary azimuthal angle. The energy difference between the superpo-

sition state and the half-quantum vortex state is given by

�E
GP

=

(g"# � g) (N � 1)

4

W [�(r)]. (4.21)

Therefore, if W [�(r)] > 0, the half-quantum vortex state is stable only when g < g"#

[2].

In Figs. 4.4(a) and (b), we check the W -function of the half-quantum vortex state

in the presence of interatomic interactions. It always appears to be positive, though

the interactions tend to decrease its absolute magnitude. Hence, there must be a

quantum phase transition occurring at the isotropic point g = g"#. Once g > g"#, a

superposition state with density pattern,

n",# =
1

2⇡



�2

" + �2

#
2

± �"�# cos ('� '
0

)

�

, (4.22)

becomes preferable. The 2D contour plot of this density pattern with '
0

= 0 is

schematically shown in the inset of Fig. 4.7 (in the phase IIA) [2].
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Figure 4.4 : (color online). (a) The W -function as a function of SO coupling at
g(N � 1) = ~!?a2? and g"# = 1.1g. (b) The W -function as a function of interaction
strength at �SO = 1 and g"# = 1.1g. (c) The instability of the lowest dipole mode
frequency !m=�1

with decreasing g"#/g at �SO = 1 and g(N�1) = 20(~!?a2?). Image
from Ref. [2].

In general, in passing through the quantum phase transition point, we observe

the softening of a particular mode frequency. As the superposition state involves a

time-reversed state with angular momentum m = �1, the lowest dipole mode with

m = �1 can become unstable [2]. In Fig. 4.4(c), we plot the lowest dipole mode

frequency !m=�1

as a function of g"#/g at �SO = 1 and g(N � 1) = 20(~!?a2?).

Indeed, with decreasing g"#/g, the mode frequency !m=�1

decreases and approaches

to zero exactly at the phase transition point [2].

4.3.2 Quadrupole instability

There is another instability for the half-quantum vortex state, occurring with in-

creasing interatomic interaction strength. With sufficiently large interactions, we

anticipate that the state with high-order azimuthal angular momentum will energet-
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ically become favorable [2]. For example, let us consider a condensate state with an

azimuthal angular momentum m = 1 (the 3/2-quantum vortex state), which has the

form,

�m=1

(r) =
1p
2⇡

2

6

4

�"(⇢)ei'

�#(⇢)ei2'

3

7

5

. (4.23)

The mean-field energy of this state can be obtained by solving the GP equation as

before, except that we need to take Rk1 (⇢) and Rk2 (⇢) as the expansion functions

for �"(⇢) and �#(⇢), respectively. Its degenerate time-reversal partner state has an

azimuthal angular momentum m = �2 [2].

It is easy to see from Fig. 4.5(a) that beyond a critical interaction strength the con-

densate state with m = 1, �m=1

(r), is lower in energy than the half-quantum vortex

state, �m=0

(r). We note, however, that the critical interaction strength determined

in this way is not accurate, as a superposition state of �m=0

(r) and �m=1

(r) may

already become energetically more preferable than �m=1

(r) at a smaller interaction

strength [2].

An accurate determination of the threshold could be obtained by monitoring the

instability in a particular collective mode. As the condensate state has a well-defined

parity, we find that the instability occurs in the lowest quadrupole mode with m =

�2. In Fig. 4.5(b), we graph the lowest quadrupole mode frequency !m=�2

as a

function of the interaction strength [2]. As the interaction increases, the real part of

mode frequency decreases to zero and the imaginary part becomes positive, indicating

clearly that this mode will exponentially grow if the condensate is initially in the

half-quantum vortex configuration. The condensate then starts to involve high-order

angular momentum components [2]. The critical interaction strength gc can be simply

determined from the softening of the mode frequency, i.e., !m=�2

(g = gc) = 0.
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Figure 4.5 : (color online). (a) GP energy of the 3/2-quantum vortex state �m=1

(r)
and of the half-quantum vortex state �m=0

(r) as a function of interaction strength
at �SO = 2 and g"#/g = 1.1. Beyond a critical interaction strength as indicated
by an arrow, �m=1

(r) becomes energetically favorable. (b) The corresponding lowest
quadrupole mode frequency !m=�2

. It becomes unstable beyond a threshold gc. Image
from Ref. [2].

In Fig. 4.6, we graph the critical interacting strength as a function of SO coupling

at g"# = g and g"# = 2g. The solid line at the isotropic point g"#/g has been recently

calculated by Zhou et al. by using an imaginary time evolution method [82,93]. Our

results are in excellent agreement with theirs. We find that at smaller SO couplings

the critical interaction strength decreases rapidly with increasing g"#/g.
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Figure 4.6 : (color online). Phase diagram at g"# = g and g"# = 2g. The critical
interaction strength has been shown as a function of SO coupling. Image from Ref. [2].

4.3.3 Phase diagram

We have systematically investigated the ground condensate state of a spin-orbit cou-

pled spin-1/2 Bose gas confined by a two-dimensional harmonic trap. The density

distributions and collective density excitations have been obtained respectively by

solving the GP equation and the Bogoliubov equation, which are generalized to in-

clude SO coupling [2]. Our main results are summarized in Fig. 4.7. The half-quantum

vortex state (the phase I) is the ground state if the intra-species interaction is smaller

than the inter-species interaction (g < g"#) and if the interaction strength is below a

threshold (g < gc), where gc depends on the ratio of g"#/g [2]. Otherwise, it becomes

energetically unstable towards a superposition state of two degenerate half-quantum

vortex states (phase IIA), or a state involving higher-order angular momentum com-

ponents (phase IIB). With decreasing dimensionless SO coupling strength �SO, the

threshold gc becomes exponentially large, leading to a large parameter space for the

half-quantum vortex state (see Fig. 4.6) [2]. It is therefore feasible to observe this in
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current experiments with ultracold SO coupled spinor Bose gases of 87Rb atoms.

Figure 4.7 : (color online). Phase diagram at two dimensionless SO coupling
strengths, �SO = 1 (a) and �SO = 4 (b). The half-quantum vortex state (phase
I) becomes unstable when the intra-species interaction is larger than the inter-species
interaction (g > g"# , phase IIA) or when the interatomic interactions are sufficiently
strong (g > gc, phase IIB). The insets show the density patterns of spin-up and spin-
down bosons in phases I and IIA. We note that the critical interaction strength gc
increases rapidly with decreasing SO coupling strength �SO. Image from Ref. [2].

We shall now to summarize various findings from our analysis: (1) The condensate

is in a half-quantum vortex state if the intra-species interaction g is smaller than

inter-species interaction g"#, and if the interaction strength is below a threshold gc.

We have calculated the threshold by monitoring the unstable quadrupole mode with

an azimuthal angular momentum m = �2. A phase diagram for the half-quantum

vortex state is therefore determined, as given in Figs. 4.6 and 4.7 [2]. (2) The
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half-quantum vortex state (phase I) will turn into a superposition of two degenerate

half-quantum vortex states (phase IIA) if g > g"# and will start to involve high-

order angular momentum components (phase IIB) if g > gc, where gc depends on the

ratio g"#/g [2]. (3) In the presence of spin-orbit coupling, the behavior of collective

density modes becomes complicated. In particular, the monopole mode with ! = 2!?

and the dipole mode with ! = !? are no longer exact solutions of the many-body

system [2]. (4) The condensate wave-functions in the phases IIA and IIB break the

rotational symmetry. Interesting density patterns will emerge in the limit of very

large interatomic interactions. The phase IIB in Fig. 4.7 will change to a density-

stripe phase, while the IIA will ultimately change to a plane-wave phase (not shown).

The density-stripe and the plane-wave phases have been shown to be the mean-field

ground state of a homogeneous spin-orbit coupled Bose gas [95]. For the trapped

system considered here, at large interaction strength, the effect of the trap becomes

less important and our result therefore is consistent with that of a homogeneous

system [2].

4.4 Dynamical simulation

As discussed in the introductory part of this chapter, measurement of collective os-

cillations of trapped gases in response to perturbations of the trap potential acts as

an important experimental probe for the many-body physics of ultracold gases [108].

To theoretically investigate the corresponding dynamical properties of the system, we

perform direct numerical simulations by real-time propagation of the ground state

under perturbation. To do this, firstly we obtain the ground state by solving the

coupled GP equations in Eqn. (4.1) using TSSP method. For illustration and anal-

ysis purposes, we focus on the half-quantum vortex ground state and perturb it in
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two ways – excite the monopole and dipole modes – and determine the collective

excitation spectrum.

4.4.1 Monopole or breathing mode analysis

To begin with, let us briefly explain the scheme to excite monopole modes in a con-

ventional trapped atom experiment. For instance, with a magnetic trap, the trapping

frequency may be adjusted by varying the bias field at the center of the trap. There-

fore, the monopole (breathing) mode may be excited by modifying the bias field,

which changes the trapping frequency. If after a finite time, the bias field is set back

to its original value, the atomic gas cloud oscillates freely in the magnetic trap for

an adjustable time [107]. One could then measure the density profile of the gas af-

ter a period of free expansion. Measurements of the density profile of atomic cloud

would provide crucial insights about the underlying physics of the trapped many-body

system.

In an analogous fashion, in our dynamical simulation, we excite the monopole

mode by weak relaxation of the trapping frequency at time t = 0, and letting the

system propagate in time [2]. As the monopole mode excitation is isotropic in x-y

space, it is sufficient to observe the dynamic response of the collective coordinate along

one direction, say, the x-axis. Here, we pick the mean square of the center-of-mass

coordinate as the quantity of interest:

hx2i� =

´ |��|2x2dx dy´ |��|2dx dy ,

where � = ", #-spin components. In Figs. 4.8(a) and (b), we plot the time response

of hx2

(t)i� for a typical parameter set [2]. In Figs. 4.8(c) and (d), we show the
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corresponding frequency response by plotting the single-sided amplitude spectrum

|hx2

(!)i|�, which are just the Fourier transforms of hx2

(t)i� [2]. We observe frequency

peaks at !/!? ' 0.46, 1.8, 2.18 and at 3.40 (not shown). We note that these values

exactly match the mode frequencies obtained for this parameter set by solving the

Bogoliubov equations, shown in Fig. 4.1(b).
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Figure 4.8 : (color online). (a),(b): Dynamic response of the mean square of the
center-of-mass coordinate in x-direction of "- and #- spin components respectively.
We have shifted the curves by subtracting the time-averaged hx2

(t)i�. Without this
shift, the Fourier spectrum as shown in (c) and (d) is dominated by a large peak
at ! = 0. (c),(d): Corresponding single-sided amplitude spectrum of the collective
coordinate. Parameters used: �SO = 1.0, g(N � 1) = 40(~!?a2?), g" #/g = 1.1. Image
from Ref. [2].

Dynamical calculations also reveal the coupling between the center-of-mass mo-

tion and the internal spin degrees of freedom, a trademark signature of SO coupled

systems [2]. We shall now discuss the dynamic response of the population difference

�n =

´
dr (|�"|2 � |�#|2). In Fig. 4.9(a), we plot the time response of �n(t) for the

same parameter set mentioned in Fig. 4.8. In Fig. 4.9(b), we show the correspond-

ing frequency response by plotting the single-sided amplitude spectrum |�n(!)|. We

observe frequency peaks at !/!? ' 0.46, 1.8, 2.18 and at 3.40 (not shown), exactly
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matching the mode frequencies obtained in Fig. 4.8 [2]. This analysis clearly shows

that the population transfer between the two spin components shares a similar dy-

namic response with the collective motional coordinate. In this aspect, the response

of �n in a SO coupled spinor BEC (shown here) is similar to the effects observed in

multi-component condensates, in the presence of internal Josephson coupling [118].

┴ω t
┴

ω/ω
0 2 4

-0.08

0

0.08

0 1 2

.02

.04

(a) ( )Δn t (b) ( )Δn ω

Figure 4.9 : (color online). (a) Dynamic response and (b) single-sided amplitude
spectrum of population difference �n for the same parameter set used in Fig. 4.8.
Image from Ref. [2].

4.4.2 Dipole or sloshing mode analysis

Collective dipole oscillation is a center-of-mass motion of all atoms. For a conventional

BEC, dipole oscillation is trivial: from the Kohn theorem, we understand that the

frequency is just the harmonic-trap frequency, independent of oscillation amplitude

and inter-atomic interaction [26]. Let us now analyze the dipole mode oscillations in

a SO coupled trapped spinor Bose gas.

We excite the dipole modes by displacing the trap in the x-direction by a small

amount at time t = 0, and letting the system propagate in time [2]. Let us now elab-

orate on how this approach is appropriate to begin with. As discussed in Sec. 1.3.2,

in a trapped atomic system the Bose condensate shows up not only in momentum
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space, but also in coordinate space. This implies that apart from being a macroscopic

occupation of atoms in the zero-momentum state, the condensate may be considered

as a macroscopic object physically present in the center of the trap. Owing to the

coherent motion of the macroscopic number of atoms in the condensate, the center of

mass motion is an appropriate observable. As a classical analogue, the Bose conden-

sate acts as a continuum elastic medium and the trap displacement serves to excite

the collective modes in this medium.

Upon excitation of the dipole mode and letting the system propagate in time, we

observe the dynamic response of the center-of-mass coordinate in the x-direction:

hxi� =

´ |��|2 x dx dy´ |��|2dx dy .

In Fig. 4.10 (a),(b), we plot the time response of this collective coordinate in the

x-direction of "- and #- spin components for a typical parameter set [2]. In Fig. 4.10

(c),(d), we show the corresponding frequency response by plotting the single-sided am-

plitude spectrum |hx(!)i|�. We observe frequency peaks at !/!? ' 0.05, 0.43, 0.70, 1.25, 1.34,

(shown) and at 2.5, 2.64, 2.76 (not shown). We note that these values also agree with

the mode frequencies obtained for this parameter set by solving the Bogoliubov equa-

tions, shown in Fig. 4.1(a),(c).

In the inset of Fig. 4.10(a), we show the dynamics of the center-of-mass coor-

dinate. It is important to note that even though the trap is displaced only in the

x-direction, we also observe a similar dynamic response in the y-direction of both

spin components (only "-spin component shown). This behavior occurs due to the

vorticity induced by the spin-orbit coupling: the vortex state experiences a Magnus

force that is perpendicular to its motion [2]. Hence a displacement in the x-direction
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induces a motion along the y-direction. Furthermore, the trace of the center-of-mass

and its magnitude are affected by the strength of the inter-particle interactions and

the spin-orbit coupling induced population transfer, as observed in the case of the

monopole mode excitation, between the "- and #- spin components [2].
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Figure 4.10 : (color online). Parameters used: �SO = 1.0, g(N � 1) =

40(~!?a2?), g" # = 1.1 g. (a),(b): Dynamic response of the center-of-mass coordi-
nate in x-direction of "- and #- spin components respectively. The inset in (a) shows
the dynamics of the center-of-mass coordinate over 12 trap periods. The filled (red)
marker denotes the initial position. (c),(d): Corresponding single-sided amplitude
spectrum of the collective coordinate. Image from Ref. [2].

The induced population transfer and the corresponding oscillation spectrum re-

flects the locking between the spin and momentum in the SO coupled Hamiltonian.

In Ref. [119], Zhang et al. discuss this phenomenon theoretically using a variational

approach and explain the observation from the absence of Galilean invariance. Con-

sider a BEC that moves with a velocity v along x̂; in the co-moving frame, the

single-particle Hamiltonian acquires an additional term vkx. In a conventional BEC,
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this term can be gauged away by a gauge transformation  ! eimvx [119]. In an

SO coupled system, however, such a procedure will introduce a velocity dependent

Zeeman-energy term �mvkr�̂z. Hence, once the condensate moves, a population

transfer has to be induced [119].

4.4.3 Instability against anisotropy in SO coupling

So far we have focused our attention on the half-quantum vortex state in an isotropic

2D harmonic trap subject to an isotropic Rashba SO coupling. Here we discuss

the effect of anisotropy in the SO coupling strength �R on the stability of the half-

quantum vortex state. The effect of trap anisotropy will be discussed subsequently. In

the context of ultracold gases, anisotropic Rashba SO coupling was first discussed by

Stanescu et al. in Ref. [92]. The coupled GP equations were solved for a many-body

system in the absence of the trap and in the restricted scenario where g"# = g [2].

Here, we move beyond these restrictions and discuss the ground state of the sys-

tem. We write the SO coupling term in the form VSO = �i(�y�̂x@y � �x�̂y@x), where

�x,�y are SO coupling strengths in the two perpendicular directions. By includ-

ing this modified SO coupling term and solving the coupled GP equations under the

Hamiltonian as given in Eq. (4.1), we obtain the ground state wavefunction at various

values of anisotropy in SO coupling represented by �x/�y [2].

