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ABSTRACT

Designing Quantum Multicritical and Flat-Band Models via Hamiltonian

Engineering

by

Youjiang Xu

Atomic, molecular, and optical (AMO) systems often feature great controllability.

As such, they offer ideal platforms to explore various kinds of quantum phenomena.

Designing artificial quantum systems that possess novel and exotic properties is one

of the major tasks of theorists working in the AMO field. In this dissertation, we

introduce our work on designing novel Hamiltonians which give rise to multicriticality

or flat bands.

In the first half of the dissertation, we study the multicriticality. Quantum many-

body systems that support multicritical quantum phase transitions are quite rare.

However, we find that, in an important generalization of the Dicke model, the su-

perradiant quantum phase transitions can become multicritical. For a subclass of

experimentally realizable schemes, multicritical conditions of arbitrary order can be

expressed analytically in compact forms. As such, experiments can be readily designed

to achieve quantum phase transition of desired order. The phase transition happens

both in the thermodynamic limit and the classical oscillator limit. We compare the

quantum fluctuation in the two cases by calculating the atom-photon entanglement

entropy. We find that the order of the criticality strongly affects the critical entan-

glement entropy.
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In the second half of the dissertation, we propose a powerful and convenient

method to systematically design flat-band lattice models. Flat bands often lead

to exotic strongly correlated emergent quantum phenomena. We use this method

to generate several classes of lattice models, including models with both short- and

long-range hoppings, both ordinary and magnetic translational symmetry, both topo-

logically trivial and non-trivial flat bands.
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Chapter 1

Introduction

Atomic, molecular, and optical (AMO) physics is one of the major division of physics,

featured by unprecedent level of controllability of the underlying quantum systems.

For example, optical atomic clocks have developed to an accuracy level with a system-

atic uncertainty below 10−18 [1], a precision hardly achieved in any other platform.

The high controllability means that we can construct artificial quantum systems with

atoms, molecules and light, aiming to study or utilize the novel phenomena emerg-

ing from such systems. For example, by pushing the temperature to as low as 170

nanokelvins through laser and magnetic cooling, people first observed Bose-Einstein

condensate in ultracold rubidium gas in 1995 [2], about seventy years after the phe-

nomenon was predicted. Thus, designing new quantum systems and predicting their

novel properties represents one of the major tasks of theoretical physicists working in

the field of AMO.

In designing new quantum systems, one important routine is to construct an ef-

fective and simplified model that captures the essential physics of a more complex

system, and study the properties of the effective model. In general, an effective model

arises when there are more degrees of freedom than needed: we do not need three

but two numbers to describe the position of a ball rolling on the ground, because the

gravity confines the ball to its lowest-energy states, and it will not jump unless it is

excited, so its dynamics is effectively two-dimensional rather than three-dimensional.

In quantum mechanics, the degrees of freedom equals the dimension of the Hilbert
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space, and usually only a small fraction of the whole Hilbert space is needed to effec-

tively describe the physics (thus it is possible to simulate many quantum systems on

classical computers, otherwise the dimension of the whole Hilbert space, which grows

exponentially when the size of the systems enlarge, will deny classical simulation).

Perhaps the most well-known effective model in AMO physics is the two-level atom

model. We know that even the simplest atoms, the hydrogens, contain infinite num-

ber of electronic configurations. However, when it is close to zero temperature, the

atoms will almost always stay in its single lowest-energy state. To make things more

interesting, we shine a monochromatic light on the atoms and consider the coupling

between the atoms and the light. As long as the frequency of the light is sufficiently

close to the energy spacing between the ground state and certain excited state of the

atoms, then the possibility of the atom transiting to the other excited states is so

small that we can safely neglect these unpopulated states in the effective description

of this atom-light system. Consequently, we arrive at the famous semiclassical Rabi

model [3], describing the basic form of interaction between an atom and light. Such

a two-level simplification of the atoms works well in many applications. Removing

redundant degrees of freedom can also be done for the light. An optical lattice uses

pairs of counter-propagating lasers to confine the atoms in a lattice-like structure.

The mechanism is AC-Stark shift, that is, the atoms absorb a photon from one laser

beam and emit a photon to another, in which process, the energy of the atoms is

shifted, and the amount of the shifted energy is position-dependent, so the atoms

effectively experience a potential resembles a lattice. Finally, in studying the proper-

ties of atoms in an optical lattice, we do not consider the possibility that atoms may

make transition to other internal states, and the dynamics of the light is ignored, so

we effectively arrive at lattice models for atoms resembling those studied in condensed
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matter context. In this way, optical lattices, as an effective description of a specific

kind of atom-light systems, provide a platform for simulating other quantum systems,

taking advantages of great tunability of AMO systems.

Thus, optical lattices, as well as many other platforms and techniques developed

in AMO physics, inspire us that novel physics may be explored experimentally if we

cleverly design AMO systems whose effective model is of interest. Especially, in this

dissertation, we address two types of models we design: 1) Dicke-like models featured

by multicriticality associated with superradiant quantum phase transitions, and 2)

Lattice models with flat bands. The former can be obtained by manipulating the

hyperfine states of atoms through cavity-assisted Raman transitions, and the latter

can possibly be realized using optical lattices or synthetic dimension. The basic story

line of the dissertation is as follows:

1. In Chapter 1, we introduce the background and motivation of studying multi-

criticality and flat bands;

2. In Chapter 2, we focus on the multicriticality that occurs in the superradiant

phase transitions in the generalized Dicke models. We focus on the multicritical

conditions and quantum fluctuations in such models, and study the potential

experimental realization;

3. In Chapter 3, we introduce the new protocol for generate all the lattice models

whose lowest bands are flat. We show how to apply the protocol to produce

some models with finite-range hopping and the Kapit-Mueller model featuring

a topological flat band.

Finally, in the last chapter, we provide a summary and discuss possible follow-up

research on these topics.
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1.1 Multicriticality in AMO physics

Critical phenomena were discovered by Cagniard de la Tour in 1822 [4], who found

that when a liquid heated far beyond its boiling point, it becomes indistinguishable

from gas, namely entering the supercritical fluid phase. The difference between liquid

and gas is marked by the density, which serves as the order parameter of this phase

transition. Normally, the density changes discontinuously during a phase transition,

however, when we increase the temperature, the density difference between the gas

and the liquid becomes smaller and smaller, and finally, when we reach the critical

temperature, the densities of the two become the same. Thus, the critical point in

this system is the point where the boundary of the discontinuous liquid-gas phase

transition terminates.

The physics at the critical point has two major characters: One is the large

fluctuation, in the gas-liquid case the large fluctuation in density, which results in

critical opalescence [5], and the other is the universal scaling behavior, that is, the

physical quantities that deviates a little from their critical values obey some power

laws, whose exponents are universal in the sense that phase transitions with different

microscopic components may share the same critical exponents.

In the liquid-gas phase transitions, the relevant thermodynamic parameters are

temperature and pressure, and there is a single isolated critical point in the two-

dimensional phase diagram. When there are more thermodynamic variables, for ex-

ample, the mole fraction between the two components in a binary fluid mixture, the

phase diagram can have larger dimension and the critical point can extend to a crit-

ical manifold. In 1970, Griffiths [6] studied the phase transition in He3-He4 mixture

and found that there were three critical lines in the phase diagram, which intersected

at a special point, the tricritical point. It was the first time that a tricritical point
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was discovered. In the paper, Griffiths compared the experiment results and the pre-

dictions of classical theory, and argued that the discrepancy between them could be

explained by a modified scaling formula, suggesting that the tricritical points had its

own universality class differing from that of the ordinary critical points. The scaling

behavior of a tricritical point is discussed in [7–10]. It is shown that the crossover

effect of multiple critical lines makes it necessary to alter the scaling hypothesis at

the tricritical point. Later, the concept of tricriticality is generalized to higher-order

multicriticality [11–13]. In [11], the order of criticality is defined by deduction, that

is, an nth order critical manifold is defined as the intersection of (n− 1)th order crit-

ical manifold, with the condition that an ordinary critical point is of second-order.

Multicritical points with different orders exhibit different critical behaviors [14, 15],

which may provide deeper insight into phase transitions and critical phenomena.

Though multicriticality is an intriguing and important topic in phase transitions,

people have rarely found high-order critical points in experiments. The reason is that

higher-order critical manifolds have lower dimension, thus more tunable parameters

are needed to pinpoint the high-order critical points. Specifically, an nth order critical

point usually appears only in phase diagrams of dimension n − 1 or more. It is also

argued that randomness may depress multicriticality [16], which may also be a reason

for rare observation of multicriticality.

Because AMO systems provide experimental platforms with a large number of tun-

able parameters, we naturally expect to realize high-order criticality through carefully

designed light-matter interaction. In 2019 [17], we propose a modified Dicke model

in which a tricritical point occurs on the boundary of the superradiant quantum

phase transitions. The Dicke model [18] describes a single photonic mode interacting

with identical two-level atoms, which can be regarded as the many-body version of
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the quantum Rabi model. Quantum phase transitions (QPTs) are phase transitions

which happen at zero-temperature. As a result, quantum criticality is dominated

by quantum fluctuations rather than thermodynamic fluctuations. The Dicke model

supports a QPT in the thermodynamic limit: When the atom-photon interaction

strength is low, the system is in a normal phase in which the photonic mode is not

macroscopically populated; and when the interaction strength increases and exceeds

a threshold, the system will enter a superradiant phase in which the number of popu-

lated photons will be proportional to the number of atoms. The original superradiant

QPT is a second order one with an ordinary critical point at the phase boundary. We

show in [17] that if we introduce a staggered magnetic field to the atoms, we can ex-

pand the one-dimensional phase diagram to two-dimensional and extend the critical

point to a critical line, which terminates at a tricritical point, and the phase diagram

is identical to the one discussed by Griffiths in [6], in the sense that the phase dia-

grams share the same topology. Our work on the tricritical Dicke model was followed

by the authors of [19] to achieve fourth-order criticality in Dicke-like systems. For

the experimental part, a tricritical point has been found in spin-1 spin–orbit-coupled

Bose gases [20].