In Fig. 4.11, we plot the corresponding ground state density profiles of #-spin

component for a fixed SO coupling strength (�x = 4.0), and for various values of

�x/�y.We see from Fig. 4.11(a) that the half-quantum vortex state is indeed the

ground state (already mentioned in Fig. 4.7(b)) for the parameter set: g(N � 1) =

0.1(~!?a2?), g"#/g = 1.1, �x = 4.0 and �x/�y = 1.0 [2]. We shall now analyze

the pattern of density profile changes, as the anisotropy in SO coupling strength is
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Figure 4.11 : (Color online) Plot of the ground state density profiles of #-spin com-
ponent for the parameter set: g(N � 1) = 0.1(~!?a2?), g"#/g = 1.1, �x = 4.0, with
varying ratios of �x/�y. (a) Isotropic case: �x/�y = 1.0, (b) �x/�y = 1.01, (c)
�x/�y = 1.05, (d) �x/�y = 1.1. Viewing angle is slightly tilted for aesthetic purposes.
Image from Ref. [2].

varied. This is shown in Fig. 4.11(b)-(d). It is evident from the density distributions

that the half-quantum vortex state is unstable even against a small anisotropy in the

SO coupling strength. Adopting a similar method to that presented in Ref. [120],

we analyze this systematically by expanding the wavefunction of the down-spin #-
component in an orthogonal basis set of the form: �#(⇢) = ⌃n fn(⇢) ei (2n+1)', where

n measures the vorticity, and fn(⇢) absorbs the nth mode’s contribution in the radial

direction. We quantify the weights of the wavefunction in the nth mode by computing

an =

´
d⇢ |fn(⇢)|2 [2]. In Fig. 4.12, we plot the weights an relative to a

0

, as computed

for a half-quantum vortex state with �x/�y = 1.0. As we would expect, for this
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isotropic case, a
0

= 1 and an = 0 for n 6= 0. As the anisotropy in the SO coupling

strength increases, more and more n 6= 0 components become mixed into the ground

state [2].

0.2

0.4

0.6

0.8

1
a
n

/
a
0

−3 −2 −1  0  1  2  3

0.2

0.4

0.6

0.8

1

a
n

/
a
0

n
−3 −2 −1  0  1  2  3

n

(b)(a)

(c) (d)

Figure 4.12 : (Color online) Plot of the weights of the ground-state wavefunction of
#-spin component - corresponding to the density profiles in Fig. 4.11 - in the nth
mode. The weights are normalized with respect to a

0

computed for a half-quantum
vortex state with �x/�y = 1.0. (a) Isotropic case: �x/�y = 1.0, (b) �x/�y = 1.01, (c)
�x/�y = 1.05, (d) �x/�y = 1.1. Image from Ref. [2].

We note that due to the sensitivity of the half-quantum vortex state with respect to

the anisotropy in the SO coupling strength, to observe such a state therefore requires

a highly symmetric Rashba spin-orbit coupling in experiments.

4.4.4 Instability against anisotropy in trap potential

Now we examine the effect of anisotropy in the trapping potential, but with isotropic

SO coupling, on the stability of half-quantum vortex state. We write the trapping

potential in the form V (x, y) = M(!2

xx
2

+ !2

yy
2

)/2 = M!2

?(x
2

+ f 2

y y
2

)/2, where

!x = !?,!y = fy!? are trapping frequencies in x- and y-directions respectively [2].
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We again obtain the ground state wavefunctions at various values of fy by solving the

coupled GP equations. In Fig. 4.13, we plot the corresponding ground state density

profiles of the #-spin component for an SO coupling strength of �SO = 4.0, and for

various values of trap anisotropy ranging from 0 to 10% [2].

Figure 4.13 : (Color online) Plot of the ground state density profiles of #-spin com-
ponent for the parameter set: �SO = 4.0, g(N � 1) = 0.1(~!?a2?), g"#/g = 1.1, but
with varying ratios of fy = !y/!x. (a) Isotropic case: fy = 1.0, (b) fy = 1.01, (c)
fy = 1.05, (d) fy = 1.1. Viewing angle is slightly tilted for aesthetic purposes. Image
from Ref. [2].

We see from Fig. 4.13(a) that the half-quantum vortex state is indeed the ground

state (already mentioned in Fig. 4.11(a)) for the parameter set: �SO = 4.0, g(N�1) =

0.1(~!?a2?), g"#/g = 1.1 [2]. We shall now analyze the pattern in which the den-

sity profile changes depending on the trap anisotropy, as shown in Fig. 4.13(b)-(d).

It is evident from the density distributions that the vortex core becomes increas-
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Figure 4.14 : (Color online) Plot of the weights of ground-state wavefunction of #-spin
component - corresponding to the density profiles in Fig. 4.13 - in the nth mode. The
weights are normalized with respect to a

0

computed for half-quantum vortex state
with fy = 1.0. (a) Isotropic case: fy = 1.0, (b) fy = 1.01, (c) fy = 1.05, (d) fy = 1.1.
Image from Ref. [2].

ingly anisotropic with increasing fy [2]. We analyze this systematically by expanding

the wavefunction of the #-component in an orthogonal basis set and quantifying the

weights in the nth mode by an, as mentioned in Sec. 4.4.3. In Fig. 4.14, we plot the

weights an relative to a
0

computed for a half-quantum vortex state with fy = 1.0.

As we would expect, for the isotropic case with fy = 1.0, a
0

= 1 and an = 0 for

n 6= 0 [2]. As the trap anisotropy increases, we observe that the ground state is a

mixture of n 6= 0 components as well. Nevertheless, we see that the trap anisotropy

has a much smaller effect on the half-quantum vortex state than the anisotropy in

the SO coupling strength [2].

In summary, the half-quantum vortex state is unstable against small anisotropies

in the SO coupling strength and large anisotropies in the trapping potential. The

state tends to be a superposition of higher angular momentum states.
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Chapter 5

Exact diagonalization study of strongly correlated
phases⇤

In the presence of synthetic gauge fields in trapped ultracold bosonic systems, exper-

imental evidence for SO coupling with equal Rashba and Dresselhaus type strengths

was reported in a seminal paper by NIST group [59]. Recently, commendable exper-

imental progress has also been achieved towards simulating SO coupling in ultracold

fermionic systems [60, 61], a phenomenon critical to the simulation of certain topo-

logically insulating states in condensed-matter systems [121, 122]. The introduction

of synthetic gauge fields in ultracold neutral atomic systems has thus opened the

possibility of exploring a whole new set of phenomena that would manifest in the

presence of abelian and non-abelian vector potentials [76]. In a previous work, the

NIST group has experimentally realized an artificial Abelian gauge field which leads

to the observation of vortex lattice in a non-rotating 87Rb Bose condensate [57]. The

work presented in this chapter represents an important extension into the regime of

non-Abelian gauge field† in which the spin degrees of freedom play an essential role [3].

In Chapter 3, we discussed in detail the emergence of weakly correlated phases

at large SO coupling strengths and presented the phase diagram. However, these re-

sults are valid for weak correlations with large number of bosons. Strongly correlated

⇤Chapter 5 taken largely from our publication in Ref. [3].
†As stated by Galitski et al. in Ref. [53], for instance, a gauge field A is non-Abelian when the

components of the vector A = (A
x

, A
y

, A
z

) are non-commuting operators, for example A
x

A
y

6=
A

y

A
x

. Such non-Abelian gauge potentials are generic in a wide range of problems in physics [53].
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states would emerge with small number of bosons [106]. In this Chapter, we address

this potential possibility using exact diagonalization (ED) scheme. We emphasize that

understanding the physics of few-body systems is not anymore a mere theoretical fan-

tasy. With tremendous experimental progress, it is now possible to experimentally

study few-body phenomena in trapped atomic and molecular systems with unprece-

dented control. As stated by Blume in Ref. [123], for instance, trapped few-particle

systems can be realized by loading micro-traps with just a few particles [123–126].

In the presence of SO coupling, a generic Hamiltonian may be broadly classified

in two classes: (a) one that breaks T (time-reversal) symmetry, and which can be

shown to be gauge-equivalent to a Hamiltonian in the combined presence of abelian

and non-abelian vector potentials [3]. For example in Refs. [127, 128], the authors

consider an SO coupling Hamiltonian in the presence of a real (abelian) magnetic

field and attempt to simulate the physics of traditional quantum Hall systems; (b)

one that preserves T symmetry, and which can be shown to be gauge-equivalent to

a Hamiltonian in a pure non-abelian vector potential [3]. In this chapter, we study

an SO coupling Hamiltonian of the latter class, and discuss the emergence of ground

states with unique topological and correlation properties [3].

The chapter is organized as follows: In Sec. 5.1, we begin by re-iterating the

model Rashba SO coupling Hamiltonian introduced in Sec. 2.3.1 and discuss various

symmetries. We show that the Hamiltonian is gauge-equivalent to particles subject

to a pure non-abelian vector potential that preserves T symmetry. Then, we consider

the non-interacting limit of this Hamiltonian, and revisit the characteristic features

of the single-particle solutions at small and large SO coupling strengths discussed in

Sec. 2.3.3. We proceed to discuss the implementation of ED scheme to obtain the low-

energy eigenstates of the interacting Hamiltonian in the regime of large SO coupling
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strengths. Then, we introduce various analysis techniques namely, energy spectrum,

density distribution, single-particle density matrix, pair-correlation function, reduced

wavefunction, entanglement spectrum, and entanglement entropy. Each technique

would offer its unique perspective to the overall understanding of the ground state

properties [3].

In Sec. 5.2, we discuss the phase diagram and analyze the ground state properties

of the interacting Hamiltonian at different particle numbers N , and at varied inter-

atomic interaction strengths. At small particle numbers with N = 2, we illustrate

the unique topological and symmetry properties of ground states. In the relatively

large particle number scenario with N = 8, we observe that the ground states fall

into two distinct regimes: (a) at weak interaction strengths (mean-field-like regime),

we observe ground states with topological and symmetry properties that are also ob-

tained via mean-field theory computations; (b) at intermediate to strong interaction

strengths (strongly correlated regime), we report the emergence of strongly correlated

ground states. We proceed to illustrate the topological, symmetry and strong correla-

tion properties of these ground states. Finally in Sec. 5.3, we summarize and present

concluding remarks [3].

5.1 Theoretical framework

5.1.1 System under study

As discussed earlier in Sec. 2.3.1, we study a two-component Bose gas confined in

a 2D isotropic harmonic trapping potential: V (⇢) = M!2

?(x
2

+ y2)/2 = M!2

?⇢
2/2.

For convenient reference, we re-iterate the model system under study here. We con-

sider the isotropic Rashba SO coupling term, that couples pseudo-spin-1/2 degree
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of freedom and linear momentum: VSO = �i�R(�̂x@y � �̂y@x), where �R is the SO

coupling strength and �̂x,y,z are 2⇥ 2 Pauli matrices. The model Hamiltonian for the

interacting system is then given by: H =

´
dr[H

0

+H
int

],

H
0

=  

†


�~2r2

2M
+ V (⇢) + VSO � µ

�

 , (5.1)

H
int

= (g/2)
X

�=",#
 

†
� 

†
� � �+g"# 

†
" " 

†
# #, (5.2)

where r = (x, y) and  = [ "(r), #(r)]T denotes the spinor Bose field operators.

The chemical potential µ is to be determined by the total number of bosons N (i.e.,
´
dr †

 = N). For simplicity, we have assumed that the intra-component interaction

strengths are equal, so that g"" = g## = g [3]. The Hamiltonian is invariant under

symmetry operations associated with the anti-unitary time-reversal operator T =

i�̂yC, and the unitary parity operator P = �̂zI, where C and I perform complex

conjugation and spatial inversion operations respectively. The Hamiltonian is also

invariant under the combined PT operator, which is unitary since operators P and

T anti-commute, i.e., since [P , T ]

+

= 0 [3]. As can be readily seen, Rashba SO

coupling term in Eqn. (5.1) breaks inversion symmetry.

5.1.2 Gauge-equivalent form of H
0

A generic single-particle Hamiltonian may be written in the form Hg = (p�A)

2/2M ,

where p = ~k is the particle momentum and k is the wave-vector. The vector

potential A may possibly have components in both physical space and spin space.

Depending upon the commutation properties of the components of A, we may hence

have an abelian or non-abelian type vector potential [3]. The primary motivation

behind deriving a gauge-equivalent form is to map our model Hamiltonian H
0

onto
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Hg, and hence derive the nature of A. It is conceivable that depending upon the

nature of H
0

, A could comprise of purely abelian components, or purely non-abelian

components, or a combination of both [3].

In order to map H
0

onto Hg, it suffices to compare Hg with the terms �~2r2/2M�
i�R(�̂x@y � �̂y@x) in H

0

. The latter terms may actually be rewritten as |p|2 /2M +

�R(ˆky�̂x � ˆkx�̂y). For a two-component Bose gas confined in a 2D isotropic harmonic

trap, we have a two-component vector potential A, with Ax, Ay being 2 ⇥ 2 matri-

ces [3]. Comparing H
0

with Hg, we expect Ax / �̂y and Ay / ��̂x. Specifically, it can

be shown that the vector potential is A = (Ax, Ay, 0) = (~M!?)1/2�SO(�̂y,��̂x, 0).
In trap units, we then simply have A = �SO(�̂y,��̂x, 0). The term involving |A|2 is

a constant, and can be gauged out without loss of generality. Therefore, the strength

of the non-abelian vector potential proportionally determines the strength of SO cou-

pling [3]. It is further evident that [Ax, Ay] 6= 0, and that A is a pure non-abelian

vector potential. Furthermore, the T operator commutes with the SO coupling term

�R(ˆky�̂x�ˆkx�̂y). In essence, the model Rashba SO coupling Hamiltonian in Eqn. (5.1)

is gauge-equivalent to particles subject to a pure non-abelian vector potential that

preserves T symmetry [3]. As discussed in Sec. 2.2, proposals to realize vector poten-

tials of similar forms have been addressed by multiple groups [76,129–131].

5.1.3 Single-particle solutions

We solve the model Hamiltonian H in the absence of interatomic interactions and

obtain the single-particle solutions, as discussed earlier in Sec. 2.3.3. Rewriting the

H
0

component in Eqn. (5.1), the single-particle wavefunction �(r) = [�" (r) ,�# (r)]T
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with energy ✏ is given by

2

6

4

Hosc �i�R(@y + i@x)

�i�R(@y � i@x) Hosc

3

7

5

2

6

4

�"

�#

3

7

5

= ✏

2

6

4

�"

�#

3

7

5

, (5.3)

where H
osc

⌘ �~2r2/(2M) + V (⇢). In polar coordinates (⇢,'), we have �i(@y ±
i@x) = e⌥i'

[±@/@⇢� (i/⇢)@/@']. The single-particle wavefunction takes the form

�m(r) =

2

6

4

�"(⇢)

�#(⇢)ei'

3

7

5

eim'

p
2⇡

, (5.4)

with well-defined total angular momentum jz, that is a sum of orbital and spin angular

momenta. In general, we may denote the energy spectrum as ✏nm, where n = (0, 1, 2...)

is the quantum number for the transverse (radial) direction [3].

The single-particle wavefunction �m(r) is an eigenstate of the unitary P operator:

P�m(r) = �z(�1)

m

2

6

4

�"(⇢)

��#(⇢)ei'

3

7

5

eim'

p
2⇡

= (�1)

m�m(r).

The T symmetry preserved by the Hamiltonian results in a two-fold degeneracy

(Kramer doublet) of the energy spectrum: any eigenstate �(r) = [�"(r),�#(r)]T is

degenerate with its time-reversal partner T �(r) = [�⇤
#(r),��⇤

"(r)]
T . This symmetry

is preserved even in the presence of interatomic interactions, as the terms in interact-

ing Hamiltonian H
int

are T -invariant [3]. The superposition state, of �m(r) and its

time-reversal partner state, is an eigenstate of the unitary PT operator:

PT [�m(r) + T �m(r)] = (�1)

m+1

[�m(r) + T �m(r)].
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Following our detailed discussion in Sec. 2.3.3, we identified from Figs. 2.5 and

2.6 that the nature of solutions is fundamentally different at small and large SO

coupling strengths. Let us now focus exclusively on the characteristic solutions at

large SO coupling strengths. The localized nature of the wavefunctions in Fig. 2.5(b)

and the weakly dispersive nature of the single-particle energy spectrum in Fig. 2.6(b)

are characteristics that justify a comparison of the single-particle basis states at large

SO coupling strengths with 2D Landau Level (LL) structures in magnetic fields. In

Ref. [130], Li et al. discuss the mapping between H
0

and 2D LL Hamiltonian in a

rigorous fashion and generalize the terminology of LLs as ‘topological single-particle

level structures labeled by angular momentum quantum numbers with flat or nearly

flat spectra’ [130]. Making use of this generalization, we term the n = 0 manifold

as the lowest LL structure (LLL), n = 1 manifold as the next highest LL, and so

on [3]. As seen in Fig. 2.6(b), the radial quantization generates energy gaps between

adjacent LLs of the order of trap energy ~!?, i.e., of order unity in trap units.

To summarize, we emphasize that the generalized LLs discussed here are created

by a truly non-abelian vector potential, i.e., in the absence of any real (abelian)

magnetic fields. The strength of Rashba SO coupling strength, and in-turn the flatness

of the single-particle energy spectra can be experimentally controlled by using laser

fields. At large SO coupling strengths, as shown for �SO = 20 in Fig. 2.6, we obtain

a nearly flat single-particle energy spectra. In a non-interacting two-component Bose

gas, quantum statistics obviates the occurrence of correlated states in a spectra that

is not perfectly flat, due to potential condensation of all the particles in the lowest

energy single-particle states, identified by jz = ±0.5, of the LLL (n = 0 manifold) [3].

However, in the presence of inter-particle interactions, nearly flat energy spectra is

sufficiently abled to act as an interesting playground to allow for the emergence of
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strongly correlated ground states [3]. We now proceed to introduce the ED scheme to

solve the interacting Rashba SO coupled Hamiltonian at large SO coupling strengths.

5.1.4 Exact diagonalization scheme

We solve the interacting Rashba SO coupled Hamiltonian H in Eqns. (5.1) and (5.2)

within the Configuration Interaction alias exact diagonalization (ED) scheme. In

this scheme, we expand the interacting many-body Hamiltonian in an appropriate

single-particle basis (configuration) to obtain the solution. The solution becomes

exact when we consider an infinite number of single-particle states. With N bosons

and M single-particle states in the basis, the dimension of Hilbert space is D =

(N + M � 1)!/N !(M � 1)!. With M = 24, for example, D = 300 for N = 2, and

D = 7888725 for N = 8 [3]. The dimension of Hilbert space grows dramatically

with system size and hence, for practical purposes, we limit our configuration to a

finite size. We observe that the solution becomes essentially exact when we consider

a sufficient number of single-particle states [3]. To solve the problem at hand, it is

convenient to work with the SO single-particle basis:

�(r) =
X

nm

2

6

4

�"nm(r)

�#nm(r)

3

7

5

anm ⌘
X

i⌘nm

2

6

4

�"i(r)

�#i(r)

3

7

5

ai, (5.5)

where the field operator ai is related to the single-particle state [�"nm(r),�#nm(r)]T .

Then, Eqns. (5.1) and (5.2) simply become

H =

X

i

✏ia
†
iai +

X

ijkl

Vijkla
†
ia

†
jakal, (5.6)
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where (i, j, k, l) collectively denotes (n,m), and Vijkl = (g/2)[V ""
ijkl + V ##

ijkl] + g"#V
"#
ijkl,

with

V ""
ijkl =

ˆ
dr�⇤

"i(r)�
⇤
"j(r)�"k(r)�"l(r)

V ##
ijkl =

ˆ
dr�⇤

#i(r)�
⇤
#j(r)�#k(r)�#l(r) (5.7)

V "#
ijkl =

ˆ
dr�⇤

"i(r)�
⇤
#j(r)�"k(r)�#l(r).

We perform the ED calculation in Fock space and the Hamiltonian H can be

written as a matrix of dimension D2, naively accounting for the possibility of inter-

coupling every Fock state [132]. It is clear from the single particle solutions discussed

in Eqn. (5.3), that the single-particle term ✏ia
†
iai contributes only to diagonal entries

of the Hamiltonian matrix, while the interaction term Vijkla
†
ia

†
jakal contributes to off-

diagonal entries as well [3]. The enumeration of off-diagonal entries can be enormously

simplified by accounting for a symmetry preserved by H: conservation of total angular

momentum Jz =

P

N jz, as readily seen from Eqn. (5.6). If an entry Vijkl is to be

nonzero, we must have mi + mj = mk + ml in Eqn. (5.7). Using only the radial

wavefunction, we have (provided mi +mj = mk +ml),

V ""
ijkl =

1

2⇡

ˆ 1

0

⇢d⇢ �"i(⇢)�"j(⇢)�"k(⇢)�"l(⇢)

V ##
ijkl =

1

2⇡

ˆ 1

0

⇢d⇢ �#i(⇢)�#j(⇢)�#k(⇢)�#l(⇢) (5.8)

V "#
ijkl =

1

2⇡

ˆ 1

0

⇢d⇢ �"i(⇢)�#j(⇢)�"k(⇢)�#l(⇢).

This enables one to visualize the Hamiltonian in block-diagonal form, i.e., each block

is a manifold comprising of Fock states with a fixed Jz. Hence, the term Vijkla
†
ia

†
jakal

can only couple states within the same manifold, therefore resulting in a sparse Hamil-
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tonian matrix. We solve this sparse matrix to identify the low energy states of the

system [3].

As discussed in Sec. 5.1.1, the Hamiltonian H preserves T symmetry. In a certain

LL, the energies of states labelled jz and �jz are equal and hence, we need to consider

both positive and negative angular momentum states in the single-particle configu-

ration [3]. This has two major implications: (a) computational intensity increases

tremendously, and (b) a given configuration would never be sufficient to obtain a com-

plete Jz manifold, where all contributing single-particle states are included. We note

here that the latter issue does not arise when the Hamiltonian breaks T symmetry, as

in studies of rotating trapped gases or gases subject to real magnetic fields [133–135].

In these studies, it was sufficient to consider only positive jz states and hence obtain

complete Jz manifolds. In the limit of large SO coupling strengths, if the interaction

strengths are such that the energy contribution from H
int

is less than unity (in trap

units), we may restrict ourselves to the lowest n = 0 manifold. Within this LLL

approximation, we may consider a sufficient number of single-particle eigenstates to

obtain essentially exact low energy eigenstates [3].

5.1.5 Analysis techniques

ED scheme enables us to solve the Rashba SO coupled Hamiltonian H and obtain

the ground state phase diagram at various interaction strengths and particle num-

bers. The ground states have interesting topological, symmetry and strong correlation

properties. Here, we outline the details of various techniques that we use to analyze

these properties.



101

5.1.5.1 Energy spectrum

First step in our analysis is to identify the total angular momentum manifold Jz

to which the ground state belongs. As discussed earlier, the Hamiltonian matrix

has a block-diagonal form, with each block identified by its unique Jz value. It is

evident that each of these blocks can essentially be diagonalized independently. The

energy spectrum comprises of energy eigenvalues from each block, and the lowest

eigenvalue and its corresponding Jz may be readily associated with the ground state.

Degeneracies in the energy spectrum naturally reflect the degeneracies in the ground

state. For example, a typical energy spectrum plot is shown in Fig. 5.1.

Dimension of Fock space in the ground state Jz manifold will be much smaller

when compared to the Hilbert space dimension D. For a given parameter set, once

we identify the ground state Jz manifold, we can extract the coefficients of all Fock

states from the corresponding eigenvector. In essence, we may then represent the

ground state wavefunction as a sum of all contributing Fock states:  G =

Pnd
p=1

↵p�p,

where nd is the dimension of ground state Jz manifold and ↵p is the coefficient of the

Fock state �p. As discussed in Sec. 5.1.1, the interacting Hamiltonian H is invariant

under two unitary symmetry operations, P and PT . With the knowledge of ground

state wavefunction  G, we are now equipped to determine if the ground state is an

eigenstate of P or PT operator [3].

5.1.5.2 Density distribution and single-particle density matrix

With the knowledge of  G, we are equipped to extract various properties of the

ground state. We derive density distribution from the expectation value of single-
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particle density operator, written in second-quantized form as

⇢̂(r) =
X

ij

h�i(r’) | �(r � r’) | �j(r)ia†iaj, (5.9)

where |�i(r)i is the single-particle state identified by index jz in the LLL [135]. In

our case, we also have an additional index to denote up- and down- spin components.

Since Jz is a good quantum number, the operator a†iaj selects only one single-particle

state within LLL approximation. As a consequence, it does not contain informa-

tion about products of different amplitudes and loses information about interference

pattern [135]. Hence, the density distribution solely preserves the information on

individual densities:

n(r) = h G | ⇢̂(r) |  Gi =
M
X

i=1

| �i(r) |2 Oi , (5.10)

where Oi is the total ground state occupation of the single-particle state |�i(r)i [135].

Within the LLL approximation, Oi are essentially eigenvalues of the diagonal single-

particle density matrix. Since single-particle states in Eqn. (5.4) are eigenstates of

P operator, it is evident that the density distributions n(r) would be cylindrically

symmetric. For example, representative plots of Oi as a function of jz, and plots of

density distributions are shown in Figs. 5.4 and 5.7 [3].

5.1.5.3 Pair-correlation function

Pair-correlation functions help us analyze the internal structure of the ground states.

We write the pair-correlation operator (not normalized) in second-quantized form



103

[135],

⇢̂(r, r
0

) =

X

ijkl

�⇤
i (r)�

⇤
j(r0)�k(r)�l(r0)a†ia

†
jalak. (5.11)

In our case, we also have an additional index to denote up- and down-spin compo-

nents. For instance, we may compute pair-correlation functions that determine the

conditional probability to find an up-spin or a down-spin, when an up-spin compo-

nent is assumed to be present at a fixed point r
0

, i.e., hn"(r0)n"(r)i or hn"(r0)n#(r)i
respectively. We may choose r

0

to be away from the origin, but with a substantial

amplitude of n(r). Due to angular momentum conservation, the condition i+j = k+l

must further be fulfilled. Computing the expectation value of ⇢̂(r, r
0

) with respect to

 G, we obtain the pair-correlation function as

⇢(r, r
0

) =

X

ijkl

X

pp0

↵⇤
p↵p0�

⇤
i (r)�

⇤
j(r0)�k(r)�l(r0)

h�p | a†ia†jalak | �p0i. (5.12)

When the wavefunction  G is an eigenstate of PT operator, pair-correlation func-

tion illustrate the ground state symmetry properties. Furthermore, they reveal the

correlations between up- and down-spin components in real-space. Pair-correlation

functions at representative interaction strengths are shown in Figs. 5.4 and 5.7 [3].

5.1.5.4 Reduced wavefunction

We shall now discuss techniques to analyze if the ground states possess vortex struc-

tures with distinct topological properties. One identifying property is the presence of

quantized values of skyrmion number, as discussed in Chapter. 3. However, this re-

quires the computation of ground state wavefunction in real-space, a computationally

prohibitive task for the bosonic few-particle system under study. Here, we discuss a
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viable approach to identify the topological nature of the ground state by computing

the reduced wavefunction [136]:

 
rwf

(r) =
 (r, r⇤2, ..., r

⇤
N)

 (r⇤1, r
⇤
2, ..., r

⇤
N)

. (5.13)

Reduced wavefunction  
rwf

(r) is computed with respect to one particle, here particle

with index 1, while the remaining N � 1 particles are placed at their most probable

locations r⇤i [136,137]. In our case, we also have an additional index to denote up- and

down-spin components. With  
rwf,"(r) and  

rwf,#(r) known, we can now extract phase

information and compute a distinct topological quantity, vorticity, i.e., the number

of phase slips from +⇡ to �⇡ along a closed contour. An integer-valued vorticity is

an unambiguous way of establishing that the ground state is topological in nature

with a distinct vortex structure. For example, typical phase plots revealing different

vorticities are shown in Figs. 5.4 and 5.7 [3].

5.1.5.5 Entanglement measures

We compute entanglement measures to analyze correlation properties of various ground

states. In particular, we intend to probe the ground state correlation properties that

specifically stem from the presence of inter-particle interactions. To achieve this goal,

we take cues from seminal papers in Ref. [138, 139]. We choose a proper single-

particle basis comprising of the set of eigenstates in Eqn. (5.4) of the single-particle

Hamiltonian H
0

. In such a single-particle basis, entanglement in the ground state,

or any non-degenerate energy eigenstate, occurs specifically due to the presence of

interactions [138,139].

The first step in discussing any entanglement measure is to partition the system
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and compute entanglement properties between different subsystems. As discussed in

Sec. 5.1.3, similar to 2D LL orbitals, the single-particle eigenstates at large SO cou-

pling strengths are fairly localized in nature. This warrants us to consider partition-

ing the system in orbital space [140]. The T symmetry preserved by the Hamiltonian

H naturally prompts us to partition the orbitals into two subsystems: positive jz

states (subsystem A) and negative jz states (subsystem B). We write the ground

state wavefunction in Fock space as  G =

Pnd
p=1

↵p�p, where �p is represented as

| n�jcn�(jc�1)

....njc�1

njci. Here, njz represents the occupation number of the single-

particle eigenstate jz, and as discussed in Sec. 5.1.4, a finite size cut-off is made at

a certain value jc ⌘ jz,c for computational feasibility. Now, we proceed to compute

the bipartite entanglement properties between subsystems A and B, i.e., between the

positive and negative jz states respectively [3].

Orbital entanglement spectrum:- With the knowledge of  G, we compute the en-

tries of the density matrix ⇢̂ for the ground state as

hn0

�jc ....n
0

jc | ⇢̂ | n�jc ....njci = ↵p↵
⇤
p, (5.14)

where the generic density operator is ⇢̂ =|  Gih G |.
Now, we compute the reduced density matrix (RDM) ⇢̂A by tracing out the de-

grees of freedom of subsystem B, meaning ⇢̂A=TrB ⇢̂. As shown in Refs. [138, 139],

occupation numbers act as distinguishable degrees of freedom in characterizing en-

tanglement in a finite system of identical quantum particles. Hence in our study,

RDM is computed by tracing out the occupation of all the negative jz states from
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the density matrix:

hn0

1/2....n
0

jc | ⇢̂jc(1/2, .., jc) | n1/2....njci = (5.15)
X

n�jc ..n�1/2

hn�jc ..n�1/2n
0

1/2..n
0

jc | ⇢̂ | n�jc ..n�1/2n1/2..njci

The RDM ⇢̂A has a block-diagonal structure, with each block characterized by the

total angular momentum JA
z that corresponds only to particles in subsystem A. The

block-diagonal structure allows us to compute all the eigenvalues of the RDM using

full-diagonalization techniques. Orbital entanglement spectrum (OES), termed so

because the partition is defined in orbital space, is the plot of entanglement pseudo-

energies ⇠i as a function of JA
z . Here, ⇠i = �ln ⇢Ai , with ⇢Ai being the eigenvalues of

RDM ⇢̂A [141]. It is evident that ⇠i with smaller magnitudes maximally contribute

to the ground state properties [3].

Plots of OES reveal information about the occupation of various Fock states in

a given ground state manifold, and in-turn the correlation properties of the ground

state. If various Fock states �p in the ground state Jz manifold have similar magni-

tudes of ↵p, it results in similar RDM eigenvalues of ⇢Ai , and in-turn, similar mag-

nitudes of ⇠i. Thus, if an OES plot reveals that ⇠i values are degenerate or nearly

degenerate, this is a clear manifestation of the correlated nature of the ground state.

On the other hand, if the OES plot reveals that the values of ⇠i are distinctly non-

degenerate, the ground state is clearly not correlated. For example, representative

OES plots are shown in Figs. 5.4, and 5.7.

Entanglement entropy:- Plots of OES reveal the whole spectrum of eigenvalues

of the RDM and help us understand the correlation properties of the ground state.

However, it is sometimes useful to extract just a single representative quantity from
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the RDM [142]. Entanglement entropy (EE) is such a measure that can be readily

obtained from the set of eigenvalues ⇢Ai of the RDM ⇢̂A, and is defined as SA =

�tr[⇢̂A ln⇢̂A] = �P

i ⇢
A
i ln⇢Ai . A higher entropy value means that the ground state

is more homogeneously spread in Fock space, i.e., a larger number of Fock states �p

make substantial contributions towards the ground state. A distinct advantage of an

EE plot is that we are able to look at entropy values for a whole range of interaction

strengths in a single plot, and thereby, understand correlation properties of various

phases. For example, representative EE plots are shown in Figs. 5.2, 5.3, 5.5, and

5.6 [3].

In summary, density distribution, eigenvalues of single-particle density matrix,

pair-correlation function and reduced wavefunction would help us identify various

symmetry and topological properties of the ground states. Computation of RDM

from proper single-particle basis enables us to extract various entanglement measures

and allow us to analyze correlation properties that specifically stem from inter-particle

interactions.

5.2 Results and discussion

As discussed in Sec. 5.1.3, in the absence of interactions, all particles would simply

condense into the two lowest energy single-particle eigenstates in the LLL identi-

fied by quantum numbers jz = ±0.5. This is due to the weak, but finite, dis-

persion in jz present in the single-particle energy spectrum shown in Fig. 2.6(b).

The P-eigenstate, identified by jz = +0.5, is represented by wavefunction �P =

[�"(⇢),�#(⇢)ei']T/
p
2⇡. It has a half-quantum vortex configuration, as the spin-

up component stays in the s-state and the spin-down component is in the p-state

[2,82,83]. The resulting spin texture of this topological state is of skyrmion type [2].
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The degenerate time-reversed P-eigenstate, identified by jz = �0.5 and represented

by T �P = [�#(⇢)e�i',��"(⇢)]T/
p
2⇡, also has a half-quantum vortex configura-

tion. We may as well construct a zero angular momentum PT -eigenstate, from

an equal superposition of opposite angular momentum P-eigenstates: �PT ,jz=0

=

(�P ± T �P) /
p
2. In the absence of interactions, either of the P-eigenstates or the

superposition PT -eigenstate are degenerate. In addition, any arbitrary superposition

of the degenerate P-eigenstates, which in principle need not be a PT -eigenstate, will

also be a degenerate ground state [3].