In our most recent work, we find that arbitrary-order multicritical point can be

realized in generalized Dicke models, which includes previously-found multicritical

Dicke-like models as special cases. We discuss in detail under what condition mul-

ticritical phenomena will happen. And we also study the quantum fluctuation char-

acterized by bipartite von Neumann entanglement entropy. We will introduce the

details of this work in Chapter 2.
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1.2 Artificial flat-band lattice models

Tight-binding lattice models are powerful simplifications of real physical processes

happen in crystals. While an electron in a crystal possesses infinite many degrees of

freedom, tight-binding lattice models approximate the real physics by assuming that

only a finite number of degrees of freedom are relevant, like the assumption made in

two-level atoms. The tight-binding lattice models capture the essential physics while

being simple, and are widely used in condensed matter physics. In AMO physics,

optical lattice [21], synthetic dimension [22], and other techniques, provide platforms

of artificial lattices.

The simplest lattice models consider only single-particle processes without taking

interactions into account. With the discrete translational symmetry of the lattice,

the single-particle eigenstates of the models are Bloch waves, taking the pseudo-

momentum as their quantum number, grouping the eigenenergies into several bands,

and the number of bands equals the degrees of freedom per lattice cell. When a band

is dispersionless, i.e., the energy is independent of the momentum, we say the band

is flat.

Flat bands can occur naturally, leading to quantum magnetism [23], or be con-

structed from artificial lattices with specially designed lattice structures [24]. We are

curious about the latter. A flat band contains massively degenerate eigenstates. The

massive degeneracy of a flat band has two major consequences: 1). The band has

no intrinsic energy scale and could be sensitive to even the weakest perturbation and

produce rich physics, and 2). Because the Bloch waves in the band share the same

energy, it is possible to superimpose them to build localized states which remain as

eigenstates on the same band. The sensitivity of flat bands to perturbation is one of

the most important motivation of studying flat-band models. For example, when the
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perturbation is disorder causing Anderson localization, the flatness may modify the

localization length [25], create ’inverse’ Anderson transition [26], or generate disorder-

induced topological phase transitions [27], etc. When the perturbation is interaction,

strongly correlated phases may be produced [28–30]. And one of the most well-known

novel physics emerged from flat band is the fractional quantum Hall effect [31–33] that

is the result of the combination of degenerate Landau levels and interactions between

electrons.

Because of the amazing properties of flat bands and the growing capability of

fabricating lattice models in lab, it is worth figuring out a systematic way of designing

flat-band models. People have tried various method for building flat bands [34–38],

most of them utilizing the so-called compact localized states (CLSs). As we mentioned

earlier, flat bands support localized states as their eigenstates, and a CLS is a state

among the various localized eigenstates that minimizes the number of cells occupied

by the states. The flat-band Hamiltonian is the parent Hamiltonian of the CLSs, in

the sense that the CLSs resides in the null space of the Hamiltonian, up to a constant

energy shift (i.e., shift the energy of the flat band to zero). Given a CLS, we may be

able to construct a flat-band model by solving an inverse eigenvalue problem.

Though the CLS method successfully generate all kinds of flat-band models in

one-dimensional lattices [34], it faces some major difficulties, particularly for higher

spatial dimensions. For an arbitrary localized state on a given lattice, its parent

Hamiltonian may not exist, because the corresponding inverse eigenvalue problem

that may not have a solution. Moreover, the inverse problem is in general compu-

tationally cumbersome, particularly for spatial dimensions larger than one. Another

drawback of the CLS method is that information about the band spectrum cannot

be obtained readily. In particular, one cannot know a priori whether the flat band is
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a ground or an excited band, while it is often preferred that the flat bands are the

lowest bands if the model is realized by superconducting networks [24].

With these considerations in mind, we propose a new protocol of generating flat

band models utilizing a simple mathematic object in linear algebra, the Gram matrix.

We will introduce the protocol in Chapter 3, and it can be seen that all the difficulties

faced by the traditional CLS method can be overcome.

Another feature of our new protocol is the capability of generating topological

flat bands. Through the Gram matrix method, we reproduce the Kapit-Mueller

model [39–41], which supports massively degenerate ground states with non-trivial

Chern number that can be regarded as Landau levels on discrete lattices. Our method

reveals the universal scaling of the degeneracy of the flat band in the Kapit-Mueller

models, which is closely related to the completeness of some subsets of coherent states

and is applicable to infinite many different models that do not share the discrete

Landau level description.
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Chapter 2

Multicriticality in generalized Dicke models

2.1 Dicke model and superradiant phase transitions

In 1954, Dicke [18] discovered that two-level atoms trapped within a small volume

can emit photons coherently and constructively, leading to amplified radiation named

superradiance. Ever since then, the Dicke model has attracted extensive attention and

become one of the most iconic models in quantum optics and quantum many-body

physics. The Dicke Hamiltonian is given by

HDicke = ωa†a+
g
(
a+ a†

)
2
√
N

N∑
k=1

σ(k)
x + ε

N∑
k=1

σ(k)
z , (2.1)

which describes an ensemble of two-level atoms interacting with a quantized photonic

mode. In Eq. (2.1), the two-level atoms are depicted by Pauli matrices σx and σz

where the upper index distinguishes different atoms. The bare atomic term εσz gives

the energy spacing 2ε between the two levels. The total number of atoms is N . The

photonic mode is represented by bosonic annihilation and creation operators a and

a†, and the light frequency is ω. The atoms and photons couple through the dipole

moment represented by σx, and the dipole interaction strength is given by g. The

Hamiltonian processes a Z2 symmetry such that HDicke is invariant when adding minus

signs to the photonic and atomic operators simultaneously: a→ −a, σx → −σx.

Hepp and Lieb [42] studied the properties of the Dicke model in thermal equilib-

rium. In the thermodynamic limit N → ∞, it is found that, when the interaction

between atoms and photons is weak, the system is in its normal phase, in which the
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number of photons does not grow with N . By contrast, when the interaction is strong,

the system will enter the superradiant phase, in which the number of photons will

be proportional to N . The phase transition is continuous with a critical point at the

phase boundary. At zero-temperature, the location of the phase boundary is deter-

mined by a single parameter κ := ωεg−2, which can be obtained from the mean-field

theory.

The mean-field Hamiltonian is obtained by ignoring the commutator
[
a, a†

]
= 1

as done in [43], and replacing the bosonic operators by a real number
√
Nφε/g that

represents the photonic degrees of freedom with neglected quantum fluctuation:

hMF := ε
(
κφ2 + φσx + σz

)
. (2.2)

The replacement is equivalent to assuming the system being in a direct-product state,

of atoms and photons, |atom〉 ⊗
∣∣∣√Nφε/g〉, where |atom〉 represents an atomic state

where all the atoms share the same orientation, and
∣∣∣√Nφε/g〉 represents a photonic

coherent state. No entanglement between the atoms and photons is included in the

mean-field approximation.

The ground state energy of the mean-field Hamiltonian can be easily calculated:

εMF (φ) = ε
(
κφ2 −

√
φ2 + 1

)
. (2.3)

At zero-temperature, there is no thermal fluctuation, and the photonic coherent state

will take a specific value of φ which minimizes the ground-state energy, and this

value of φ is considered as the order parameter of the model in the framework of

the Landau theory of phase transition. When κ > 1/2, εMF has a single minimum

located at φ = 0, which means there is no photon,
〈
a†a
〉

= 0, and the system is

in the normal phase. When κ < 1/2, εMF has two global minimums located at

φ = ±
√

1
4κ2 − 1, accordingly

〈
a†a
〉

= Ng2
(

1
4
− κ2

)
/ω2, which means the system
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enters the superradiant phase. Because the order parameter is a continuous function

of κ, so the phase transition is second-order and the phase boundary κ = 1/2 is a

critical point. The phase transition can also happen at finite temperature, but here

we focus on quantum phase transitions only.

The mean-field result is only an approximation because of the neglected quantum

fluctuation. In particular, the mean-field result is independent from N , predicting

that the phase transition occurs no matter how many atoms there are, which is not

correct. Without quantum fluctuation, there is an abrupt change in the photon num-

ber from
〈
a†a
〉

= 0 to
〈
a†a
〉

= Ng2
(

1
4
− κ2

)
/ω2, whereas quantum fluctuation can

smear out the singularity when N is finite. In fact, the bare vacuum state satisfying〈
a†a
〉

= 0 will never be the true ground state of the Dicke model as long as the

interaction is turned on, which can be seen by simple variational argument. Suppose

no more than one photon can appear and no more than one atom can be excited,

then the restricted Hilbert space will have dimension four. In the restricted Hilbert

space, the expectation value of the Dicke Hamiltonian HDicke can be represented by

the expectation value of some Pauli matrices:

〈HDicke〉 =
〈ω

2
σ(0)
z +

g

2
σ(0)
x σ(1)

x + εσ(1)
z

〉
+
ω

2
− (N − 1) ε.