In the presence of inter-particle interactions, the ground state is not anymore de-

termined solely by the energy contribution of the non-interacting part of the Hamil-

tonian H
0

. Depending upon the strengths of g and g"#, the energy contribution from

the interacting part of the Hamiltonian H
int

also plays a crucial role. This competi-

tion can be better understood, especially at large SO coupling strengths, by analyzing

the single-particle wavefunctions and energy. As shown in Fig. 2.6(b), energy con-

tributions due to H
0

tries to keep the particles in states with lower value of angular

momenta jz. However, for repulsive interaction strengths, energy considerations due

to H
int

tries to keep the particles as far away from each other as possible. This

in-turn means that the particles tend to occupy states with larger value of angu-

lar momenta, since they have a larger localization radii as shown in Fig. 2.5(b). In

essence, the ground state of the interacting many-body Hamiltonian is determined by

the competition between the H
0

and H
int

terms [3].

The simplest scenario where the competition between the H
0

and H
int

terms,

in-turn the effect of inter-particle interactions, clearly manifests is in an interacting

problem with N = 2 particles. For this reason, we discuss the results for N = 2

particles and analyze the ground state properties in greater detail, before proceed-
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ing to larger particle numbers. We solve the interacting few-body Hamiltonian H
at large SO coupling strengths using ED scheme within LLL approximation. The

computational intensity, especially at large interaction strengths, limits the feasibil-

ity of this scheme to the order of N = 8 particles [137, 143]. In an earlier mean-field

study on homogeneous two-component Bose gas [95], it was shown that the particles

condense into either a single plane-wave state (for g > g"#) or a density-stripe state

(for g < g"#). Similarly, in the earlier related work presented in Sec. 3.3, depending

on the relative magnitudes of g and g"#, we show that states with distinct topological

and symmetry properties emerge in the mean-field phase diagram. Taking cues from

these results, in this study, we solve for the ground state wavefunction at various

interaction strengths, however fixing the relative magnitude g"#/g at 0.5 or 1.5. In

this section, we present the results at different particle numbers N , and analyze the

topological, symmetry and correlation properties of the ground states using various

techniques elaborated in Sec. 5.1.5 [3].

5.2.1 N = 2

As discussed in Sec. 5.1.5.1, we analyze the energy spectrum to identify the ground

state angular momentum manifold Jz, or equivalently, Jz/N . In Fig. 5.1(a), we notice

that the ground state belongs to Jz/N = 0 manifold. We further determine that the

ground state wavefunction  G is an eigenstate of PT operator. On the other hand,

we observe from Fig. 5.1(b) that the ground state is degenerate in Jz/N = ±0.5

manifolds. In either scenario, in Fig. 5.1(b), we determine that  G is an eigenstate

of P operator. It is evident that, even in the presence of extremely weak interaction

strengths, the interacting Hamiltonian picks either a P-eigenstate or a PT -eigenstate

to be the ground state. Furthermore, it is clear that the ground state is sensitive to



110

0.5 

0.51

E
/N

+
λ
2 S
O
/
2

(a) g = 0.001; g↑↓/g = 0.5

−0.5 0 0.5
0.5006 

0.50065

−2 −1 −0.5 0 0.5 1 2

0.5 

0.51

Jz/N

E
/N

+
λ
2 S
O
/
2

(b) g = 0.001; g↑↓/g = 1.5

−0.5 0 0.5
0.5007

0.5008

Figure 5.1 : (color online). Energy spectrum for extremely weak interaction strengths
with �SO = 20 and N = 2. Here, each marker (red) represents the lowest energy
eigenvalue of a specific block diagonal with a fixed value of Jz. Since energy eigenvalues
are very close, we identify the ground state energies by circled (black) markers and
further, show the zoomed-in plots in the inset. Image from Ref. [3].

the relative magnitudes of g"# and g [3].

Figs. 5.2(a), 5.3(a): We solve the interacting Hamiltonian H at various interac-

tion strengths and identify corresponding ground state manifolds Jz/N in Figs. 5.2(a)

and 5.3(a). It is evident from the phase diagram that depending on g and g"#, the

ground states belong to different Jz/N manifolds. Furthermore, we determine if the

ground state wavefunction  G is an eigenstate of PT operator, and thereby identify

whether the state belongs to P or PT symmetry phase. In a broader sense, it is

evident that a ground state in PT symmetry phase belongs to Jz/N = 0 manifold,

while ground states in various Jz/N 6= 0 manifolds belong to P symmetry phase. EE

plots in Figs. 5.2(b) and 5.3(b) reveal correlation properties in various phases. For

pedagogical purposes, before we explain the features in EE plots, we first discuss the
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Figure 5.2 : (color online). Plots of (a) ground state Jz/N manifolds and (b) entangle-
ment entropy, as a function of interaction strength g with �SO = 20, N = 2, g"#/g =

0.5. For representative interaction strengths denoted by circled (black) markers, we
illustrate the ground state properties in Fig. 5.4. Image from Ref. [3].
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Figure 5.3 : (color online). Plots of (a) ground state Jz/N manifolds and (b) entangle-
ment entropy, as a function of interaction strength g with �SO = 20, N = 2, g"#/g =

1.5. Image from Ref. [3].

symmetry, topological and correlation properties of ground states [3].

In Fig. 5.4, we illustrate density distributions, eigenvalues of single-particle den-
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Figure 5.4 : (color online). Plots in each row illustrate the ground state properties
at a representative interaction strength of Fig. 5.2(a). In the first column (from left),
we show density distributions of spin-up component n"(⇢) (solid green) and of spin-
down component n#(⇢) (dashed red). In the second column, we show eigenvalues Oi

of single-particle density matrix as a function of angular momentum jz of the single-
particle states |�i(r)i. In the third column, we show corresponding OES plots of
entanglement pseudo-energies ⇠i as a function of JA

z /N , the average angular momen-
tum of subsystem A. In the last column, we show contour plots (a4) and (b4) that
are normalized pair-correlation functions hn"(r0)n#(r)i, with r

0

denoted by a (yellow)
marker. Phase plots (c4) and (d4) are derived from reduced wavefunction  c,#(r),
which is computed by fixing one of the two particles at their most probable locations
and their corresponding radii are indicated by (yellow) markers. The closed dashed
(blue) contour is a guide to the eye, that allows us to count the number of phase slips.
Image from Ref. [3].
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sity matrix, orbital entanglement spectrum, pair-correlation functions and reduced

wavefunctions at representative interaction strengths within various Jz/N manifolds

of Fig. 5.2(a). Using a similar line of reasoning, we may understand the properties

of ground states in Fig. 5.2(b). Let us now proceed to discuss various plots shown in

Fig. 5.4 [3].

Figs. 5.4(a1) ! 5.4(a4): In this top row, we discuss the ground state properties

of the PT eigenstate in Jz/N = 0 manifold at g = 0.001 of Fig. 5.2(a). As shown

in Fig. 5.4(a1), the cylindrically symmetric density distributions n"(⇢) and n#(⇢)

overlap. Being a PT eigenstate, it is evident from Fig. 5.4(a2) that the positive

and negative angular momentum states are equally occupied. Furthermore, the time-

reversal partner states identified by quantum numbers jz = ±0.5 are predominantly

occupied. As expected, from the corresponding OES plot in Fig. 5.4(a3), we observe

that the predominant contribution to the ground state is from the entanglement

pseudo-energy ⇠i at JA
z /N = +0.25. From Figs. 5.4(a2) and 5.4(a3), it is clear that

the the maximally contributing Fock state is �PT =| njz=�0.5 = 1, njz=+0.5 = 1i, which

explains the overlapping density distributions of n"(⇢) and n#(⇢) in Fig. 5.4(a1). In

Fig. 5.4(a4), we plot the (normalized) pair-correlation function hn"(r0)n#(r)i of this

PT eigenstate. This plot illustrates the conditional probability to find a down-spin,

when an up-spin component is assumed to be at a fixed point r
0

, and reveals the

presence of correlated regions (magnitude closer to 1) and anti-correlated regions

(magnitude closer to 0). This plot illustrates the correlations present between up-

spin and down-spin components that are not revealed by the cylindrically symmetric

density distributions [3].

Figs. 5.4(b1) ! 5.4(b4): In this second row, we discuss the ground state prop-

erties of the PT eigenstate in Jz/N = 0 manifold at g = 0.065 of Fig. 5.2(a). As
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discussed with reference to Fig. 5.4(a1), the density distributions n"(⇢) and n#(⇢) over-

lap in Fig. 5.4(b1). It is evident from Fig. 5.4(b2) that the time-reversal partner states

identified by jz = ±0.5 and jz = ±1.5 are almost equally occupied. From the corre-

sponding OES plot in Fig. 5.4(b3), we observe that the ground state is equally occu-

pied by ⇠i at JA
z /N = +0.25 and +0.75. From Figs. 5.4(b2) and 5.4(b3), it is clear that

the the maximally contributing Fock states are �PT =| njz=�0.5 = 1, njz=+0.5 = 1i
and �PT =| njz=�1.5 = 1, njz=+1.5 = 1i. To illustrate the internal structure of this

PT eigenstate and the correlations between up-spin and down-spin components, we

show the pair-correlation function in Fig. 5.4(b4) [3].

Figs. 5.4(c1) ! 5.4(c4): In this third row, we discuss the ground state prop-

erties of the P eigenstate in Jz/N = +2.5 manifold at g = 0.07 of Fig. 5.2(a). While

the corresponding ground state is degenerate in Jz/N = ±2.5 manifolds, we restrict

our discussion to Jz/N = +2.5 manifold without loss of generality. The cylindrically

symmetric density distributions n"(⇢) and n#(⇢) are distinct, as shown in Fig. 5.4(c1).

In this P eigenstate, there is an inherent asymmetry in the occupation of positive and

negative angular momentum states. This is evident from the plot of single-particle

density matrix eigenvalues Oi in Fig. 5.4(c2). This explains the presence of distinct

density distributions in Fig. 5.4(c1). Furthermore, we observe a peak in the occu-

pation of eigenstate identified by jz = +2.5 in Fig. 5.4(c2). From the corresponding

OES plot in Fig. 5.4(c3), we observe that the ground state is predominantly occu-

pied by ⇠i at JA
z /N = 2.5. To illustrate the internal structure of this P eigenstate,

we show the phase plot derived from the reduced wavefunction  c,#(r) in Fig. 5.4(c4).

To better understand this phase plot, we take cues from plots in Figs. 5.4(c2) and

5.4(c3). Though we observe from Fig. 5.4(c3) that the ground state is predominantly

occupied by ⇠i at JA
z /N = 2.5, it may be conceived from Fig. 5.4(c2) that the ground
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state has contributions from various Fock states, for example: �P =| njz=+2.5 = 2i
or �P =| njz=+1.5 = 1, njz=+3.5 = 1i or �P =| njz=+0.5 = 1, njz=+4.5 = 1i. From the

representation of single-particle eigenstates in Eqn. (5.4), it is evident that the net

orbital angular momentum of spin-up component in the ground state is +2 and that

of spin-down component is +3. Correspondingly, the phase plot of the down-spin

component in Fig. 5.4(c4) reveals a vorticity of 3. We note here that the vorticity

is the number of phase slips from +⇡ to �⇡, i.e., when the shadowing changes from

white to black. For convenience, we identify this P eigenstate as P3, where 3 is the

vorticity of the down-spin component [3].

Figs. 5.4(d1) ! 5.4(d4): In this last row, we discuss the ground state prop-

erties of the P eigenstate in Jz/N = +3.5 manifold at g = 0.26 of Fig. 5.2(a).

The corresponding ground state is degenerate in Jz/N = ±3.5 manifolds, while

we restrict our discussion to Jz/N = +3.5 manifold. As expected for a P eigen-

state, the density distributions n"(⇢) and n#(⇢) shown in Fig. 5.4(d1) are distinct.

In addition to the asymmetric occupation of positive and negative angular momen-

tum states in Fig. 5.4(d2), we observe a peak occupation of eigenstate identified by

jz = +3.5. From the corresponding OES plot in Fig. 5.4(d3), we observe that the

ground state is predominantly occupied by ⇠i at JA
z /N = 3.5. However, it may be

conceived from Fig. 5.4(d2) that the ground state has contributions from various

Fock states, for example: �P =| njz=+3.5 = 2i or �P =| njz=+1.5 = 1, njz=+5.5 = 1i
or �P =| njz=+2.5 = 1, njz=+4.5 = 1i. It is clear that with increasing inter-particle

interaction strengths, the particles distribute themselves in higher angular momen-

tum manifolds. Furthermore, it is evident that the net orbital angular momentum

of spin-up component in the ground state is +3 and that of spin-down component is

+4. Correspondingly, the phase plot of down-spin component in Fig. 5.4(d4) reveals
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a vorticity of 4. For convenience, we identify this P eigenstate as P4. We further

note that the phase plots of down-spin components derived for P1 and P2 eigenstates

in Fig. 5.3(a) exhibit a vorticity of 1 and 2 respectively [3].

Figs. 5.2(b), 5.3(b): As noted earlier, OES preserves the whole spectrum of

eigenvalues of the RDM, and hence allows us to extract information about the oc-

cupation of Fock states with different subsystem angular momenta JA
z . With our

understanding of OES plots in Figs. 5.4, we now proceed to explain various features

observed in EE plots of Figs. 5.2(b) and 5.3(b). (i) The presence of distinctly different

slopes suggests the presence of distinct correlation properties in ground states within

various phases. (ii) Within each phase, EE increases monotonously with increas-

ing g. As discussed in Sec. 5.1.5.5, this results from an increasingly homogeneous

distribution of Fock states in the ground state Jz/N manifold, and in-turn an in-

creased correlation. For example, to illustrate this feature within the PT symmetric

phase in Fig. 5.2(b), we may compare OES plots in Fig. 5.4(a3) and 5.4(b3) and

observe an increased homogeneity in distribution of Fock states. (iii) The presence

of nearly degenerate ⇠i values results in a reduction in the slope of EE. While this

feature is observed at larger interaction strengths within the PT symmetric phase of

Fig. 5.2(b), the OES plot in Fig. 5.4(b3) helps us understand this. (iv) Transition to

a P symmetric phase is marked by a sharp reduction in the value of EE⇤. To bet-

ter understand this feature, we compare OES plots in Fig. 5.4(b3) and 5.4(c3) and

observe a sharp reduction in homogeneity of ⇠i values, accompanied by a substantial

⇤In Fig. 5.3(b), P2 ! P3 transition neither exhibits a change in slope nor a noticeable drop in
EE value. From an analysis of OES plots across this transition (not shown), we observe that the
maximally contributing entanglement pseudo-energies ⇠

i

at JA

z

= 1.5 (P2) and JA

z

= 2.5 (P3) are
nearly degenerate, and hence we observe this anomaly. In a broader sense, we conclude that the
ground states with P2 symmetry in Fig. 5.3(b) may merely occupy a small crossover region between
PT and P3 phases.
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drop in the minimum value of ⇠i. In summary, we emphasize that the knowledge of

OES helps us understand various features exhibited by EE plots [3].

In summary, it is evident that the interacting Hamiltonian picks either a P-

eigenstate or a PT -eigenstate to be the ground state. The ground state is sensitive

to the relative magnitudes of g"# and g. Jz/N plots allow us to identify various P
and PT symmetry phases in the interacting system. With the analysis of density

distributions, single-particle density matrix and reduced wavefunctions, we illustrate

ground state symmetry and topological properties. We assert that the bosons con-

dense into an array of P-symmetric topological ground states that have n + 1/2

-quantum angular momentum vortex configuration, with n = 0, 1, 2, 3. With the

analysis of single-particle density matrix, OES and pair-correlation functions, we il-

lustrate the internal structure of different ground states in the PT symmetry phase.

We analyze the correlation properties of the ground states with the help of OES and

EE plots [3].

5.2.2 N = 8

The detailed analysis presented above for the relatively simple, but rich, scenario of

N = 2 particles shall be useful when discussing results at larger particle numbers.

Even with a small increase in particle number from N = 2 to N = 4 (not shown),

we observe the non-occurrence of ground states in P4 phase. As discussed in the

introduction of Sec. 5.2, this can be understood as a manifestation of the competition

between energy contributions from H
0

and H
int

. A higher particle number increases

the probability distribution into single-particle states with smaller angular momenta,

when compared to larger angular momenta eigenstates. We shall now proceed to

consider the few-body system with N = 8 particles, discuss the occurrence of various
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Figure 5.5 : (color online). Plots of (a) ground state Jz/N manifolds and (b) entangle-
ment entropy, as a function of interaction strength g with �SO = 20, N = 8, g"#/g =

0.5. For representative interaction strengths denoted by circled (black) markers, we
illustrate the ground state properties in Fig. 5.7. Image from Ref. [3].
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we illustrate the ground state properties in Fig. 5.7. Image from Ref. [3].
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Figure 5.7 : (color online). Plots in each row illustrate the ground state properties
at a representative interaction strength in Fig. 5.5(a) or 5.6(a). In the first column
(from left), we show density distributions of spin-up component n"(⇢) (solid green)
and of spin-down component n#(⇢) (dashed red). In the second column, we show
eigenvalues Oi of single-particle density matrix as a function of angular momentum jz
of the single-particle states |�i(r)i. In the third column, we show corresponding OES
plots of entanglement pseudo-energies ⇠i as a function of JA

z /N , the average angular
momentum of subsystem A. In the last column, we show contour plots (a4), (c4),
and (d4) that are normalized pair-correlation functions hn"(r0)n#(r)i, with r

0

denoted
by a (yellow) marker. Phase plot (b4) is derived from reduced wavefunction  c,#(r),
which is computed by fixing 7 of the 8 particles at their most probable locations and
their corresponding radii are indicated by (yellow) markers. Closed dashed (blue)
contour is a guide to the eye, that allows us to count the number of phase slips.
Image from Ref. [3].
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phases, and analyze the ground state properties at representative interaction strengths

using various techniques outlined in Sec. 5.1.5 [3].