It can be shown that
〈
a†a
〉

=
〈
σ

(0)
z + 1

〉
> 0 for the ground state of ω

2
σ

(0)
z + g

2
σ

(0)
x σ

(1)
x +

εσ
(1)
z as long as g 6= 0. Therefore, we can always find a photon in the dressed vac-

uum due to quantum fluctuation, and the difference between the number of photons

between the κ > 1/2 region and the κ < 1/2 region can be significant only when

Ng2/ω2 � 1 according to the mean-field results. Hence, the phase transition should

be understood asymptotically in terms of a large Ng2/ω2, otherwise there will not ex-

ist distinct phases due to quantum fluctuation. The expression Ng2/ω2 suggests that

not only can the superradiant phase transition happen in the thermodynamic limit
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N → ∞, but it can also happen in another limit, ω/g → 0 for any finite N , which

is called the classical oscillator limit [44]. We will only consider the thermodynamic

limit in this section, and introduce the classical oscillator limit in the next section.

In the thermodynamic limit, the effect of quantum fluctuation can be investi-

gated through the Holstein-Primakoff transformation [45]. The Dicke Hamiltonian

in Eq. (2.1) can be cast into another form through the collective spin operators

Jx,z := 1
2

∑N
k=1 σ

(k)
x,z :

HDicke = ωa†a+
g√
N

(
a+ a†

)
Jx + 2εJz. (2.4)

The Holstein-Primakoff transformation represents Jx and Jz by new bosonic operators

b and b†

Jx =
1

2
b†
√
N − b†b+ h.c.,

Jz = b†b− 1

2
N.

In the large N limit, where N �
〈
b†b
〉
,
〈
a†a
〉
, Eq. (2.4) can be written as

HDicke = ωa†a+ 2εb†b+
g

2

(
a+ a†

) (
b+ b†

)
− εN + o (1) . (2.5)

This model can be interpreted as a two-dimensional harmonic oscillator with the

effective position and momentum operators given by

X1 :=
1√
2ω

(
a+ a†

)
,

X2 :=
1

2
√
ε

(
b+ b†

)
,

P1 := i

√
ω

2

(
a† − a

)
,

P2 := i
√
ε
(
b† − b

)
.
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Thus, the Dicke Hamiltonian becomes

HDicke =
1

2

(
2∑

j,k=1

PjδjkPk +XjΩ
2
jkXk

)
− εN + o (1) . (2.6)

where

Ω2 :=

 ω2
√

2ωεg
√

2ωεg 4ε2

 .

The eigen-frequencies λ+, λ− of the two-dimensional harmonic oscillator are given by

the square roots of the eigenvalues of the matrix Ω2:

λ2
± =

ω2 + 4ε2

2
±

√
2ωεg2 +

(
ω2 − 4ε2

2

)2

, (2.7)

and consequently the eigenvalues of HDicke take the form

E (n−, n+) =

(
n− +

1

2

)
λ− +

(
n+ +

1

2

)
λ+ − εN + o (1) , (2.8)

where n− and n+ are two non-negative integers that must be much less than N , in

order for the conditions N �
〈
b†b
〉
,
〈
a†a
〉

to hold. Obviously, for this result to make

sense, the smaller eigenvalue of Ω2, λ2
−, cannot be negative. Therefore, the condition

λ− = 0 marks a phase transition. It can be easily verified that λ− = 0 coincides with

the mean-field phase boundary κ = 1/2. In other words, the mean-field theory gives

the exact phase diagram in the thermodynamic limit.

The success of the classical mean-field theory in predicting the phase boundary

does not mean that the phase transition is classical. When λ− approaches zero, the

characteristic length of the two-dimensional harmonic oscillator goes to infinity. As

a result, the ground state of the oscillator contains a great amount of quantum fluc-

tuation, breaks the conditions N �
〈
b†b
〉
,
〈
a†a
〉
, and thus invalidates the large-N

expansion of the Dicke Hamiltonian. The diverging quantum fluctuation indicates

that the point κ = 1/2 is indeed associated with quantum criticality. People have
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calculated the atom-photon von Neumann entanglement entropy to characterize the

quantum fluctuation and the critical behavior [46–48]. We will calculate the entan-

glement entropy to characterize the multicriticality in the generalized Dicke models

we propose later.

2.2 Superradiant phase transition in the classical oscillator

limit

In the previous section, we mentioned that the mean-field theory suggests that the

superradiant quantum phase transition in the Dicke model occurs not only in the

thermodynamic limit N → ∞, but also in the limit ω/g → 0. The latter is named

classical oscillator limit because when ω is small, the quantum oscillator ωa†a be-

have like a classical one. The classical oscillator limit will not alter the mean-field

result, giving the same mean-field phase diagram as that in the thermodynamic limit.

However, the two limit show qualitatively different behaviors in terms of quantum

fluctuation, as we will illustrate in this section. We set N = 1 for simplicity, which

reduces the Dicke model to the quantum Rabi model, whose exact eigenenergies can

be solved iteratively [49].

First, because the superradiant phase transition is understood asymptotically, we

need to determine the order of magnitude of ε, given ω/g → 0 in the classical oscillator

limit. This can be done by noticing that the parameter κ = ωεg−2 determining the

phase diagram should be finite, κ ∼ 1. Consequently, ε ∼ g2/ω, which can also

be verified by equating the order of magnitude of each term in Eq. (2.1). In the

superradiant phase, the mean-field analysis tells us 〈a〉 ∼ g/ω, so

〈
ωa†a

〉
∼

〈
g
(
a+ a†

)
2

σx

〉
∼ g2/ω.
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As a result, the last term 〈εσz〉 should have the same order of magnitude, which yields

ε ∼ g2/ω. Without loss of generality, we take ε ∼ 1, and g and ω are regarded as

first-order and second-order infinitesimal, respectively.

Because ε is much larger than the rest of energy scales, in the ground state, the

atom will almost be fixed to its lower-energy state, leaving the photonic mode the

only degree of freedom. It is possible to map the whole Hamiltonian in Eq. (2.1)

to the lower-energy manifold of the atom, neglecting the atom-photon entanglement

and derive an effective Hamiltonian for the photons, which is accurate to the lowest

order [44]:

Heff = ω

(
a†a− 1

8κ

(
a+ a†

)2
)
. (2.9)

Again, this effective Hamiltonian is valid only when the fluctuation in the photon

mode
〈
a†a
〉

is finite. Using Bogoliubov transformation, the effective Hamiltonian

can be diagonalized and further simplified to Heff = ωCOb
†b, where b is a new bosonic

annihilator that is a linear combination of a and a†, and the dressed frequency ωCO :=√
1− 1

2κ
ω. The dressed frequency vanishes when κ = 1/2 and becomes imaginary

when κ < 1/2, which again confirms the mean-field result that the superradiant phase

transition happens at the critical point κ = 1/2, just like in the thermodynamic limit.

We have seen that either in the thermodynamic limit N → ∞ or in the classical

oscillator limit ω/g → 0, the phase diagram and the position of the critical point

are exactly determined by the mean-field theory despite the presence of quantum

fluctuation, which is shown later to be a general property of the family of Dicke-like

models with superradiant phase transitions. Because the mean-field theory in the

Dicke-like models is equivalent to the single-parameter Landau theory of phase tran-

sition with Z2 symmetry, we are going to study the geometry of the phase diagrams

in the Landau theory, and, more importantly, find those multicritical manifolds.
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2.3 Multicriticality in the single-parameter Landau theory

of phase transition with Z2 symmetry

The Landau theory of phase transitions is the basic theoretical framework to describe

phase transitions involving spontaneous symmetry breaking. In the case of the Dicke

model, it is the Z2 symmetry described under Eq. (2.1) that gets broken in the su-

perradiant quantum phase transition. In the normal phase, the single non-degenerate

ground state remains invariant under the transformation a → −a and σx → −σx.

In the superradiant phase, the ground states are two-fold degenerate, and we can

properly choose the two basis vectors of the ground state manifold such that the two

state vectors exchange under the transformation mentioned above. In the Landau

theory, the spontaneous symmetry breaking is described by the change of the order

parameters. In the case of the Dicke model, the single order parameter φ is chosen

to be proportional to 〈a〉, which would be zero in the normal phase, and would take

two non-zero values with opposite signs in the superradiant phase. The value of the

order parameter should minimize the free energy, which coincides with the ground-

state energy in a zero-temperature quantum phase transition. In general, for phase

transitions breaking a Z2 symmetry with a single order parameter φ, the free energy

F is an even function of the order parameter, analytic at φ = 0, expressed by a Taylor

series containing only the even power terms:

F (φ) =
∞∑
n=0

cnφ
2n. (2.10)

We are going to analyse the phase diagram given the free energy in Eq. (2.10).

With Eq. (2.10), the order parameter φ may change singularly around some point

φ 6= 0. For example, certain free energy F could have four local minimums whose

locations are {φ1,−φ1, φ2,−φ2} where φ1, φ2 6= 0, then the order parameter changes
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abruptly from φ1 to φ2 when the parameters cn’s in Eq. (2.10) change in a way such

that it turns F (φ1) < F (φ2) into F (φ1) > F (φ2) while keeping the locations of

the local minimums unchanged. Though being singular, this kind of transitions does

not involve symmetry breaking, so we will only focus on the case where a zero φ

changes to some non-zero values which happens when the Dicke-like models enter the

superradiant phase from the normal phase.