Figs. 5.5(a), 5.6(a): We solve the interacting Hamiltonian H at various interac-

tion strengths and identify corresponding ground state manifolds Jz/N in Figs. 5.5(a)

and 5.6(a). As discussed with reference to Figs. 5.2(a) and 5.3(a), it is evident that

depending on g and g"#, the ground states belong to different Jz/N manifolds, and in-

turn to PT or P symmetry phases. In this relatively larger particle number scenario,

we observe that the ground states fall into two distinct regimes: (a) at weak inter-

action strengths (mean-field-like regime), we observe ground states with topological

and symmetry properties that are consistent with mean-field theory computations [1];

(b) at intermediate to strong interaction strengths (strongly correlated regime), we re-

port the emergence of strong correlations in ground states. The strongly correlated

ground states are eigenstates of PT operator, and we additionally identify them with

the label ‘SC’. In Fig. 5.7, we illustrate the ground state properties at representative

interaction strengths in these two regimes [3].

Mean-field-like regime:- Figs. 5.7(a1) ! 5.7(a4), 5.7(b1) ! 5.7(b4): In

the top row, we illustrate the ground state properties of the PT eigenstate in Jz/N =

0 manifold at g = 0.001 of Fig. 5.5(a). It is evident that the properties in Figs. 5.7(a1)

! 5.7(a4) are qualitatively identical to their counterparts in Figs. 5.4(a1) ! 5.4(a4).

In the second row, we discuss the ground state properties of the P eigenstate in

Jz/N = +1.5 manifold at g = 0.013 of Fig. 5.5(a). The corresponding ground state is

degenerate in Jz/N = ±1.5 manifolds, while we restrict our discussion to Jz/N = +1.5

manifold. As expected for a P eigenstate, the density distributions n"(⇢) and n#(⇢)

shown in Fig. 5.7(b1) are distinct. It is evident from the single-particle density matrix

eigenvalues in Fig. 5.7(b2) that there is a peak in the occupation of eigenstate identified
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by jz = +1.5. From the corresponding OES plot in Fig. 5.7(b3), we observe that the

ground state is predominantly occupied by ⇠i at JA
z /N = 1.5. To illustrate the

internal structure of this P eigenstate, we show the phase plot derived from the

reduced wavefunction  c,#(r) in Fig. 5.7(b4). It is evident from the representation in

Eqn. (5.4) that the orbital angular momentum of spin-up component in the ground

state is +1 and that of spin-down component is +2. Correspondingly, the phase plot

of the down-spin component shown in Fig. 5.7(b4) exhibits a vorticity of 2, and hence

we identify this P eigenstate as P2 [3].

Strongly correlated regime:- Figs. 5.7(c1) ! 5.7(c4), 5.7(d1) ! 5.7(d4):

In the third and fourth rows, we illustrate the ground state properties of the PT
eigenstates in the strongly correlated regime at g = 0.021 of Fig. 5.5(a) and g = 0.027

of Fig. 5.6(a) respectively. At intermediate to strong interaction strengths, as shown

in Figs. 5.5(a) and Fig. 5.6(a), all the ground states in this regime are eigenstates of

PT operator in Jz/N = 0 manifold. As expected, the density distributions n"(⇢) and

n#(⇢) overlap in Figs. 5.7(c1) and 5.7(d1). We observe that the density distributions

become increasingly flat with increasing magnitude of interaction strengths, g and

g"#. The interaction-induced correlations present in the ground states are revealed

by the eigenvalues of single-particle density matrix and OES plots. From the plots

in Figs. 5.7(c2) and 5.7(d2), it is evident that the particles are nearly uniformly

distributed across many single-particle eigenstates, with an equal distribution among

time-reversal partner states. This distribution is qualitatively in the opposite limit to

the corresponding plots in the mean-field-like regime illustrated in Figs. 5.7(a2) and

5.7(b2). This feature is further substantiated in the OES plots of Figs. 5.7(c3) and

5.7(d3), where a large number of entanglement pseudo-energies ⇠i are degenerate or

nearly degenerate. As discussed in Sec. 5.1.5.5, the presence of a large degeneracy
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in entanglement pseudo-energies is a clear manifestation of the strongly correlated

nature of the ground states. We further observe that with increasing interaction

strengths, the minima of the entanglement pseudo-energies ⇠i shifts to larger JA
z /N

values. To illustrate the internal structure and the correlations between up-spin and

down-spin components of these PT eigenstates, we show the pair-correlation functions

in Figs. 5.7(c4) and 5.7(d4) [3].

With our understanding of OES plots in Figs. 5.7, we may now explain various

features observed in EE plots that help us understand the correlation properties of

the ground states in the mean-field-like and strongly correlated regimes. As discussed

with reference to Figs. 5.2(b) and 5.3(b), we observe qualitatively similar features in

N = 8 particle case as well. The presence of distinctly different slopes in Figs. 5.5(b)

and 5.6(b) suggests the presence of distinct correlation properties in different ground

states within various phases. Within each phase, EE increases monotonously with

increasing g due to the presence of increased correlations in the ground state. For

example, to illustrate this feature within the PT (SC) phase, we may compare OES

plots in Figs. 5.7(c3) and 5.7(d3) and observe an increased homogeneity in Fock states.

As a side note, we observe a small region of P-symmetric states before the transition

to strongly correlated regime. These states do not possess distinct topological or

correlation properties. Without loss of generality, we assert that these ground states

merely occupy a crossover region prior to the transition to strongly correlated regime

[3].

In summary, we emphasize that the ground states in the weakly interacting regime

illustrated in the top two rows of Fig. 5.7 are mean-field-like states. Their density

distributions, pair-correlation functions and reduced wavefunctions may be readily

related to the results from mean-field theory computations discussed in our earlier
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publication [1]. Within the ED scheme, we even reproduce the reversal of phase sym-

metry between P and PT eigenstates that is observed with an increasing value of

g, but with a fixed value of g"#/g in our earlier mean-field study [1]. Such a corre-

spondence between ED results and mean-field theory results is anticipated only when

the ground state is predominantly occupied by one single-particle eigenstate (and/or

its time-reversal partner), as revealed in Figs. 5.7(a2) and 5.7(b2). As illustrated

in the bottom two rows of Fig. 5.7, the presence of a large degeneracy in entan-

glement pseudo-energies and the distribution of particles across many single-particle

eigenstates, are clear manifestations of the strongly correlated nature of the ground

states. Furthermore, we observe from Figs. 5.7, that the transition from mean-field-

like regime to a strongly correlated regime is attained with only small variations in

the magnitudes of inter-particle interaction strengths. We emphasize here that the

pivotal reason behind this feature is the presence of nearly flat single-particle energy

spectrum at large SO coupling strengths [3].

5.3 Conclusions

We systematically study an interacting few-body system of two-component Bose gases

with 2D isotropic Rashba SO coupling in a 2D isotropic harmonic trap. We show

that the model Hamiltonian is gauge-equivalent to particles subject to a T -symmetry

preserving pure non-abelian vector potential, whose magnitude proportionally deter-

mines the strength of Rashba SO coupling. It is experimentally feasible to device

a scheme in which tunable parameters, such as laser fields, can be used to control

the magnitude of non-abelian vector potential, and hence simulate large SO coupling

strengths. In this limit of large SO coupling strengths, we show that the single-

particle energy spectrum is nearly flat. In the recent past, several research groups
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have made proposals to engineer quantum systems in which interactions would play a

dominant role and the ground states would in-turn be strongly correlated. For exam-

ple, recent proposals suggest schemes that would engineer nearly flat Chern bands to

study strongly correlated fractional quantum Hall states in the lattice limit [144–147].

Though we study few-body Bose gases in traps, we emphasize that the intention with

which we have identified the existence of nearly flat energy spectra at large SO cou-

pling strengths is not too dissimilar from the afore-mentioned line of thought [3].

In our model system with nearly flat energy spectra, we observe that the presence

of inter-particle interactions allows for the emergence of ground states with distinct

topological, symmetry and correlation properties. We solve the interacting Hamilto-

nian in different particle number scenarios and analyze the ground state properties

with the help of energy spectrum, single-particle density matrix, pair-correlation func-

tions, reduced wavefunctions, and entanglement measures. At small particle numbers,

we show the phase diagram in Figs. 5.2 and 5.3, with ground states being eigenstates

of either P or PT operator. In Fig. 5.4, we illustrate the ground state properties

at representative interaction strengths in various phases. We further assert that the

bosons condense to an array of topological P eigenstates with n + 1/2 quantum an-

gular momentum vortex configuration, with n = 0, 1, 2, 3,. At large particle numbers,

we illustrate the phase diagram in Figs. 5.5 and 5.6. We observe the presence of two

distinct regimes: (a) at weak interaction strengths (mean-field-like regime), we obtain

ground states with topological and symmetry properties that are also obtained via

mean-field theory computations. We justify this correspondence and illustrate the

ground state properties in detail in Fig. 5.7. (b) at intermediate to strong interaction

strengths (strongly correlated regime), we report the emergence of strongly corre-

lated ground states. The properties illustrated in Fig. 5.7 demonstrate the correlated
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nature of the ground states [3].
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Chapter 6

Summary

In summary, we have discussed artificially induced SO coupling in ultracold dilute

atomic gases. Combined with an unprecedented controllability of interactions and

geometry in ultracold atoms, this manipulation of SO coupling has opened an entirely

new paradigm for studying strong correlations of quantum many-body systems under

Abelian and non-Abelian gauge fields. In this thesis, we theoretically investigated

the ground state and collective excitations of a two-component Bose gas in a two-

dimensional harmonic trap, subject to Rashba SO coupling. Our work represents

an important extension into the regime of non-Abelian gauge field in which the spin

degrees of freedom play an essential role.

In Chapter 1, we presented an introduction to quantum gases and a broad mo-

tivation to do research in ultracold dilute atomic Bose and Fermi gases. In Chapter

2, we introduced the system under study and discussed the single-particle physics in

the presence of Rashba SO coupling in a homogeneous system and in the presence

of a harmonic trapping potential. We illustrated that the nature of solutions is fun-

damentally different in the two limits of small and large SO coupling strengths. In

Chapter 3, we presented a detailed discussion of ground state phases in the presence

of inter-atomic interactions, at parameters that correspond to weak correlations with

large number of bosons. We analyzed the weakly correlated interaction regime at

small and large SO coupling strengths with the mean-field theoretical approach.

In Chapter 4, we systematically derived the mean-field phase diagram as a function
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of SO coupling and interatomic interaction strengths. We did this by solving the

Bogoliubov equations and computing the collective excitation spectrum, since they

constitute one of the main sources of information for understanding the physics of

many-body systems. We also investigated the dynamical properties of the mean-field

ground state and understood instabilities against both trap anisotropy and anisotropy

in the SO coupling term.

In Chapter 5, we presented the ground state phase diagram in the regime of

strong interatomic interaction strengths and large SO coupling strengths using Exact

Diagonalization scheme. We identified that the energy spectra is nearly flat at large

SO coupling strengths. In such a scenario, the presence of inter-particle interactions

allows for the emergence of ground states with distinct topological, symmetry and

correlation properties. We analyzed the ground state properties using various tech-

niques namely – energy spectrum, density distribution, single-particle density matrix,

pair-correlation function, reduced wavefunction, entanglement spectrum, and entan-

glement entropy. Each technique was shown to offer its unique perspective to the

overall understanding of the ground state properties. At small particle numbers, we

illustrated the topological and symmetry properties of ground states. In the relatively

large particle number scenario, we observed that the ground states fell into two dis-

tinct regimes: (a) at weak interaction strengths (mean-field-like regime), we observed

ground states with topological and symmetry properties that are also obtained via

mean-field theory computations; (b) at intermediate to strong interaction strengths

(strongly correlated regime), we reported the emergence of strongly correlated ground

states.

Looking ahead, it would be interesting to inquire if the strongly correlated ground

states that emerge in the nearly flat energy spectra would eventually allow for the
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manifestation of bosonic analogues of topological insulators predicted to occur in

traditional condensed matter systems. We emphasize that in our system of trapped

bosons, quantum statistics makes it impossible to fill up the lowest generalized Landau

level. This results in the absence of ‘sharp boundaries’, which in-turn obviates the

occurrence of states with topological order [3]. However, this fundamental roadblock

may be circumvented when we consider a system of SO coupled bosons or fermions

in specially engineered optical lattices [148]⇤. Furthermore, several challenges remain

in the experimental realization of various SO coupling schemes in ultracold quantum

gases.

Taking cues from history, we can be optimistic that the theoretical and experi-

mental challenges will be overcome as we march ahead. In scientific pursuits, as in

several major endeavors, collaborations will remain the key to success!

⇤In Ref. [148], the authors propose to realize topological phases emerging from single-particle
Hamiltonian in optical lattices.
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Appendix A

Mixture of Bose and Fermi superfluids⇤

Ultracold atom experiments offer the unique opportunity to study mixing of different

types of superfluid states. Our interest is in superfluid mixtures comprising particles

with different statistics – Bose and Fermi. Such scenarios occur naturally, for exam-

ple, in dense QCD matter. Interestingly, cold atomic experiments are performed in

traps with finite spatial extent, thus critically destabilizing the occurrence of various

homogeneous phases. Critical to this analysis is the understanding that the trapped

system can undergo phase separation, resulting in a unique situation where phase

transition in either species (bosons or fermions) can overlap with the phase separation

between possible phases. Here, we illustrate how this intriguing interplay manifests

in an interacting 2-species atomic mixture – one bosonic and another fermionic with

two spin components – within a realistic trap configuration. We further show that

such interplay of transitions can render the nature of the ground state to be highly

sensitive to the experimental parameters and the dimensionality of the system.

A.1 Introduction

Ultracold trapped-atom experiments offer the unique possibility to understand many-

body physics beyond what can be explored in typical condensed matter settings [27].

Essentially, they provide clean many-body systems in which attributes like den-

⇤Appendix A taken largely from our publication in Ref. [4].
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sity, dimensionality and interactions, may be controlled with commendable preci-

sion [5,16,17,149–152]. As a result, from a theoretical perspective, there are broadly

two kinds of challenges: (1) investigate configurations appropriate for emulating

many-body theory models, thereby allowing for a systematic verification of claims

made in the condensed matter context, and (2) investigate new configurations ex-

tremely difficult to realize in material settings. While the former program has proved

quite successful with demonstrations of, for example, Mott insulator to superfluid

transition with ultracold 87Rb atoms in an optical lattice [67], the latter is just begin-

ning to attract attention with several new experiments comprising degenerate mix-

tures of bosons and fermions, of same or different species being set up [153–156]. A

potentially rich scenario in this context is provided by an atomic mixture compris-

ing superfluids of two kinds- bosonic and fermionic. Studying this system may also

have strong implications for, say nuclear physics, as a recent proposal investigates

the intriguing possibility of simulating dense QCD matter with superfluid atomic

mixtures [157]. Further, considering that in condensed matter setting, the analogous

3He - 4He superfluid mixture is difficult to realize⇤, achieving Bose-Fermi superfluid

mixtures with ultracold atoms maybe an important step towards understanding cor-

responding occurrences in a broader context.

In analyzing experiments with ultracold Bose-Fermi mixtures, it is important to

understand the effects of inhomogeneity due to traps. These effects are at the heart

of determining the stability of possible thermodynamic phases in a given experiment.

To this end, we construct the finite-temperature phase diagram of an interacting 3-

dimensional (3D) mixture comprising of two fermions (spin " & #) of one species and

⇤Experimental realization has not been possible due to extremely low superfluid transition tem-
perature of 3He.
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a bosons of another. To draw such a phase diagram, it is important to understand

the interplay between the following two phenomena: (1) phase transition that occurs

near a critical temperature where suddenly an order parameter corresponding to one

of the species nucleates. In fact, the critical temperature of such a transition may

itself depend intricately on the state of the second species. Moreover, the already

nucleated phase may subsequently be drastically affected in a certain region of trap

due to the nucleation of a new phase, corresponding to the second species, as the

system is further cooled and crosses below a lower critical temperature. (2) phase

separation between possible phases, a phenomenon unique to trapped configurations.

It also implies that the trap potential can simultaneously accommodate one or more

of the phases as determined by the experimental parameters. Thus, remarkably what

phase/phases will be observed will critically depend on the trap geometry. This,

in fact is a very important observation implying the possibility of tuning the trap

parameters such that a desired density profile is observed only if a certain phase has

nucleated. On top of all this, the dimensionality of the trapped system, whether we

consider a 3D or a 1D trap, will also largely determine what phase is energetically

favorable for phase separation.

While various possibilities discussed above exist and some insight may be borrowed

from previous studies on pure Bose and Fermi superfluids, the intrinsically new nature

of Bose-Fermi superfluid mixtures strongly motivates us to derive a framework within

which an elaborate finite temperature phase diagram can be generated. Also, such

finite temperature studies comprising interacting fermions have never been performed

in the past. The chapter is organized as follows. In Sec. A.2, we first review the theory

for analyzing the thermodynamic instabilities of the Bose-Fermi mixture. While the

technique is quite standard and maybe found elsewhere, to our knowledge this is
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the first instance where it has been applied for deriving the finite temperature phase

diagram of the inhomogeneous mixture comprising of bosons and fermions, both in

the superfluid phase. As discussed in the previous paragraphs, the trap introduces

multiple scenarios that are new to these systems making the analysis complicated.

Therefore as a warmup, in Sec. A.3.1 we illustrate our method by first considering the

simplest case of the T = 0 superfluid mixture in 3D. The finite temperature phase

diagram for the 3D Bose Fermi mixture will be derived in Sec. A.3.2. Finally, in

Sec. A.4, we will discuss the implication of the phase diagram for a trapped Bose-

Fermi mixture by introducing a spatially varying chemical potential in the spirit of a

Local Density Approximation (LDA), followed by brief discussion of the dependance

on dimensionality in Sec. A.5.

A.2 Theory

We begin by writing the Hamiltonian for the interacting Bose-Fermi mixture in the

form

ˆH =

ˆHb � µb
ˆNb

| {z }

ˆHb

+

ˆHf � µf
ˆNf + Ubf

ˆNb
ˆNf

| {z }

ˆHbf

, (A.1)

where the subscript b (f) stands for bosons (fermions), µ’s represent corresponding

chemical potentials, ˆN ’s the corresponding number operators and Ubf denotes the

interaction energy between bosons and fermions. Our interest is in studying this

interacting Bose-Fermi mixture in the vicinity of the superfluid critical temperature

Tc of the fermions. Of course, it is true that the Tc itself will be modified due to the

presence of Bose component. Further, the phase of fermions may modify the critical

temperature for the condensation of the Bose component, TBEC . Thus, while the

general problem is indeed complicated, we focus our attention on the situation when
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TBEC is much greater than Tc, typically the case in most trapped experiments⇤. This

allows us to work in the Thomas-Fermi limit of the Bose component by neglecting

its kinetic energy. We represent the contact interaction strength between a pair of

bosons as �b = Ub V = 4⇡~2ab/m, where Ub is the interaction energy of bosons, V is

the volume, ab is the s-wave boson-boson scattering length, assumed to be positive

implying repulsive interactions, and m is the mass of bosonic atom. For large boson

number Nb, total pairs of bosons is approximately N2

b /2 and hence, ˆHb is simply a

constant given by UbN2

b /2. Thus, the contribution to the free energy density arising

from just the bosonic component is

fb = h ˆHbi = �b
n2

b

2

� µb nb, (A.2)

where nb = Nb/V is the boson density.

Now, we focus on the ˆHbf part of the Hamiltonian and write it explicitly in second

quantized form as

ˆHbf =

X

k,�

("k�µf ) c
†
k,�ck,�+�f

X

k,k0,q

c†k+q," c
†
�k,#c�k0+q,# ck0,"+�bf nb

X

k,�

c†k,�ck,�. (A.3)

Here "k = ~2k2/2m and c†k,�(ck,�) is the creation (annihilation) operator for a fermion

with momentum k and spin �. Further, the boson-fermion interaction, which is

typically short range, is described by a �-potential contact interaction with strength

given by �bf = 2⇡~2abf/µm, where abf is the corresponding s-wave scattering length

and µm is the reduced mass of the boson-fermion system. Here we will confine our

analysis to the repulsive regime with abf > 0. Similarly, we describe the fermion-

⇤An interesting proposal to make T
c

> T
BEC

is considered by Onofrio et al. in Ref. [158].
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fermion interaction by the contact interaction strength �f = 4⇡~2af/m, where af is

the corresponding s-wave scattering length. Here, since the interaction is s-wave, only

unequal-spin fermions interact. Also, we are interested in the superfluid regime, which

occurs for attractive interactions, thus we assume af < 0. Now, in the superfluid

state with Bardeen-Cooper-Schrieffer (BCS)-type pairing (for instance, see Refs. [9,

159,160]), the center-of-mass momentum, q, of the Cooper pair is set to zero allowing

ˆHbf to be simply

ˆHbf =

X

k,�

⇠k c
†
k,�ck,� � |�f |

X

k,k0

c†k," c
†
�k,#c�k0,# ck0,", (A.4)

with ⇠k = "k�µf +�bfnb. One can immediately notice that this is just the usual BCS

Hamiltonian with a modified chemical potential, hence can be diagonalized with the

usual Bogoliubov transformation⇤. Firstly, defining the mean-field order parameter

� = |�f |
P

k0hc�k0,# ck0,"i and its complex conjugate �⇤, we write ˆHbf as

ˆHbf
M.F
=

X

k

⇠k
�

c†k,"ck," + c†k,#ck,#
�

+

|�|2
|�f | � �

�

⇤ X

k0

c�k0,# ck0," +�
X

k

c†k," c
†
�k,#

�

.(A.5)

Re-writing the above in terms of the Nambu spinor  †
k = (c†k," , c�k,#) and its hermitian

conjugate  k, we have

ˆHbf =

X

k

 

†
k

0

B

@

⇠k ��
��⇤ �⇠k

1

C

A

 k +

X

k

⇠k +
|�|2
|�f | . (A.6)

⇤For diagonalizing the mean-field Hamiltonian, we closely follow the arguments presented by
Altland et al. in Ref. [161].
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Now the Bogoliubov transformation immediately gives

ˆHbf =

X

k

⇣

↵†
k," ,↵�k,#

⌘

0

B

@

E+

k 0

0 E�
k

1

C

A

0

B

@

↵k,"

↵†
�k,#

1

C

A

+

X

k

⇠k +
�

2

|�f | , (A.7)

where the eigenenergies are E±
k = ±p

⇠2k +�
2 and � is assumed real⇤. The oper-

ator ↵†
k," (↵k,") creates (annihilates) Bogoliubov quasiparticles that are distributed

according to the Fermi-Dirac distribution fk = 1/(1 + e�Ek
) with � = 1/kB T . Thus

the relevant thermodynamic potential is given by

h ˆHbfi � TS =

X

k

(⇠k � Ek) +
�

2

|�f | �
2

�

X

k

ln (1 + e��Ek
) (A.8)

where S is the entropy. The derivations and mean-field analysis presented henceforth

is quantitatively exact only when the interactions are weak. Our analysis is only

qualitatively correct in the strong interaction limit, where a strong-coupling theory

presented along the lines of Ref. [162] would be quantitatively more accurate.

A.2.1 Free energy, equilibrium and dynamical stability conditions

Free energy density of the interacting mixture comprising of bosons and fermions,

both in the superfluid state, can now be written from Eqns. (A.2) and (A.8):

f =

�bn2

b

2

� µb nb +

X

k

(⇠k � Ek) +
�

2

|�f | �
2

�

X

k

ln (1 + e��Ek
).

⇤Even if � is not real and � = |�|ei�, it can always be made real by the global gauge transfor-
mation [161].
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As one can immediately notice, f depends on numerous parameters: interaction

strengths �{b,f,bf} (in-turn, the scattering lengths a{b,f,bf}), particle densities n{b,f},

chemical potentials µ{b,f}, BCS superfluid order parameter � and temperature T . It

is quite evident that the phase space of this interacting mixture is huge and thus

an exhaustive study is impossible. However, noticing the fact that not all of these

parameters are independent, we adopt the following scheme that was first introduced

by Bhongale et al. in Ref. [163], allowing us to investigate the experimentally rele-

vant region of the phase space: (1) fix parameters �b, �bf and µf and perform our

analysis at fixed values of T ⇤; (2) we project the multi-dimensional phase diagram in

the {nb,�} phase space; (3) the remaining dependent parameters µb, nf and �f are

determined by the equilibrium stability conditions to be derived below.

(1) First derivative conditions: First of these is the Gap equation obtained as the ex-

tremum of f with respect to � and provides the self-consistent value of the interaction

strength parameter �f :

@f

@�
= 0 =) 1

|�f | =
X

k

1

2Ek

tanh
��Ek

2

�

.

However, in three dimensions, the momentum sum in the above expression diverges,

an artifact of the contact interaction approximation. This unphysical effect is eas-

ily eliminated by an appropriate regularizing prescription. One of the easiest and

⇤This choice is especially useful if we consider the bosons to be in a tight trap enclosed by the
fermions in a larger trap.
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convenient methods is to subtract the diverging piece:

1

|�f | =
m

4⇡~2|af | =
X

k

1

2Ek

tanh
��Ek

2

�� 1

2 "k
. (A.9)

Correspondingly, we upgrade the free energy f to the regularized f
reg

such that the ex-

tremum condition automatically reproduces the regularized version of the Gap equa-

tion⇤

f
reg

(nb,�) = �b
n2

b

2

� µb nb +

X

k

(⇠k � Ek +
�

2

2 "k
)

+

�

2

|�f | �
2

�

X

k

ln (1 + e��Ek
) . (A.10)

The above step is essential for our case since we will be eventually interested not only

in the stability of the Fermi system but that of the combined Bose-Fermi system. The

presence of bosons affects the self-consistent value of �f , through the combination

�bf nb. Next we consider the variation with respect to the fermion chemical potential

µf . This produces the familiar equation determining the fermion number density nf :

@(f
reg

+ µf nf )

@µf

= 0 =) nf =

X

k

1� ⇠k
Ek

tanh
��Ek

2

�

. (A.11)

Finally, the last of dependent parameters, the boson chemical potential µb is deter-

mined by minimizing f
reg

with respect to the boson density. This leads to the modified

Thomas-Fermi equation given by

@f
reg

/@nb = 0 =) µb = �bnb + �bfnf . (A.12)

⇤In 3D, the term
P

k

(⇠
k

�E
k

) itself diverges and hence it is useful to add the term
P

k

�2/2 "
k

.
At equilibrium, the absolute value of free energy f remains unchanged due to regularization, since
we have simply included terms +

P

k

�2/2 "
k

in
P

k

(⇠
k

� E
k

) and �P

k

�2/2 "
k

in �2/|�
f

|.



139

(2) Second derivative conditions: The second derivatives at the extremum points

derived above provide the dynamical stability criterion for the mixture via positive

definiteness of the Hessian matrix M. The relevant Hessian matrix elements are:

M
11

=

@2f
reg

@n2

b

= �b � �2bf
X

k

�

2

E3

k

tanh(
�Ek

2

)� �

2

⇠2k
E2

k

sech(
�Ek

2

)

2

;

M
22

=

@2f
reg

@�2

=

X

k

�

2

E3

k

tanh(
�Ek

2

)� �

2

�

2

E2

k

sech(
�Ek

2

)

2

; (A.13)

M
12

= M
21

=

@2f
reg

@� @nb

= �bf
X

k

� ⇠k
E3

k

tanh(
�Ek

2

)� �

2

� ⇠k
E2

k

sech(
�Ek

2

)

2.

A.3 Finite temperature phase diagram

For illustrative purposes, we start with a brief discussion of the zero-temperature

phase diagram. Throughout, we follow the scheme outlined in Sec. A.2.1 to construct

all the phase diagrams.

A.3.1 Zero-temperature limit

This is simply derived by taking the T = 0 limit of Eqns. (A.9)-(A.13). In the phase

diagram shown in Fig. A.1(a), the solid (green) curve represents the boundary of

the dynamically stable region above it, separating the unstable region below. How-

ever, it is important to note that, in the phase diagram the interaction parameter

�f is determined self-consistently from the Gap equation. Thus in any single exper-

imental realization, only a small portion, corresponding to a fixed �f , of the above

phase space is accessible. In our analysis, we choose a value of �f (corresponding to
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Figure A.1 : (Color online) (a)-(left): Phase diagram of the Bose-Fermi superfluid
mixture at T = 0

⇤. Solid (green) curve is the dynamical stability contour while the
dashed (blue) contour C denotes points in phase space with a fixed value of �f such
that Tc = 0.11Tf . The filled (red) circle represents the critical point, for this specific
experimental realization, at which the homogeneous mixture enters the dynamically
and mechanically stable region. (b)-(right): Plot of the free energy densities of pure
fermions (solid) and the homogeneous mixture (dashed) against µb[C]. Free energy
of homogeneous mixture is lower than that of pure fermions only beyond the critical
point represented by the filled (red) circle. Here, free energy density is a dimensionless
quantity†. Image from Ref. [4].

1/kf af = �1.10) such that pure fermions are in the BCS superfluid regime. This

corresponds to a BCS superfluid critical temperature of Tc = 0.11Tf , with Tf being

the Fermi temperature‡. It is however important to note that Tc,mix

, the BCS transi-

tion temperature of fermions in the presence of bosons, is modified by the presence of

†Free energy density is made dimensionless by scaling with respect to the energy density of a
3D non-interacting gas occupying a volume of 1/k3

f

with fermi-momentum k
f

= 1/3200 a0 and
m = 6 amu. Corresponding vales in the 1D limit are computed using the results of Olshanii in
Ref. [164].

‡For the given range of �
f

, mean-field treatment overestimates T
c

by about a factor of 2 as shown
in Refs. [165] and [166]. However, Shin et al. in Ref. [167] report achieving temperatures in the range
T < 0.05T

f

. For the given value of 1/k
f

a = �1.1, the actual critical temperature, T
c

, is definitely
greater than 0.05T

f

and hence represents a scenario already realized in current experiments.
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the factor �bf nb in the effective fermion chemical potential. Further, the dependence

is such that Tc,mix

 Tc and the equality is satisfied when �bfnb ! 0.

Points in the phase space that correspond to this fixed value of �f is shown by

the dashed (blue) contour C in Fig. A.1(a). The crossing of this contour with the dy-

namical stability contour indicates the phase space point at which the homogeneous

mixture enters the dynamically stable region. However, for the homogeneous mixture

to be the stable ground state, mechanical stability condition should also be satisfied

on top of the dynamical stability condition. This additional criterion is exclusively

present due to the spatial inhomogeneity intrinsic in trapped-atom setups. By me-

chanical stability, we mean that the free energy of the homogeneous mixture should

be less than the free energy of the pure bosonic phase or the pure fermionic phase

along the contour C. The value of the latter is a constant, since �f is fixed along C.

Free energy of pure bosons along C is given by

fb[C] = �µ2

b [C]

2�b
(A.14)

where, µb[C] is the boson chemical potential along C.

The plot of Fig. A.1(b) shows the comparison of free energies mentioned above.

The free energy of the pure fermionic phase and that of the homogeneous Bose-Fermi

mixture along C are represented by the solid and the dashed lines respectively. The

free energy of pure bosons is much higher than the others and hence bosons do not

phase separate out of the mixture. Actually this observation is a general property of

the phase space of a 3D Bose-Fermi mixture. The filled circle (red) represents the

critical point along contour C, at which the free energy of the homogeneous mixture

is lower than that of pure fermions, i.e., the critical point at which the homogeneous
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mixture enters a region of both dynamical and mechanical stability. This implies

that, for the specific experimental realization considered here, up until this critical

point pure fermions phase separate out of the mixture, while above the critical point

the Bose-Fermi superfluid exists as a stable mixed phase.

A.3.2 Finite-temperature scenario

We begin the discussion of the finite temperature case by first emphasizing some of

the generic aspects of such a phase diagram as depicted in the schematic of Fig. A.2.

A.3.2.1 Generic features

2S

1S 1U

2U

BECT

c,mixT

experimental parameters

T

Figure A.2 : (Color online) Schematic depicting possible first-order transitions occur-
ring in Bose-Fermi mixtures across Tc,mix

. Horizontal axis denotes the R5 phase space
of experimental parameters defined by {�b,�bf , µf , nb,�}. Image from Ref. [4].

Similar to the above illustration of the zero-temperature limit, we analyze the

stability of the superfluid Bose-Fermi mixture in the vicinity of BCS critical temper-

ature for a wide range of temperature and other parameter values. As mentioned

earlier in Sec. A.2.1, the phase space is huge (5-dimensional) allowing for complicated
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boundaries between stable (Si) and unstable (Ui) regions of the homogeneous mix-

ture. Before proceeding to the detailed quantitative finite temperature phase diagram

in Fig. A.3, we therefore summarize our findings by pointing out the broad features,

as depicted in Fig. A.2. In a certain projected subspace, the homogeneous Bose-Fermi

mixture becomes dynamically and/or mechanically unstable towards phase separation

through a first-order transition S
1

! U
2

, when cooled across Tc,mix

. The tunability of

experimental parameters further allows us to access the U
2

! S
2

transition at some

fixed temperature below Tc,mix

. We also observe the existence of a parameter regime

where the homogeneous mixture remains unstable across Tc,mix

going from U
1

! U
2

.