The superradiant phase transition can be either continuous or discontinuous. Al-

though the discontinuous phase boundary can rarely be obtained analytically, the

critical points, including the multicritical points we are interested in, always reside

on the continuous phase boundary where φ = 0, thus we can use the Taylor series

Eq. (2.10) to derive the equations on the parameters cn’s which specify the critical

and multicritical manifolds.

First, the simplest case that is frequently discussed in text books is that all cn’s

ares zero except c1 and c2. In this case, the free energy is quadratic in terms of φ2 so

the minimums can be easily calculated. It is required that F has a global minimum

to make the system stable, so we must have c2 > 0. Now, F can be written as

F = c2

(
φ2 +

c1

2c2

)2

− c2
1

4c2

,

which has two global minimums at φ = ±
√
− c1

2c2
if c1 < 0, or has one global minimum

at φ = 0 if c1 > 0. Therefore, the equation determining the critical manifold, where

two global minimums merge into one, is given by c1 = 0. Because c1 is a function

of the thermodynamic variables, the equation c1 = 0 gives a critical manifold in the

phase space whose dimension is one less than the dimension of the phase diagram.

Is there a high-order critical point when F is quadratic in φ2? The answer is no.

As we introduced in Chapter 1, an nth-order critical manifold is the intersection of
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(n− 1)th critical manifolds. In the case that F is quadratic in φ2, there is at most

two global minimums. When the two minimums merge into one, they produce the

only critical manifold specified by the equation c1 = 0, which cannot intersect with

another critical manifold to produce a tricritical point. Note that the values of c0 and

c2 do not affect the phase diagram, because either adding or multiplying a constant

to F does not change the location of the minimums.

Therefore, to have two or more critical manifolds that intersect, we must have

at least three minimums. The simplest F that support three minimums is a cubic

function in φ2. To guarantee the existence of a lower bound of the free energy, the

coefficient c3 must be positive. One of the three local minimums must be located at

φ = 0 due to the symmetry. When dF
dφ2

∣∣∣
φ=0

> 0, φ = 0 must be a local minimum. We

know

dF

dφ2
= c1 + 2c2φ

2 + 3c3φ
4,

so when c1 > 0, φ = 0 is a local minimum. F may also have two local minimums at

φ = ±φ0, where φ2
0 > 0 is the larger solution of the equation dF

dφ2

∣∣∣
φ2=φ2

0

= 0. Thus,

φ2
0 =

√
c2

2 − 3c1c3 − c2

3c3

,

with the condition c3 > 0. To make φ2
0 > 0, it is required that, either c1 < 0, or

c2 < 0 and c2
2 ≥ 3c1c3. In addition, when c1 = 0 and c2 ≥ 0, φ = 0 is a minimum. In

conclusion, the free energy F has:

1. A single local minimum at φ = 0, which is also the global minimum, if c1 > 0

and c2
2 < 3c1c3, or c1 ≥ 0 and c2 ≥ 0;

2. Double local minimums at φ = ±φ0, which are also the global minimums, if

c1 < 0, or c1 = 0 and c2 < 0;
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3. Three local minimums at φ = 0,±φ0, if c1 > 0 and c2 < 0 and c2
2 ≥ 3c1c3.

In the third case above, to determine where the global minimum is, we need to

evaluate F at φ = 0 and φ2 = φ2
0, respectively. The calculation can be simplified by

noticing that when F has three global minimums, it must take the form

F = c0 + c3φ
2
(
φ2 − φ2

0

)2
.

By identifying this formula with the Taylor expansion of F , we get

−2φ2
0c3 = c2,

or

c2 + 2
√
c1c3 = 0.

In the phase diagram, this equation specify the triple line, where three phases coexist.

When c2 + 2
√
c1c3 > 0, the single global minimum locates at φ = 0, and when

c2 + 2
√
c1c3 < 0, the double global minimums locate at φ = ±φ0.

With all of the discussion above, we can establish the phase diagram (see Fig. 2.1

(a)) in the two-dimensional parameter space spanned by c1 and c2. There is a con-

tinuous phase transition boundary, which is also the critical line, whose shape is

determined by the equation c1 = 0 and c2 ≥ 0, and there is a discontinuous phase

transition boundary, which is also the triple line, whose equation is c2 + 2
√
c1c3 = 0

and c2 < 0. The two boundaries smoothly join together at the point c1 = c2 = 0,

in the sense that the derivative dc1
dc2

approaches zero when we approach the point

c1 = c2 = 0 along either line. The boundary divides the phase diagram into two half

plane. The half plane contains the region c1 < 0 represents the symmetry-breaking

phase and the other plane represents the symmetry-preserving phase.
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Figure 2.1 : (a) The phase diagram associated with a free energy F that is a cubic
polynomial in φ2. The solid lines are the phase boundaries. The region to the left
of the boundary marked by A and C is the symmetry breaking phase and the right
marked by B and D is the symmetry preserving phase. The red solid line in the region
c2 > 0 is the critical line. The green solid line in the region c2 < 0 is the triple line
where three global minimums coexist. The region C and D within the blue dashed
line has three local minimums in the free energy. The black dot in the center is the
tricritical point. (b) Typical plots of F against φ for different regions shown in panel
(a).

We see the phase diagram has the same structure as the one given by Griffiths

in [6], where a tricritical point appears at the intersection of the continuous phase

transition boundary and the discontinuous phase transition boundary. So, is the point

c1 = c2 = 0 in the current phase diagram also a tricritical point? The answer is yes.

But we see only one critical line in Fig. 2.1 (a), so where are the other critical lines

that it intersect with? Like the case studied by Griffiths, the other critical lines do not

reside in the accessible phase space subjecting to the Z2 symmetry. They are visible

in the three-dimensional phase diagram, in which the additional axis represents the

variable conjugate to the order parameter. In this case, the free energy is modified by

an additional term c1/2φ which breaks the Z2 symmetry. With such a linear term in
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the free energy, it becomes difficult to write down the analytical expressions for the

minimums of F , but we can still analyse the geometry of the phase diagram. First,

the maximum number of the local minimums of F is still three, because a liner term

would only shift the function dF
dφ

by a constant. Then, let us mark the locations of

the three local minimums by α, β, and γ if they exist, with the condition α < β < γ.

Now, with the Z2 symmetry broken, β is not necessarily zero, and α may be different

from −γ. By properly adjusting c1/2, it is possible either to make α and β the global

minimums that merge into one minimum at a critical line, or to make β and γ the

global minimums that merge at another critical line. These two new critical lines will

join the critical line on the Z2-symmetric surface at the point c1 = c2 = 0, where the

three global minimums merge simultaneously. Thus, in the extended phase diagram

including the conjugate variable c1/2, it is manifested that the point c1 = c2 = 0

is indeed the tricritical point. We plot the phase boundaries of the extended phase

diagram in Fig. 2.2.

Next, we consider the case where F is a polynomial of φ2 with degree p. Again, to

ensure the stability, the coefficient cp > 0. In general, it is impossible to write down

the analytical expressions for the minimums of F , however, it is possible to gain

insight into the topology of the minimums, that is, how the minimums merge and

split, which gives rise to the critical and multicritical points. In the cubic case, the

third-order critical point is the point where three global minimums merge. Similarly,

in general, the nth-order critical point should be the point where n global minimums

merge, if we are allowed to break the Z2 symmetry. This definition is consistent

with the previous one, because when we have n global minimums, we can select n

groups of (n− 1) minimums to merge into (n− 1)th order critical manifolds, and the

intersection of these n lower-order critical manifolds is the point where all of the n
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Figure 2.2 : The phase diagram associated with a free energy F that is a cubic
polynomial in φ2 plus a linear term c1/2φ breaking the Z2 symmetry. The three
critical lines are marked by green solid lines, which intersect at the tricritical point,
the black dot, in the center. The triple line is marked by a yellow dashed line. The
discontinuous phase transition boundaries are marked by red surfaces.

minimums merge, giving rise to the nth-order critical point. F has at most p global

minimums, so the highest order critical point it can support is of pth order. When a

general polynomial F ′ (where the prime is to denote the broken Z2 symmetry) of φ

with degree 2p has n ≤ p global minimums, it can always be cast into the form

F ′ =
n∏
k=1

(φ− ak)2
p−n∏
l=1

(φ− bl) (φ− b∗l ) + F ′0, (2.11)

where ak’s are the locations of the n minimums, bl’s are some complex numbers

with non-vanishing imaginary part, and F ′0 is the value F ′ takes at the minimums.

When the n minimums in Eq. (2.11) merge, the ak’s approach the same value a0
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simultaneously, and as a result F ′ takes the form

F ′ = (φ− a0)2n
p−n∏
l=1

(φ− bl) (φ− b∗l ) + F ′0.

Therefore, we derive another criteria for the multicriticality, that is, around an nth-

order critical point φ = a0, the free energy should be a power function of φ − a0 to

the 2nth, or F ′ − F ′0 ∝ (φ− a0)2n. In the case a0 = 0, we have

F = φ2n

p−n∏
l=1

(
φ2 +

∣∣b2
l

∣∣)+ F ′0.

Accordingly, the equations to determine the nth order critical manifold in the phase

diagram is

c1 = c2 = · · · = cn−1 = 0, (2.12)

with

cn, cn+1, · · · , cp > 0. (2.13)

In general, F may not be a polynomial but a series with infinite terms. The

previous argument which leads to Eq. (2.12) still holds. And now we have infinite

number of parameters cn, cn+1, · · · that need to satisfy the inequality Eq. (2.13).

However, it is somehow impracticable to apply those infinite many conditions on the

thermodynamic variables. The problem can be circumvented by considering only very

small value of φ because we are studying continuous phase transitions. As long as

cn > 0, the higher-order terms cn+1, cn+2, · · · can be neglected without changing the

behavior of F in a sufficiently small neighborhood around φ = 0. Therefore, we can

say the nth-order critical condition for a free energy F taking the form in Eq. (2.10)

is given by Eq. (2.12) together with

cn > 0. (2.14)
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Eq. (2.12) indicates that an nth-order critical manifold has the dimension D − n + 1

where D is the dimension of the phase diagram.

Before we end this section, last but not least, let us discuss the scaling behaviors

of the multicritical points within the mean-field theory. The multicritical conditions

automatically generate multiple principal directions of scaling in the phase diagram.

At an nth-order critical point, (n− 1) coefficients in Eq. (2.12) vanish. In the phase

diagram, when we move a little away from the multicritical point, some of the coeffi-

cients may become non-zero. Suppose we pick a special direction in the phase space

such that only the value of ck, 1 ≤ k < n, changes. If ck becomes positive, then the

global minimum of the free energy is located at φ = 0 such that the system is in the

normal phase. If ck becomes negative, the position of the global minimum will be

φ = ±
(
−kck
ncn

) 1
2(n−k)

. (2.15)

Thus, n − 1 different scaling directions can be identified. In general, a small change

in an experimentally accessible thermodynamic variable x from its multicritical value

x0 will result in the change of multiple ck’s, determined by the non-zero component

in the gradient vector ∂xc :=
(
∂c1
∂x
, ∂c2
∂x
, . . . , ∂cn−1

∂x

)
, where the derivatives are taken at

the multicritical point x0. Because now ck’s are much smaller than cn, the positions

of the minimums have to be much smaller than 1. In this case, the dominant term in

the power series of F would be the one with the smallest exponent. Suppose kmin (x)

is the smallest k that
∣∣∂ck
∂x

∣∣ has the same order of magnitude as |∂xc|√
n−1

, then we can

approximate the position of the global minimum by

φ ≈


0, when

∂ckmin(x)

∂x
(x− x0) > 0

±
(
−kmin(x)

∂ckmin(x)

∂x
(x−x0)

ncn

) 1
2(n−kmin(x))

, when
∂ckmin(x)

∂x
(x− x0) < 0

, (2.16)

which characterizes the scaling behavior of the order parameter near the nth-order
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critical point.

2.4 Generalized Dicke models in the mean-field theory

After a general discussion of the multicriticality within the framework of Landau

theory of phase transition, we now turn to study a generalized Dicke model which

supports multicritical superradiance phase transitions.

2.4.1 The Dicke model with multi-level atoms

We have seen that a critical point occurs at the phase boundary of the superradiant

phase transition in the Dicke model that describes atoms by the two-level approxi-

mation. However, real atoms possess complicated level structures. Even if we restrict

ourselves to the ground state manifold, a typical atom often features more than two

levels. This motivates us to investigate an important generalization of the Dicke

model where the two-level atoms are replaced by multi-level atoms, and hopefully the

additional degrees of freedom in the multi-level generalization of the Dicke model can

bring about multicriticality.

Our multicritical Dicke model describes N l-level atoms coupled with a single

photonic mode of frequency ω. The Hamiltonian can be written as:

H = ωa†a+
g
(
a+ a†

)
2
√
N

N∑
k=1

d(k) + ε

N∑
k=1

h(k), (2.17)

where a is the photon annihilation operator, dimension-less single-atom Hamiltonian

h and dipole operator d act on the l inner states of the atoms, g and ε set the

energy scales of the atom-photon interaction and the internal energy of the atoms,

respectively. Conventional Dicke model in Eq. (2.1) is recovered if we take l = 2, and

d and h are replaced by the two-level Pauli operators σx and σz, respectively.
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In order for the generalized Dicke model to support the superradiant quantum

phase transition, we require the Hamiltonian to be invariant under the action: a →

−a, d → −d, h → h. The Z2 symmetry will put some constraints on the dipole

operator and the single-atom Hamiltonian, as we will show later.

2.4.2 The mean-field Hamiltonian and the stability of the mean-field

ground state

First, we will analyse the phase transition of the generalized Dicke model through the

mean-field approach.

To obtain the mean-field Hamiltonian, we perform the same replacement, a →
√
Nφε/g as we did for the original Dicke model which results:

hMF := ε
(
κφ2 + φd+ h

)
. (2.18)

We denote the l eigenvalues of hMF as εk’s, with k = 1, 2, 3, . . . , l, corresponding to

eigenstates |k〉. We assume that the mean-field ground state is non-degenerate with

energy ε1. The mean-field theory requires minimizing ε1 in terms of φ. We assume ε1

is a analytical function of φ, then the local minimums of ε1 satisfies

∂ε1
∂φ

= 0, (2.19)

∂2ε1
∂φ2

≥ 0. (2.20)

We cast the above two formulas into another forms for future use.

First, let us prepare an arbitrary basis of the Hilbert space. For example, we can

choose the eigenvectors of h as the basis vectors. Under this basis, the single-atom

Hamiltonian h is represented by an diagonal matrix. Suppose in this basis, hMF is

diagonalized by a unitary matrix U :

hMF = UEU †, (2.21)
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where E is a diagonal matrix whose kth diagonal element Ekk is εk, with k =

1, 2, 3, . . . , l. In general, U and E are both functions of φ. Now we differentiate

hMF in Eq. (2.18) with respect to φ:

∂hMF

∂φ
= εD, (2.22)

where D is the shifted dipole operator:

D := 2κφ+ d. (2.23)

Alternatively, we differentiate hMF in Eq. (2.21):

∂hMF

∂φ
=
∂U

∂φ
EU † + U

∂E

∂φ
U † + UE

∂U †

∂φ
. (2.24)

Equating the right hand side of Eq. (2.22) and Eq. (2.24), we can obtain the ma-

trix representation of the shifted dipole operator D in the basis consisting of the

eigenvectors of hMF

U †εDU = U †
(
∂U

∂φ
EU † + U

∂E

∂φ
U † + UE

∂U †

∂φ

)
U

= U †
∂U

∂φ
E +

∂E

∂φ
+ E

∂U †

∂φ
U

= U †
∂U

∂φ
E +

∂E

∂φ
+ E

∂
(
U †U

)
∂φ

− EU †∂U
∂φ

=

[
U †
∂U

∂φ
,E

]
+
∂E

∂φ
,

where we have used
∂(U†U)
∂φ

≡ 0. Because the diagonal elements of the commutator

between a diagonal matrix and another matrix is always zero, the diagonal elements

of U †DU equal those of ∂E
∂φ

. Therefore, the expectation value of the shifted dipole op-

erator D with respect to the mean-field ground state is zero as the result of Eq. (2.19),

i.e., (
U †DU

)
11

= 0. (2.25)
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Next, let us consider Eq. (2.20). The second derivative of hMF is 2εκ according to

Eq. (2.22) and Eq. (2.23), and from Eq. (2.21) we have

∂2hMF

∂φ2
=
∂2U

∂φ2
EU † + U

∂2E

∂φ2
U † + UE

∂2U †

∂φ2

+ 2
∂U

∂φ

∂E

∂φ
U † + 2U

∂E

∂φ

∂U †

∂φ
+ 2

∂U

∂φ
E
∂U †

∂φ
.

By applying another basis transformation with the matrix U , we arrive at the equa-

tion:

U †
∂2hMF

∂φ2
U

=U †
∂2U

∂φ2
E +

∂2E

∂φ2
+ E

∂2U †

∂φ2
U

+ 2U †
∂U

∂φ

∂E

∂φ
+ 2

∂E

∂φ

∂U †

∂φ
U + 2U †

∂U

∂φ
E
∂U †

∂φ
U

=2εκ
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Consider the (1, 1) element of the matrix above:

2εκ =ε1

l∑
k=1

U∗k1

∂2Uk1

∂φ2
+
∂2ε1
∂φ2

+ ε1

l∑
k=1

∂2U∗k1

∂φ2
Uk1

+ 2
∂ε1
∂φ

l∑
k=1

U∗k1

∂Uk1

∂φ
+ 2

∂ε1
∂φ

l∑
k=1

∂U∗k1

∂φ
Uk1

+ 2
l∑

k1,k2,k3=1

U∗k11

∂Uk1k2

∂φ
εk2

∂U∗k3k2

∂φ
Uk31

=ε1

(
l∑

k=1

U∗k1

∂2Uk1

∂φ2
+

l∑
k=1

∂2U∗k1

∂φ2
Uk1 + 2

l∑
k1,k2,k3=1

U∗k11

∂Uk1k2

∂φ2

∂U∗k3k2

∂φ2
Uk31

)

+ 2
l∑

k1,k2,k3=1

U∗k11

∂Uk1k2

∂φ
(εk2 − ε1)

∂U∗k3k2

∂φ
Uk31 +

∂2ε1
∂φ2

=ε1

(
U †
∂2
(
UU †

)
∂φ2

U

)
11

+
∂2ε1
∂φ2

+ 2
l∑

k1,k2,k3=1

U∗k11

∂Uk1k2

∂φ
(εk2 − ε1)