If fermions phase separate out of the unstable regions, then along the phase space

boundary between U
1

and U
2

, and that between U
2

and S
1

, Tc,mix

is essentially Tc.

Thus, in short, the Bose-Fermi mixture exhibits rich mixing-demixing physics in the

vicinity of the BCS critical temperature. Particularly interesting is the parameter

regime exhibiting the first-order transitions S
1

! U
2

! S
2

, which shows how the

already condensed bosons affect the nucleation of fermions when cooled across the

critical temperature, thereby clearly indicating direct implication for the observation

of Fermi superfluidity in trapped mixtures. We therefore address this part of the

phase space in more detail.

A.3.2.2 Quantitative features

For temperatures T > Tc,mix

before the onset of BCS superfluidity, � = 0 and hence

we are confined to the nb axis. Correspondingly, the free energy and the stability

conditions of the homogeneous Bose-Fermi mixture are given by simply substituting

� = 0 in Eqns. (A.9)-(A.13). For the parameter space under investigation, we find

that the homogeneous mixture is always the stable ground state in this temperature
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Figure A.3 : (Color online) Phase diagram of the Bose-Fermi superfluid mixture at
temperatures Tc > T . Solid (green) curves show dynamical stability criteria and the
(blue) surface represents points of fixed �f , such that Tc = 0.11 Tf . Dashed (blue)
curves Ci are contours of fixed temperature Ti along this surface and (red) circles
indicate critical points at which the homogeneous mixture enters the region of both
dynamical and mechanical stability. Image from Ref. [4].

regime. On the other hand, at temperatures T < Tc,mix

, the onset of BCS superfluidity

in fermions is characterized by a non-zero value of �. In Fig. A.3, we plot the

phase diagram for a wide range of temperatures below Tc to observe that the mixture

is dynamically stable only above the solid (green) curves at a given temperature.

Thus the presence of an all-stable homogeneous phase above Tc,mix

and a mixture

of unstable/stable phases below Tc,mix

, as seen in Fig. A.3, depicts the unambiguous

manifestation of S
1

! U
2

! S
2

transitions.

Now we can immediately recognize the significance of this phase diagram for a

realistic experimental situation. Again, just like the T = 0 case, only a small part

of the stable phase space, corresponding to a fixed value of �f , is accessible in a
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particular experimental realization. This we indicate by the two-dimensional surface

shown in Fig. A.3, for our chosen value of �f such that the fermions are in the BCS

superfluid regime. The dashed lines Ci’s are contours connecting phase space points

on this surface with fixed temperatures Ti’s. The crossing of contours Ci’s with

dynamical stability contours indicates the phase space points at which the mixture

enters the dynamically stable region. The filled circles represent critical points at

which the homogeneous Bose-Fermi superfluid mixture becomes the stable ground

state, i.e., both dynamically and mechanically stable. We observe their occurrence to

transpire in two different ways: (1) In C
1

-C
4

, critical points occur in the dynamically

stable region where the mixture also attains mechanical stability (as illustrated in

Sec. A.3.1). (2) Along C
5

(C
6

), the BCS transition temperature monotonously reduces

with � by such an extent that when � ! 0, Tc,mix

< T
5

(T
6

). However as discussed

before, the mixture is always the stable ground state for Tc,mix

< T . Hence in C
5

-

C
6

, the critical points are given by their intersections with �=0 plane. Thus along

each Ci, below these critical points the homogeneous mixture becomes dynamically

and/or mechanically unstable. We further find that in the unstable regions, pure

fermions phase separate from the mixture. Thus in Fig. A.3 we clearly demonstrate

the occurrence of temperature-driven mixing-demixing transitions at fixed interaction

strengths.

A.4 Trap profiles within LDA

We now show the direct experimental implications of the above phase stability anal-

ysis. This, we do by reliably translating this analysis to the inhomogeneous case via

Local Density Approximation (LDA) by defining a position dependent chemical po-

tential µb(r) = µb � V
trap

(r), where µb(r) is the local chemical potential and V
trap

(r)
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Figure A.4 : (Color online) Subplots top, middle and bottom show boson density
profiles (slice along y=0 plane) computed within the LDA for temperatures T =

0.13, 0.072, 0.055 Tf respectively, with Tc=0.11 Tf . µb is adjusted to ensure number
conservation (⇠42000 atoms). X, Z are in µm. Color bar shows density variations
in scale of nba3b (10�6). Chosen trap parameters V

0

(several mW), �=12µm and
!z/!?=0.08. Image from Ref. [4].

is the trap potential for bosons [16]. While this approximation is known to be very

efficient for large densities (typically the case in trapped-atom experiments), it also

implies that the trap potential can simultaneously accommodate one or more of the

phases discussed above. Thus, remarkably what phase/phases will be observed will

critically depend on the trap geometry. This in fact, is a very important observation

implying the possibility of tuning the trap parameters such that a desired density

profile is observed only if a certain phase has nucleated.

To illustrate this program, let us consider bosons to be in a tightly confined trap

surrounded by the Fermi gas in a larger trap⇤, a scenario that takes advantage of our

framework to consider a homogeneous Fermi gas with fixed µf . Additionally, this

⇤The general idea of controlling trap geometries was highlighted in Sec. 2.2.
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consideration is completely justified as the trapping potential for each species can be

independently controlled [153, 154]. After careful analysis of the phase diagram in

Fig. A.3, we find it advantageous to confine bosons in a trap with a finite barrier

near the center. As this also helps to enhance the contrast in imaging the nucleated

phases, we propose a double-well cigar shaped trap with a potential

V
trap

(r) =
1

2

m!?(x2

+ y2) +
1

2

m!zz
2

+ V
0

exp(� z2

2�2

)

to confine bosons, where !? (!z) is the trap frequency in the transverse (longitudinal)

direction to the Gaussian beam creating the trapping potential. V
0

and �, defining the

barrier peak and beam-width respectively, are chosen to ensure a readily detectable

overlap of boson density profiles from the two wells for T = 0.13Tf (i.e., Tc < T ),

as shown in the top plot of Fig. A.4. At T = 0.072Tf (0.055Tf ), phase stability

analysis along contour C
5

(C
3

) in Fig. A.3 indicates the existence of a critical boson

density (and correspondingly a critical boson chemical potential µb(r)), only above

which the Bose-Fermi mixture homogeneously co-exists as the stable ground state.

Corresponding regions of the trap where this condition is not satisfied are devoid of

bosons in a drastic fashion, as seen from the ⇠4 µm (8 µm) gap between the separated

bosonic islands in Fig. A.4. As these separation lengths are far greater than the

healing length of the condensate, this illustration vividly shows how crucial aspects

of the finite temperature phase diagram readily translate into detectable signatures

in experiments. Furthermore, this particular signature in Fig. A.4 may be used as a

signal indicating the onset of BCS superfluidity in the particular parameter regime

of the attractive Fermi gas.
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A.5 Effect of dimensionality on the phase diagram

As a final piece, we analyze how the phase diagram gets modified when only the trap

geometry of the experimental setup is deformed (all other parameters kept constant)

such that the confinement in two orthogonal directions is made much tighter compared

to that in the third⇤. In effect, the system can be considered to be one-dimensional

if the trapping frequency in the tight directions is such that ~!
tight

� µb,f . For

simplicity, we restrict ourselves to the T = 0 limit, where all the qualitative fea-

tures can be comprehensively discussed† The effective 1D interaction strength can be

written in terms of the 1D scattering length, which in turn can be easily related to

the 3D scattering length‡ [164]. This mapping is critically dependent on the aspect

ratio of the trap. We choose experimentally relevant values for !? and !z
§. While

we assume !? ' 2 ⇡ 105 Hz for both bosons and fermions, we find it useful to con-

sider !?/!z ' 10

3 for fermions but smaller values of !?/!z for bosons. Apart from

ensuring that we are indeed in the 1D regime, this choice guarantees a highly elon-

gated trapping potential for fermions. From the parameter values used in deriving

the 3D phase diagram of Fig. A.1(a), we obtain the corresponding values for the 1D

scenario [164].

We thus construct the phase diagram of the interacting one dimensional superfluid

mixture, by performing the 1D integrals instead of 3D in Eqns. (A.9)-(A.13). The

phase diagram is shown in Fig. A.5(a), where the solid (green) curve represents the

dynamical stability contour that separates the dynamically unstable region (inside

⇤The general idea of controlling trap dimensionality was highlighted in Sec. 2.2.
†Phase diagram of the Bose-Fermi superfluid mixture in 1D at T = 0 was already discussed by

Bhongale et al. in Ref. [163].
‡Also, we assume here that the regularization performed in determining fermion-fermion interac-

tion strength �
f

in 3D has no effect on the corresponding 1D effective strength �1d f

.
§Say, as discussed by Liao et al. in Ref. [30].
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Figure A.5 : (Color online) (a)-(left): Phase diagram of the Bose-Fermi superfluid
mixture in 1D at T = 0 (for the same parameters used in Fig. A.1(a)). Solid (green)
curve is the dynamical stability contour, while the dashed (blue) contour C denotes
phase space points with a fixed value of �

1D f . The dotted (black) curve represents the
region within which the homogeneous mixture is mechanically unstable. The filled
circle (red) represents the critical point, for this specific experimental realization,
at which the homogeneous mixture enters the mechanically unstable region. (b)-
(right): Plot of the free energy densities of pure bosons (dotted), of pure fermions
(solid) and the homogeneous mixture (dashed) against µb[C]. Free energy density of
homogeneous mixture becomes higher than that of pure bosons at the critical point
represented by the filled (red) circle, resulting in the phase separation of pure bosons
out of the mixture. Here, free energy density is a dimensionless quantity⇤. Image
from Ref. [4].

the ellipse) from the dynamically stable region (outside the ellipse). Phase space

points that correspond to the fixed value of �
1d f , are shown by the dashed (blue)

contour C. The crossing of C and the dynamical stability contours indicates the

point at which the homogeneous mixture enters the dynamically unstable region.

However, as discussed before in Sec. A.3.1, for the Bose-Fermi homogeneous mixture

to be stable, it is necessary that the mechanical stability condition be simultaneously

⇤See footnote associated with Fig. A.1(b) and the work by Olshanii in Ref. [164].
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satisfied. For this, we plot the relevant free energies in Fig. A.5(b), where the free

energies of pure bosons, homogeneous mixture and pure fermions along C are given by

dotted, dashed and solid lines respectively. We immediately note that pure fermions

can never phase separate out of the mixture, a remarkably different result when

compared to the 3D case [see Fig. A.1(b)]. The filled circle (red) represents the critical

point along contour C, at which the free energy of the bosons becomes lower than

that of the homogeneous mixture, i.e., the critical point at which the homogeneous

mixture becomes mechanically unstable. This means that up until this critical point,

homogeneous superfluid mixture coexists as the stable ground state. However, above

this critical point pure bosons phase separate out of the mixture. The significance of

this critical point is clear since we can now directly obtain the boson density profile

in the boson trap by mapping the boson chemical potential µb[C] onto the spatial

coordinate in the trap via LDA using µb[C] = µb(r) = µb � V (r[C]), where V (r)

is the probe trapping potential for the bosons. It is evident from Figs. A.5(a) and

A.5(b) that the pure bosons phase separate out of the homogeneous mixture in the

trap above the critical value of boson chemical potential µb corresponding to the

critical point (filled red circle).

A.6 Conclusions

In summary, we have discussed a consistent theoretical method for performing the

finite temperature phase stability analysis of an ultracold mixture comprising of

bosons and fermions, both in the superfluid regime. Based on our stability anal-

ysis in the vicinity of the Fermi superfluid temperature, we discussed two distinct

scenarios where the homogeneous superfluid mixture becomes unstable (1) when the

normal-superfluid phase transition (second-order) occurs in the fermionic component,
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and (2) below the Fermi superfluid temperature via mechanical instability which is

a first-order phase-separation phase transition. The latter scenario happens exclu-

sively due to the trap inhomogeneity inherent in trapped-atom experiments, thereby

allowing for the two phases to be simultaneously present. We have illustrated the

emergence of these instabilities and the ensuing phase separation by considering a

realistic experimental setting. We fine-tuned the trap geometry to enhance the effect

of phase separation. Finally, we briefly discussed the effect of dimensionality on the

stability of various phases. We reiterate that while our phase diagram analysis is

quantitatively exact when the interactions are weak, our study is only qualitatively

correct in the strong interaction limit.

We emphasize here that the interplay between the first and second order phase

transitions, similar to that discussed in this paper, will have strong implications for

analyzing experimental observations involving ultracold mixtures in general⇤. While

our framework is also valid to study the regime of strong interactions near a broad

Feshbach resonance, it can be easily extended within a two channel model for the

case of a narrow Feshbach resonance. Further, while such a treatment will naturally

allow for a molecular condensate of Fermi atoms [171], it is not hard to speculate

emergence of rich physics due to occurrence of Efimov bound states in the Bose-

molecule interaction channel [172,173]. Finally, an important extension of the current

work would be to consider spin-dependent Bose-Fermi interactions. The presence of

a small BEC can shift the chemical potential of a particular spin component relative

to the other. This is analogous to the situation encountered in solid-state samples

⇤Theoretical work by Baksmaty et al. in Ref. [168] based on extensive numerical calculation has
confirmed a crucial role played by condensate nucleation and the resulting phase separation in a
polarized Fermi gas. In this paper, the authors attribute such non-homogeneous nucleation as an
explanation to the controversy between the MIT and Rice polarized Fermi gas experiments reported
in Refs. [169] and [170] respectively.
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with magnetic impurities, thereby providing a new platform for studying the interplay

between superfluidity and magnetism.



153

Appendix B

Modeling condensate collapse and expansion in
optical Feshbach resonance⇤

B.1 Introduction

The ability to tune interactions in ultracold atomic gases makes these systems ideal

for exploring many-body physics [27] and has enabled some of the most important

recent advances in atomic physics, such as investigation of the Bose-Einstein conden-

sate (BEC)-Bardeen-Cooper-Schrieffer (BCS) crossover regime [27] and creation of

quantum degenerate molecules [171, 174]. As discussed in Sec. 2.2, magnetic Fesh-

bach resonances are now the standard tool for changing atomic interactions and have

proven incredibly powerful [28]. However, they are also limited because the methods

for creating magnetic fields preclude high-frequency spatial and temporal modulation.

Also, in atoms with non-degenerate ground states, such as alkaline-earth-metal atoms,

magnetic Feshbach resonances do not exist. These limitations can be overcome by

using an optical Feshbach resonance (OFR), which tunes interatomic interactions by

coupling a colliding atom pair to a bound molecular level of an excited state potential

with a laser tuned near a photoassociative resonance [175].

Early experiments on OFRs [176–178] used strong dipole-allowed transitions in

alkali-metal atoms to alter atomic collision properties, but substantial change in the

atom-atom scattering length was accompanied by rapid atom losses. Tuning of in-

⇤Appendix B taken largely from our publication in Ref. [5]. Associated experiments were per-
formed by M. Yan, B. J. DeSalvo, and T. C. Killian.
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teractions in alkali-metal atoms, but with smaller atom loss, was recently obtained

with a magnetic Feshbach resonance using an AC Stark shift of the closed channel to

modify the position of the resonance [179]. Recently, a multiple-laser optical method

was proposed for wider modulation of the interaction strength near a magnetic Fesh-

bach resonance [180]. Unfortunately, none of these hybrid variations are feasible for

atoms lacking magnetic Feshbach resonances [5].

Ciurylo et al. [151, 181] predicted that an OFR induced by a laser tuned near a

weakly allowed transition should tune the scattering length with significantly less in-

duced losses. This can be done even with divalent atoms (that lack magnetic Feshbach

resonance), such as strontium and ytterbium, by exciting near an intercombination

transition from the singlet ground state to a metastable triplet level⇤. The improved

OFR properties result from the long lifetime of the excited molecular state and rel-

atively large overlap integral between excited molecular and ground collisional wave

functions [5].

Intercombination-transition OFRs have been used to modify the photoassociation

(PA) spectrum in a thermal gas of Yb [182], modulate the mean field energy in a

Yb BEC in an OFR-laser standing wave [183], and modify thermalization and loss

rates in a thermal gas of 88Sr [184]. In the OFR work with an Yb BEC [183], small

detunings from a molecular resonance were used (|�| < 10�

mol

, where �
mol

is the

natural decay rate of the excited molecular level), which led to short sample lifetimes

on the order of microseconds. Longer exposure times and detunings |�| < 50�

mol

were used in thermal Sr gases [184], but at much lower atomic density than typically

found in a degenerate sample. There is great interest in intercombination-line OFRs

⇤Foot in Ref. [12] and Chin et al. in Ref. [28] provide useful introduction to inter-combination
lines transition.
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at much larger detuning in quantum degenerate gases of divalent atoms [24,185–187],

with the goal of modifying the scattering length and still maintaining sample lifetimes

on the order of dynamical timescales of quantum fluids [188,189].