∂U∗k3k2

∂φ
Uk31

=2
l∑

k1,k2,k3=1

U∗k11

∂Uk1k2

∂φ
(εk2 − ε1)

∂U∗k3k2

∂φ
Uk31 +

∂2ε1
∂φ2

, (2.26)

where we have used ∂ε1
∂φ

= 0 and
∂2(UU†)
∂φ2 = 0. In the mean time, the following

expression can be evaluated:

ε2
l∑

k=2

∣∣(U †DU)
1k

∣∣2
εk − ε1

=
l∑

k=2

l∑
k1,k2=1

(
U∗k11

∂Uk1k

∂φ
εk + ε1

∂U∗k11

∂φ
Uk1k

)(
U∗k2k

∂Uk21

∂φ
ε1 + εk

∂U∗k2k

∂φ
Uk21

)
εk − ε1

=
l∑

k=2

l∑
k1,k2=1

(
U∗k11

∂Uk1k

∂φ
εk − ε1U∗k11

∂Uk1k

∂φ

)(
−
∂U∗k2k

∂φ
Uk21ε1 + εk

∂U∗k2k

∂φ
Uk21

)
εk − ε1

=
l∑

k=2

l∑
k1,k2=1

U∗k11

∂Uk1k

∂φ
(εk − ε1)

∂U∗k2k

∂φ
Uk21. (2.27)
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Comparing Eq. (2.26) with Eq. (2.27), and using Eq. (2.20) we get

ε

l∑
k=2

∣∣(U †DU)
1k

∣∣2
εk − ε1

≤ κ (2.28)

Especially, when we are on the manifold specified by φ = 0, which includes the critical

manifold located on the phase boundary, we obtain

l∑
k=2

|d1k|2

hkk − h11

≤ κ, (2.29)

where the matrix elements of d and h are taken with respect to the eigenvectors of h,

which are now also the eigenvectors of hMF because φ = 0. The inequality takes the

equal sign when we are on the critical manifold, as we will see later.

2.4.3 Counting the dimension of the phase diagrams

Next, let us discuss the geometry of the critical and multicritical manifolds within the

mean-field theory. In the previous section, we have discussed the single-parameter

Landau theory of phase transition with Z2 symmetry. Now, within the mean-field

description, the free energy in the current case is the mean-field ground state energy

ε1, which can be written as a Taylor series in φ:

ε1 =
∞∑
k=0

ckφ
2k, (2.30)

where ck’s are some real parameters as functions of κ and the matrix elements of d

and h. Eq. (2.12) tells us that an nth-order critical point put (n− 1) constraints on

the parameters in the Hamiltonian, so there must exist at least (n− 1) freely tunable

parameters to achieve an nth-order critical point.

Therefore, we will count the number of freely tunable parameters in the generalized

Dicke model. Because of the presence of the Z2 symmetry, the number of independent

variables in matrix d and h are less than the number of independent variables in a
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general hermitian matrix. The Z2 symmetry requires the existence of a parity operator

P , which makes

PdP = −d, (2.31)

and

PhP = h. (2.32)

Such a parity operator can only take 1 and −1 as its eigenvalues. Because the total

number of eigenvalues of P is l, we denote the number of ±1 in the eigenvalues of

P as l±m
2

. m has to be smaller than l because it is not applicable when all of the

eigenvalues of P are 1 or −1, in which case the equation PdP = −d will never hold.

Because P commutes with h as shown by Eq. (2.32), we can find a set of common

eigenvectors of P and h. Using this set of vectors as a basis, and properly ordering

the basis vectors, P takes the form

P = diag (−1,−1, . . . ,−1, 1, 1, . . . 1) , (2.33)

where the number of ±1 are l±m
2

, respectively. Then, we can evaluate the matrix

elements of PdP :

PdP =



d11 · · · d1 l−m
2

−d1 l−m+2
2

· · · −d1l

· · · · · · · · · · · · · · · · · ·

d l−m
2

1 · · · d l−m
2

l−m
2

−d l−m
2

l−m+2
2

· · · −d l−m
2
l

−d l−m+2
2

1 · · · −d l−m+2
2

l−m
2

d l−m+2
2

l−m+2
2

· · · d l−m+2
2

l

· · · · · · · · · · · · · · · · · ·

−dl1 · · · −dl l−m
2

dl l−m+2
2

· · · dll


.

To make Eq. (2.31) hold, d has to take the form

d =

 0 M

M † 0

 , (2.34)
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where M is a l−m
2
× l+m

2
matrix. So d contains l2−m2

2
variables (real), and h contains l

free parameters because h is diagonal in the basis. Together with κ, there are in total

l2−m2

2
+ l + 1 variables in the mean-field Hamiltonian hMF, whereas ε is an irrelevant

scaling factor. However, not all of these variables can affect the phase diagram. For

example, if we shift the overall energy by adding an arbitrary real number to hMF, the

Hamiltonian changes but the Z2 symmetry as well as the phase diagram is unaffected.

We will then count the number of such irrelevant variables. Besides changing the

overall energy, we can apply a unitary transformation that changes the relative phase

between two eigenvectors of h chosen as the basis. Under this transformation, h is

invariant, and d remain in the form given by Eq. (2.34) although the M matrix may

change. There are in total (l − 1) relative phases that can be changed. In addition,

we can rescale κ and ε by multiplying real factors r1, r2, and now hMF changes into

hMF = ε
(
κr1r2φ

2 + r1φd+ r1h
)

.

If we further absorb a factor ±√r1r2 into φ, we get

hMF = ε

(
κφ2 ±

√
r1

r2

φd+ r1h

)
.

Therefore, d and h can be changed by multiplying two arbitrary real factors, respec-

tively, without changing the physics. In conclusion, the total number of freely tunable

parameters which could change the phase diagram is

D =
l2 −m2

2
+ l + 1− (l − 1)− 3 =

l2 −m2

2
− 1.

For example, when we are dealing with two-level atoms with l = 2, m can only

be ±1, otherwise P reduces to an identity operator, and now D = 22−12

2
− 1 = 1,

which means all of the two-level Dicke models are equivalent to the original Dicke

model in the sense of mean-field phase diagram. Here the only relevant variable is
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κ, and the critical point is at most second order. To have higher order criticality, we

have to consider atoms with more than two levels. When l = 3, m can only be ±1,

and D = 32−12

2
− 1 = 3, so in principle, fourth-order criticality may be realized in a

three-level Dicke system. In the experimental work reported in [20], a tricritical point

is identified in a spin-1 Bose gas subjected to spin-orbit coupling. This system can be

recast into the form of the generalized Dicke model with l = 3 in the classical oscillator

limit. In our work [17] ( see also [19] ), by introducing a staggered magnetic field to

the two-level atoms, we show that this modified Dicke model exhibits tricriticality.

This model can be regarded as a special case of the multicritical Dicke model under

current consideration with l = 4.

2.4.4 The multicritical conditions in terms of d and h

Next, we are going to derive explicit equations that the matrix elements of d and

h satisfy when the system is critical or multicritical. To transform Eq. (2.12) into

equations on the matrix elements of d and h, we need to express the coefficients ck’s

in Eq. (2.30) as functions of the matrix elements. Because φ = 0 on the critical mani-

folds, φ is small near the critical manifolds and it is applicable to use the perturbation

theory, treating the φd term in Eq. (2.18) as a perturbation to the unperturbed part

h, to derive the Taylor expansion in Eq. (2.30).

We apply the perturbation theory introduced in Appendix A to the mean-field

Hamiltonian in Eq. (2.2) to obtain the coefficients ck’s in Eq. (2.30). The basis

vectors are chosen as the eigenstates of h, with the first matrix element h11 being

the non-degenerate smallest eigenvalue of h, and we shift the overall energy of the
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mean-field Hamiltonian such that h11 = 0. Using Eq. (A.1) with ρ = 1, we get

ε1/ε− h11 − κφ2 =
∞∑
k=1

φkTr

 ∑
∑k+1
i=1 ki=k−1

Sk1dSk2d · · · dSkk+1

 ,
where

Sk =

 P1, when k = 0,

−
∑l

n=2
Pn
hknn

, when k > 0,

and Pn is the projector corresponding to the nth eigenstate of h. Because of the Z2

symmetry, the power series must contain only even powers of φ. Because dkk = 0,

as required by Eq. (2.34), two adjacent Sk’s, for example, Sk1 and Sk2 , cannot be S0

simultaneously.

The coefficient c1 is calculated by the second-order perturbation theory:

c1 = Tr

 ∑
∑3
i=1 ki=1

Sk1dSk2dSk3

+ κ

= Tr [P1dS1dP1] + κ

= −
∑
k 6=1

d1kdk1

hkk
+ κ

Therefore, the critical condition c1 = 0 is given by

∑
k 6=1

|d1k|2

hkk
= κ, (2.35)

which is consistent with the stability condition derived in Eq. (2.29).
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The coefficient c2 involves fourth-order perturbation theory:

c2 =Tr

 ∑
∑5
i=1 ki=3

Sk1dSk2dSk3dSk4dSk5


=Tr [P1dS1dS1dS1dP1] + Tr [S1dP1dS1dP1dS1]

+ Tr [P1dS2dP1dS1dP1 + h.c.]

=
∑
k 6=1

−d1k1dk1k2dk2k3dk31

hk1k1hk2k2hk3k3

− dk11d1k2dk21d1k1

h2
k1k1

hk2k2

+ 2
d1k1dk11d1k2dk21

h2
k1k1

hk2k2

=
∑
k 6=1

−d1k1dk1k2dk2k3dk31

hk1k1hk2k2hk3k3

+
|d1k1|

2 |d1k2|
2

h2
k1k1

hk2k2

,

Given c1 = 0 in Eq. (2.35), the tricritical condition c2 = 0 can be cast into

∑
k 6=1

d1k1dk1k2dk2k3dk31

hk1k1hk2k2hk3k3

= κ
∑
k 6=1

|d1k1 |
2

h2
k1k1

. (2.36)

Given Eqs. (2.35)(2.36), the fourth-order critical condition c3 = c2 = c1 = 0 is

obtained through sixth order perturbation theory:

0 =
∑
k 6=1

−d1k1dk1k2dk2k3dk3k4dk4k5dk51

hk1k1hk2k2hk3k3hk4k4hk5k5

+ 2
d1k1dk1k2dk21

h2
k1k1

hk2k2

d1k3dk3k4dk41

hk3k3hk4k4

+ κ
d1k2dk2k3dk3k4dk41

hk2k2h
2
k3k3

hk4k4

+ 2κ
d1k2dk2k3dk3k4dk41

h2
k2k2

hk3k3hk4k4

− κ2 |d1k1|
2

h3
k1k1

. (2.37)

In general, for any order of criticality, the multicritical condition can be obtained

using the perturbation theory. However, as we have seen, the perturbation expansion

becomes more and more complicated when the order of criticality increases, and it

is impossible to solve the equation analytically to obtain the multicritical manifolds

in the phase diagram. Therefore, we want to make some further restrictions on the

d and h matrices such that the multicritical conditions can be greatly simplified. To

this end, we notice that Eq. (2.36) can be written in a form similar to Eq. (2.35) if

we require that the only non-zero matrix elements of d are the first diagonals, that
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is, dij = 0 if |i− j| 6= 1. Such a restriction on d makes the mean-field Hamiltonian

tridiagonal. So we call such a class of generalized Dicke models as tridiagonal Dicke

models. Now ∑
k 6=1

d1k1dk1k2dk2k3dk31

hk1k1hk2k2hk3k3

− κ
∑
k 6=1

|d1k1|
2

h2
k1k1

=
|d12|2 |d23|2

h2
22h33

− κ |d12|2

h2
22

=
κ

h22

(
|d23|2

h33

− κ

)
,

so the equation c2 = 0 becomes

|d23|2

h33

= κ. (2.38)

Under the same condition, Eq. (2.37) becomes

− d1k1dk1k2dk2k3dk3k4dk4k5dk51

hk1k1hk2k2hk3k3hk4k4hk5k5

+ 2
d1k1dk1k2dk21

h2
k1k1

hk2k2

d1k3dk3k4dk41

hk3k3hk4k4

+ κ
d1k2dk2k3dk3k4dk41

hk2k2h
2
k3k3

hk4k4

+ 2κ
d1k2dk2k3dk3k4dk41

h2
k2k2

hk3k3hk4k4

− κ2 |d1k1|
2

h3
k1k1

=−

(
|d12|2 |d23|2 |d34|2

h2
22h

2
33h44

+
|d12|2 |d23|4

h3
22h

2
33

)

+ κ
|d12|2 |d23|2

h2
22h

2
33

+ 2κ
|d12|2 |d23|2

h3
22h33

− κ2 |d12|2

h3
22

=
κ2

h22h33

(
κ− |d34|2

h44

)
,

so the equation c3 = 0 becomes

|d34|2

h44

= κ. (2.39)

Eq. (2.38) and Eq. (2.39) suggest that there exists a general formula for arbitrary

order of criticality. So we claim:

� For tridiagonal Dicke models, the nth order critical condition is given by

|dk−1,k|2 = κhkk, (2.40)
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for all the k’s satisfying 2 ≤ k ≤ n.

Let us now prove this claim. First, we need to transform the general multicritical

condition in Eq. (2.12) into another form. We have assumed that the ground state of

the mean-field Hamiltonian hMF is non-degenerate. Therefore, given Eq. (2.12), the

eigenvalues of hMF have the following asymptotic behavior for small φ:

ε1 = cnφ
2n +O

(
φ2n+2

)
εk = hkk +O

(
φ2
)

, k = 2, 3, . . . , l

The determinant of hMF, denoted as ζl, is the product of the eigenvalues, so it has

the asymptotic behavior

ζl = O
(
φ2n
)
,

which can replace Eq. (2.12) to be the multicritical condition. We are going to prove

that this equation holds as long as Eq. (2.40) is satisfied. To this end, we denote

the determinant of the k × k upper-left submatrix of hMF as ζk, then ζ’s have the

following recurrence relation:

ζk =
(
hkk + κφ2

)
ζk−1 − φ2 |dk−1,k|2 ζk−2

with the initial condition

ζ1 = κφ2

ζ2 = det

κφ2 φd12

φd21 κφ2 + h22

 =
(
κh22 − |d12|2

)
φ2 + κ2φ4.

When the 2nd-order critical condition is satisfied, κh22−|d12|2 = 0, ζ2 = κ2φ4. Assume

when Eq. (2.40) is satisfied, ζk = κkφ2k for k = 1, 2, . . . , k′ − 1, where k′ ≤ n. Then
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the recurrence relation gives

ζk′ =
(
hk′k′ + κφ2

)
ζk′−1 − φ2 |dk′−1,k′ |2 ζk′−2

=
(
hk′k′ + κφ2

)
κk
′−1φ2k′−2 − φ2 |dk′−1,k′ |2 κk

′−2φ2k′−4

= κk
′−2φ2k′−2

(
κhk′k′ − |dk′−1,k′ |2

)
+ κk

′
φ2k′

= κk
′
φ2k′ .

By deduction, it is proved that

ζk = κkφ2k for k = 1, 2, . . . , n.

If n = l, then the proof is complete. If n < l,

ζl = ζnζ
n − φ2 |dn,n+1|2 ζn−1ζ

n+1 = κn−1φ2n
(
κζn − |dn,n+1|2 ζn+1

)
where ζk, k = 1, 2, . . . , n − 1, is defined as the determinant of the (l − k) × (l − k)

lower-right submatrix of hMF. Because ζk’s are polynomials of φ2, so ζl = O (φ2n).

We have finished the proof.

As we will see in section 2.7, the tridiagonal Dicke Hamiltonian can be realized in

experiments.

2.5 Quantum fluctuation in the generalized Dicke model in

the thermodynamic limit

Quantum fluctuation plays an important role in quantum phase transitions. Usually,

the change of the quantum fluctuation during a quantum phase transition can be

represented by the varying correlation length. The correlation length grows when the

critical points are approached and finally diverges at the critical points. The scaling

relations between the correlation length and other control parameters in the system
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are characterized by critical exponents which can be computed using various methods.

However, in our case, the generalized Dicke model is a dimensionless model without

a properly defined length scale. So the quantum fluctuation cannot be depicted by

the correlation length. Instead, we will study the entanglement entropy between the

atoms and the photons to tackle the quantum fluctuation in the generalized Dicke

model.

To this end, we shift the bosonic operator a in Eq. (2.17) by the amount of the

mean-field order parameter

b1 := a− ε
√
Nφ/g,

which turn the generalized Dicke Hamiltonian into the form

H = ωb†1b1 +
g
(
b1 + b†1

)
2
√
N

N∑
k=1

D(k) +
N∑
k=1

h
(k)
MF, (2.41)

where D(k) and h
(k)
MF are the shifted dipole operator and the mean-field Hamiltonian

defined in Eq. (2.23) and Eq. (2.18), respectively, and the upper indices mark different

atoms. As we will see, the new form of H enable us to carry out an asymptotic

expansion of the Hamiltonian in terms of N in the thermodynamic limit, and the

leading terms of the asymptotic series effectively describe the low-energy spectrum

of H when the system is not critical. The ground state of the low-energy effective

Hamiltonian can be readily obtained and offers the entanglement information we

want.

To obtain the effective low-energy Hamiltonian, we need first restrict ourselves

to an invariant subspace of the Hamiltonian. Like what is done in Eq. (2.4), where

the dipole operator and the single-atom Hamiltonian represented by Pauli matri-

ces are replaced by collective spin operators, and then the discussion is restricted

in the subspace where the states possess the largest spin number, we now restrict
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ourselves in the invariant subspace which contains the state where each atom is in

the mean-field ground state. Such a subspace can have totally symmetrized Fock

states
{
|n1, n2, n3, . . . , nl〉 |

∑l
k=1 nk = N

}
as its basis vectors, where nk represents

the number of atoms occupying the kth eigenstate of the mean-field Hamiltonian. In

particular, n1 is the number of atoms in the mean-field ground state. We will evalu-

ate the matrix elements of H with respect to this basis. Because every atom is in an

eigenstate of hMF, the summation
∑N

k=1 h
(k)
MF must be a diagonal matrix under this

basis, and the eigenvalues are given by

N∑
k=1

h
(k)
MF |n1, n2, n3, . . . , nl〉 =

l∑
k=1

nkεk |n1, n2, n3, . . . , nl〉 . (2.42)

where εk’s are the eigenvalues of hMF. For the same reason, the diagonal elements of∑N
k=1D

(k) are given by

〈n1, n2, n3, . . . , nl|
N∑
k=1

D(k) |n1, n2, n3, . . . , nl〉 =
l∑

i=2

niDi,i, (2.43)

where the matrix elements of D are evaluated with respect to the eigenstates of hMF.