Optical Feshbach resonances may open new avenues of research in nonlinear mat-

ter waves [190–192] and quantum fluids [188, 189, 193], and could be very valuable

for experiments with fermionic alkaline-earth atoms [24, 194] in lattices [195], which

possess SU(N) symmetry with large N and have attracted great attention lately be-

cause of novel thermodynamics [196–198] and predictions of frustrated magnetism

and topological ground states [199–202]. With this broad motivation in mind, here

we discuss details of a combined experimental and modeling effort to understand

OFR in an 88Sr BEC [5]. The rest of this chapter is organized as follows. We briefly

summarize the experimental aspects to control the collapse and expansion of an 88Sr

BEC with an OFR near the 1S
0

-3P
1

inter-combination transition. Then, we present

details of a theoretical model based on time-dependent non-linear Gross-Pitaevskii

(GP) equation to understand condensate dynamics in the presence of OFR. We pro-

ceed to analyze and discuss the experimental results in detail based on this model.

Finally, we summarize and present a brief outlook.

B.2 Experiment

We demonstrate control of the collapse and expansion of an 88Sr Bose-Einstein con-

densate during time-of-flight measurements, using an OFR near the 1S
0

-3P
1

inter-

combination transition at 689 nm. 88Sr has an s-wave background scattering length

of a
bg

= �2 a
0

[203,204], which allows convenient modification of the scattering length

either positive or more negative. Changes in scattering length are monitored through

changes in the size of the condensate after a time-of-flight measurement. Significant
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changes in dynamics are caused by modifications of scattering length by up to ±10 a
bg

.

Because the background scattering length is close to zero, blue detuning of the OFR

laser with respect to a photoassociative resonance leads to increased interaction en-

ergy and a faster condensate expansion, while red detuning triggers a collapse of the

condensate [5].

To probe the change in scattering length and loss, we monitor expansion of an 88Sr

BEC after release from the optical dipole trap (ODT) with time-of-flight absorption

imaging using the 1S
0

-1P
1

transition. Details of the formation of an 88Sr BEC are

given by Mickelson et al. in Ref. [187]. We create condensates with about 7000

atoms, size �
0

= 0.8µm, and peak density n
0

= 1 ⇥ 10

15

cm

�3. About 10% of the

trapped atoms are in the condensate and this represents about 95% of the critical

number for collapse with the background scattering length of 88Sr for our ODT, which

is close to spherically symmetric with the geometric mean of the trap oscillation

frequency ! = 2⇡⇥ (60± 5)Hz [205]. The 689 nm OFR laser beam is tuned near the

photoassociative transition to the second least bound vibrational level on the 1S
0

+3P
1

molecular potential, which has the binding energy of h⇥24MHz [206]. The OFR laser,

with a beam waist of 725µm, is applied to the condensate 20µs before extinguishing

the ODT and left on for a variable time ⌧ during expansion [5]. The exposure time

in the ODT is short enough that the initial density distribution of the condensate

reflects the ODT potential and the background scattering length, while the expansion

dynamics is sensitive to the interaction energy determined by induced changes to the

inherent scattering length. We explore detunings |�| as large as 667�

mol

(absolute

value), and obtain sample lifetimes of milliseconds during application of the OFR

beam [5].
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B.3 Theory

Our theoretical model is essentially based on the time-dependent GP equation intro-

duced in Sec. ??. However, the presence of laser beams to study optical Feshbach

resonance necessitates two major modifications: (1) the inherent two-body contact

interaction is modified (aopt term) and (2) inelastic decay processes and the associated

loss in atom number (K term) have to be accounted for in the presence of OFR laser

beam. According to the isolated resonance model [151, 181], a laser of wavelength

� detuned by � from a photoassociative transition to an excited molecular state

|ni modifies the atomic scattering length according to a = a
bg

+ a
opt

and induces

two-body inelastic collisional losses described by the loss rate constant K
in

, where

a
opt

=

`
opt

�

mol

�

�

2

+

(⌘�
mol

)

2

4

;

K
in

=

2⇡~
µ

`
opt

⌘�2

mol

�

2

+

(⌘�
mol

+�

stim

)

2

4

. (B.1)

K
in

is defined such that it contributes to the evolution of density n as ṅ = �K
in

n2

for a BEC. The optical length `
opt

, which characterizes the strength of the OFR, is

defined as

`
opt

=

�3|hn|"ri|2I
16⇡ckr

, (B.2)

where c is the speed of light, I is the intensity of the OFR beam, and kr is the

wavenumber for colliding atoms, given by kr =

p

21/8/(2R
TF

) for a BEC with

Thomas-Fermi radius R
TF

, and kr =

p
2µ"r/~ for a thermal gas, where µ = m/2

is the reduced mass for the atomic mass m, "r is the kinetic energy of the colliding

atom pair, and ~ is the reduced Planck constant [5]. |hn|"ri|2 is the Franck-Condon

factor per unit energy for the free-bound PA transition. Because |hn|"ri|2 ⇠ kr in
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the ultracold regime [207], following the Wigner threshold law, `
opt

is independent

of the collision energy. �
mol

= 2⇡ ⇥ 15 kHz is the natural linewidth of the excited

molecular level, and �
stim

= 2kr`opt

�

mol

is the laser-stimulated linewidth [5]. The pa-

rameter ⌘ > 1 accounts for enhanced molecular losses, as observed in previous OFR

experiments [177,184].

As shown through coupled channels calculations [184], the isolated-resonance-

model expressions (Eq.B.1) break down at large detunings from photoassociative

resonance. The induced scattering length a
opt

crosses zero between resonances. Out-

side approximately 100 linewidths from photoassociative resonance, the two-body

loss is expected to make a transition to a broad background value that varies as

1/�2, where � is 2⇡ times the detuning from atomic resonance [184]. A rigorous

theoretical description for loss in this regime is lacking, but the underlying mecha-

nism is collisions involving a ground state atom and an atom excited in the wings

of the atomic line [5]. In the regime where molecular levels are unresolved, such as

in light-assisted collisions in a magneto-optical trap, this loss is often described with

the classical Gallagher-Pritchard model [208]. In a coupled channels description,

the background loss rate is sensitive to a cutoff atom-atom distance inside of which

radiative loss is turned on, which is introduced as an ad hoc parameter. Our measure-

ments could provide some experimental input to determine this cutoff distance [5].

We find the isolated-resonance-model expressions (Eq.B.1) useful for describing our

measurements with the modification that the total loss rate constant is given by

K
total

= K
in

+K
b

, where the background loss is described phenomenologically in our

regime as K
b

= K
0

[�

mol

/(2�)]2 [5].



159

Figure B.1 : (color online) Line profiles through absorption images showing OFR-
induced variation of BEC expansion. Data correspond to no OFR laser and an OFR
laser blue and red detuned by 0.5 MHz with respect to the -24 MHz PA line [206]
applied for ⌧ = 1.2ms. Expansion times are 35 ms. Fits are a Bose distribution for
the thermal atoms (- -) and a Gaussian density distribution for the BEC. Image from
Ref. [5].

B.4 Results and discussion

Figure B.1 shows 1D slices through absorption images of atoms after a 35 ms time-of-

flight with and without application of the OFR laser [5]. Absorption images measure

the areal density, which is fit with a bimodal function including a Bose distribution

for the thermal atoms and a narrow gaussian density distribution for the BEC, n(r) =
N0
2⇡�2 exp

h

� r2

2�2

i

, to determine the number of atoms in the BEC N
0

and BEC size �.

(Quoted sizes reflect correction for imaging system resolution, which is modeled by

a point spread function L(r) = 1

2⇡s2
exp

h

� r2

2s2

i

with s = 5 ± 1µm.) The condensate

size after a long time of flight is a good probe of interactions because of the sensitivity

to the initial interaction energy [5].
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To obtain a qualitative understanding of the data, one can calculate the total

energy immediately after the trap is extinguished using the condensate energy func-

tional [26,209] assuming a gaussian density for the BEC in the ODT with initial size

�
0

[5]. When atom losses are negligible, this energy can be equated to the total kinetic

energy when the condensate has expanded to a low density to give,

N
0

3

2

m�2

v = N
0

3

8

~2
m�2

0

+N2

0

g

2(4⇡)3/2�3

0

. (B.3)

The first and second terms on the right-hand side are the kinetic energy and interac-

tion energy in the trap before release, respectively, for g = 4⇡~2a/m. �v is the rms

velocity, which can be related to the BEC size after a long expansion time t through

� = �vt [5]. A blue OFR laser detuning near the -24 MHz PA line [206] increases

a, leading to more interaction energy and larger expansion velocity and BEC size.

Red detuning produces the opposite behavior. When the the total energy becomes

negative, this simple explanation breaks down, and one observes condensate collapse

and significant loss of condensate atoms [5].

In Fig. B.2, we study the variation of the BEC size and number with the exposure

time, ⌧ , for several blue detunings of the OFR laser. We observe that several ms is

required for full conversion of the interaction energy into kinetic, with larger detuning

and smaller optically induced scattering length requiring longer ⌧ . We can estimate

the timescale for conversion with a hydrodynamic description of the condensate dy-

namics [26]. The acceleration of atoms during expansion arises from the interaction

pressure P = gn(r)2/2, and a characteristic acceleration ã can be approximated from

mn(r)ã ⇡ �rP ⇡ �n(r)r[gn(r)] [5]. This yields ã = �r[gn(r)]/m ⇠ gn
0

/m�
0

. In

the large N
0

a/a
ho

limit with a
ho

= [~/(m!)]1/2 , one can neglect the kinetic-energy
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term in Eq.B.3 to find the characteristic final velocity given by the conservation of en-

ergy, vf ⇠ �v ⇠
p

gn
0

/m. This implies a conversion timescale, vf/ã ⇠ �
0

p

m/(gn
0

),

of 1 ms for a
opt

of 10 a
0

, which roughly matches observations [5]. Losses from single-

atom light scattering preclude leaving the OFR beam on during the entire expansion

time, and knowledge of the time required for close to full conversion is helpful for

interpreting the results of experiments in which we apply the OFR laser for a fixed

interaction time and vary the detuning, which will be discussed below [5].
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Figure B.2 : (color online) (a) BEC size after 35 ms of expansion versus the exposure
time of the OFR laser with the intensity of 0.057 W/cm2 and three different detunings
from the -24 MHz PA line. (b) Number of condensate atoms versus exposure time.
Curves calculated by the Gross-Pitaevskii equation correspond to a combined fit of the
data, yielding ⌘ = 19.5, `

opt

/I = 2.2⇥ 10

4 a
0

/(W/cm2), and K
0

= 5.8⇥ 10

�7 cm3/s.
Error bars represent the standard deviation of the mean from multiple measurements.
Image from Ref. [5].
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To quantitatively analyze the variation of size and atom number versus interaction

time and extract OFR parameters, it is necessary to treat dynamics and atom loss

with the time-dependent non-linear GP equation, including the effects of a
opt

, K
total

,

and single atom light scattering, and neglecting effects of thermal atoms. The fit

parameters are `
opt

/I, ⌘, and K
0

. The rate of atomic light scattering varies from 12

to 17 s�1, and is included in the simulation assuming every scattering event results in

the loss of one atom [5].

The fits are shown in Fig. B.2. The data at largest detuning from photoassociative

resonance strongly determine the background loss because loss from the OFR is small

there [5]. The fit optical length is `
opt

/I = (2.2± 1.0)⇥ 10

4 a
0

/(W/cm2), and the fit

parameter K
0

= (5.8±1.3)⇥10

�7 cm3/s. Loss from the OFR is described by `
opt

and

⌘ = 19.5+8

�3

, and there is strong anti-correlation between `
opt

and ⌘. The uncertainty

is dominated by systematic uncertainty in the trap oscillation frequency and imaging

resolution [5]. These results are in good agreement with the measured value `
opt

/I =

1.58 ⇥ 10

4 a
0

/(W/cm2) and disagree slightly with `
opt

/I = 8.3 ⇥ 10

3 a
0

/(W/cm2)

calculated directly from knowledge of the molecular potentials [184].

Experiments with a thermal strontium gas [184] found larger losses associated

with an OFR than described by theory, which was described by ⌘ = 2.7. These

measurements probed the core of the photoassociative transition (|�| < 50�

mol

).

The additional loss is not well understood. We see a similar resonance width in a

BEC when we significantly reduce the laser intensity and interaction time and take

a photoassociative loss spectrum of this core region [5]. Our use of the OFR probes

the distant wings (50�
mol

< � < 667�

mol

), and a fit of the loss using the single

resonance model requires an even larger value of ⌘. We interpret the varying ⌘ values

as meaning that the full spectrum of photoassociative loss, including the far wings,
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is not well described by a Lorentzian [5].
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Figure B.3 : (color online) The BEC size(a) and number(b) versus the detuning with
respect to the -24 MHz PA resonance for an intensity of 0.057 W/cm2. The OFR
beam is applied for 4.0 ms, and the data are recorded after 35 ms of expansion. The
insets give the total scattering length a and the loss rate constants. Image from
Ref. [5].

The dependence of the BEC size and number on detuning from the -24 MHz PA

line is shown in Fig. B.3 for a fixed intensity and interaction time ⌧ = 4ms [5]. The fit

parameters from Fig. B.2 describe the data well over this range. Note that the number

of atoms initially increases with blue detuning from PA resonance as the loss from

the OFR (K
in

) decreases. The number then slowly decreases because the background

loss (K
b

) increases approaching atomic resonance [5]. The BEC size data predicted
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by Eq.B.3, which neglects atom loss and assumes that the OFR laser is applied long

enough to fully convert interaction energy into kinetic, is also shown in Fig. B.3a.

The difference between this curve and the data highlights that atom loss is significant

during the conversion process at smaller detunings, and the Gross-Pitaevskii equation

simulation is required to describe the data. A typical total scattering length (Fig. B.3a

inset) is a = 20 a
0

for � = 2⇡ ⇥ 1MHz' 67�

mol

[5].

For red detuning, the OFR laser makes the scattering length more negative and

triggers a collapse of the condensate, which is evident as large loss in the plot of

condensate number remaining after expansion (Fig. B.3b). The dramatic asymmetry

of loss with respect to detuning from resonance shows that the loss must reflect

condensate dynamics [210–212], not photoassociative loss directly caused by the OFR

laser [5]. The GP equation provides a good description of the BEC number data for

red detuning in spite of the fact that the collapse dynamics may contain beyond-

mean-field effects [213] not taken into account in the GP formalism [5].

A variational calculation of the condensate energy functional as a function of

condensate size [26, 209] for the parameters of Fig. B.3 predicts that the condensate

expands initially after the trap is extinguished if a > �3.8±0.2 a
0

. For more negative a

(�10± 3MHz< �/2⇡ < 0MHz), there is no repulsive energy barrier on the effective

potential for the system and collapse results [5]. Numerical simulation of the GP

equation supports this interpretation. Simulations show that collapse can be very

non-uniform, as predicted in [210], with significant density increase only near the

condensate center for a only moderately more negative than the threshold [5].
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B.5 Summary

In summary, we have demonstrated control of collapse and expansion of an 88Sr

BEC using an intercombination-transition OFR. At large detuning from PA resonance

(. 667,�
mol

), we obtain sample lifetimes on the order of 1 ms while changing the

scattering length by 10’s of a
0

[5]. While this is a moderate change compared to the

mean scattering length [214] for Sr, ā = [4⇡/�(1/4)2](1/2)(2µC
6

/~2)1/4 = 75.06 a
0

, it

is an extremely large relative change for 88Sr (a
opt

/a
bg

= ±10) because of the small

a
bg

. The OFR can thus drastically change the dynamics. Here, �(x) is the gamma

function, and C
6

= 3170 a.u. is the van der Waals coefficient for the interaction

between two ground state Sr atoms [215] in atomic units [5].

Our work probes collisions of atoms in a light field in a previously unexplored

region of large detuning from photoassociative resonance. The isolated resonance

model [151,181] provides a good description of the optically induced scattering length

(Eq.B.1) out to a detuning of |�| ' 667�

mol

for this photoassociative transition.

This is not surprising because the detuning from the PA resonance is still much less

than the spacing between excited molecular states [5]. A coupled channels numerical

calculation [184] shows the breakdown of the isolated resonance approximation and

absence of a significant OFR effect at comparable detuning from two PA lines. The

isolated resonance model is valid over a much smaller range for describing the loss

induced by the OFR laser because of the background loss and the enhanced loss

parameterized by a large value of ⌘ in the far wings of the line [5].

The original peak density of the condensate is extremely high in our experiment be-

cause of the attractive interactions. Increased lifetime or larger OFR effect should be

obtainable for densities commensurate with single-site loading of an optical lattice [5].

Improvements could also be made by working at larger detuning from PA resonance
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and larger laser intensities. Working with a more deeply bound excited molecular

state such as the PA line at �1.08GHz [206] may offer advantages in this direction,

such as greater suppression of atomic light scattering and reduced background two-

body loss. This holds promise to bring many possible experiments involving optical

Feshbach resonances and quantum fluids into reach [5].
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