The summation on the right hand side of the equation above starts from i = 2 because

of the previous result D11 = 0 in Eq. (2.25), which is the consequence of the stability

of the mean-field ground state. Note that Eq. (2.25) takes a different form because

the matrix elements of D in Eq. (2.25) are written with respect to an arbitrary basis

specified by the unitary matrix U . The off-diagonal elements of
∑N

k=1D
(k) annihilate

an atom in certain mean-field eigenstate and create an atom in another mean-field

eigenstate. So, the non-zero off-diagonal matrix elements of
∑N

k=1D
(k) are given by

〈. . . , ni + 1, . . . , nj − 1, . . . |
N∑
k=1

D(k) |. . . , ni, . . . , nj, . . . 〉 =
√

(ni + 1)njDi,j. (2.44)

where i, j can take the values 1, 2, . . . , l, i < j or i > j. Because we are only interested

in the low-energy states of the Hamiltonian, it is reasonable to assume that most atoms
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occupy the mean-field ground state, that is, n1 ∼ N and ni � N for i = 2, 3, . . . , l

in the thermodynamic limit, which can be verified self-consistently after we solve the

low-energy effective Hamiltonian. Under this assumption, the matrix elements in

Eq. (2.44) can be expanded as a power series in N−1:

〈. . . , ni + 1, . . . , nj − 1, . . . |
N∑
k=1

D(k) |. . . , ni, . . . , nj, . . . 〉

=


D1,j

√
Nnj + o

(√
N
)

, when i = 1

Di,1

√
N (ni + 1) + o

(√
N
)

, when j = 1

o
(√

N
)

, when i, j > 1

. (2.45)

Keeping the lowest order terms in the asymptotic expansion of the matrix elements

of
∑N

k=1D
(k), the Hamiltonian in Eq. (2.41) can be greatly simplified. To do this,

define bosonic operators bi’s, i = 2, 3, . . . , l, by

bi |n1 . . . , ni, . . . 〉 :=
√
ni |n1 + 1 . . . , ni − 1, . . . 〉 .

which satisfy
[
bi, b

†
j

]
= δi,j and similarly [bi, bj] = 0. Then

N∑
k=1

D(k) =
√
N

[
|D1,i|

l∑
i=2

(
bi + b†i

)
+ o (1)

]
, (2.46)

where we have properly chosen the relative phases of the basis vectors such that the

matrix element D1,i is real and positive. And we also have

N∑
k=1

h
(k)
MF = Nε1 +

l∑
i=2

(εi − ε1) b†ibi. (2.47)

So, the Hamiltonian in Eq. (2.41) can be expanded as an asymptotic series in terms

of N−1 and the leading terms are quadratic in the bosonic operators bi’s:

H = Nε1 +Heff + o (1) (2.48)
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Heff :=
l∑

i=1

ωib
†
ibi +

g

2

(
b1 + b†1

) l∑
i=2

|D1,i|
(
bi + b†i

)
, (2.49)

where

ωi :=

 ω, when i = 1

εi − ε1, when i = 2, 3, . . . , l
. (2.50)

From Eq. (2.44) we know that the validity of the asymptotic expansion in Eq. (2.48)

is guaranteed if
∑l

i=2

〈
b†ibi

〉
� N . In other words, if we solve the effective Hamil-

tonian Heff and find that the low-energy states of Heff satisfy this condition, then

Heff correctly describes the low-energy states, otherwise the asymptotic expansion in

Eq. (2.48) is invalid. Assuming Eq. (2.48) is valid, we notice that the leading term Nε1

is just the mean-field energy, which means that the mean-field approach, although

neglects the quantum fluctuation encoded in Heff , gives the exact ground-state energy

up to a residue o (N) which is negligibly small in the thermodynamic limit. There-

fore, the mean-field phase diagram is the exact phase diagram in the thermodynamic

limit as long as the asymptotic expansion in Eq. (2.48) is valid. In other words,

the quantum fluctuation will not modify the multicritical manifolds predicted by the

mean-field theory, which will facilitate experimental study on multicriticality.

The effective Hamiltonian Heff in Eq. (2.49) is quadratic in the bosonic operators,

so it can be solved analytically. We solve Heff by transforming it into a Hamilto-

nian describing an l-dimensional harmonic oscillator. Define position and momentum

operators by

Xi :=
1√
2ωi

(
bi + b†i

)
,

Pi := i

√
ωi
2

(
b†i − bi

)
.

Note that the operators with a lower index 1 represent the photonic degrees of free-

dom, while the ones with a lower index other than 1 represent the atomic degrees of
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freedom. Now the effective Hamiltonian Heff turns into:

Heff =
1

2

(
l∑

j,k=1

PjδjkPk +XjΩ
2
jkXk

)
− 1

2

l∑
k=1

ωk , (2.51)

where Ω2 is an l × l matrix whose diagonal elements are given by

Ω2
kk = ω2

k, k = 1, 2, . . . , l,

and the non-zero off-diagonal elements are

Ω2
1k = g |D1,k|

√
ωωk,

Ω2
k1 = Ω2

1k,

where k = 2, 3, . . . , l. The spectrum of Heff is solely determined by Ω2. By di-

agonalizing Ω2, Heff can be represented as a sum of l independent one-dimensional

harmonic oscillators, whose eigenfrequencies are equal to the eigenvalues λi’s of Ω,

i = 1, 2, . . . , l. As such, the eigenvalues Eeff of Heff are given by

Eeff (χ1, χ2, . . . , χl) =
l∑

i=1

χiλi +
1

2
(λi − ωi) ,

where the non-negative integers χi’s are the excitation number for each of the l inde-

pendent one-dimensional harmonic oscillators. And the ground-state wave function

of Heff is given by

Φ (X) =

(
det Ω

πl

)1/4

exp

(
−
∑l

i,j=1 ΩijXiXj

2

)
, (2.52)

which is the product of the ground-state wave function of the l independent one-

dimensional harmonic oscillators.

Information on the eigenvalues λ2
i ’s of the matrix Ω2 can be obtained by writing

down the characteristic polynomial p (λ2) := det (Ω2 − λ2) of Ω2. Denote the determi-

nant of the upper-left k× k submatrix of Ω2−λ2 as pk, then pk’s have the recurrence



45

relation

pk = αkpk−1 − βk,

αk :=
(
Ω2
kk − λ2

)
βk := Ω2

1kΩ
2
k1

k−1∏
i=2

(
Ω2
ii − λ2

)
which has the solution

pk =
k∏
i=2

αip1 −
k∑
i=2

(
βi

k∏
j=i+1

αj

)

=
k∏
i=1

(
Ω2
ii − λ2

)
−

k∑
i=2

Ω2
1iΩ

2
i1

[
i−1∏
j=2

(
Ω2
jj − λ2

)] [ k∏
j=i+1

(
Ω2
jj − λ2

)]

=

(
k∏
i=1

(
Ω2
ii − λ2

))(
1−

k∑
j=2

Ω2
1jΩ

2
j1

(Ω2
11 − λ2)

(
Ω2
jj − λ2

))

=

(
k∏
i=1

(
ω2
i − λ2

))(
1− g2

k∑
j=2

|D1,j|2 ωωj
(ω2 − λ2)

(
ω2
j − λ2

)) .
Especially,

p
(
λ2
)
≡ pl =

(
l∏

i=1

(
ω2
i − λ2

))(
1− g2

l∑
j=2

|D1,j|2 ωωj
(ω2 − λ2)

(
ω2
j − λ2

)) . (2.53)

The eigenvalues λ2
i are the roots of the equation p (λ2) = 0. First, consider the case

where some of the mean-field eigenenergies are (m+ 1)-fold degenerate, for exam-

ple, ωk = ωk+1 = · · · = ωk+m, then λ2 = ω2
k is a root of p (λ2) with multiplicity

m, because now the first factor of p (λ2),
∏l

i=1 (ω2
i − λ2), contains (ω2

k − λ)
m+1

and

(ω2
k − λ)

(
1− g2

∑l
j=2

|D1,j |2ωωj
(ω2−λ2)(ω2

j−λ2)

)
is analytic at λ2 = ω2

k. The components vi’s of

an eigenvector v ≡ (v1, v2, . . . , vl) of Ω2 corresponding to this root is determined by

the following equations

vi = 0, if i < k or i > k +m,
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and
k+m∑
i=k

|D1,i| vi = 0.

The m solutions of the equations above involves only atomic degrees of freedom

because v1 = 0. They are therefore ‘dark states’ not interacting with the photons.

The only atomic state v′ with mean-field energy εk that interacts with the photons

has the vector components

v′i =


0, if i < k or i > k + f

|D1,i|√∑k+f
i=k |D1,i|2

, if k ≤ i ≤ k + f
.

And the coupling strength between this state and the photons is g
√
ωωk

∑k+f
i=k |D1,i|2.

Therefore, when we encounter dark states that we are not interested in, we can always

reduce the dimension of Ω2 to a smaller l by removing degenerate mean-field states

and renormalizing the atom-photon coupling strength such that the resulting Ω2 does

not possess eigenvalues equal to certain ω2
k. In this case, the characteristic equation

p (λ2) = 0 is equivalent to

q
(
λ2
)

:= ω2 − λ2 − g2

l∑
j=2

|D1,j|2 ωωj
ω2
j − λ2

= 0. (2.54)

The function q (λ2) has simple poles at λ2 = ω2
j , j = 2, 3, . . . , l and q

(
ω2
j ± 0

)
→

±∞. Also, q (±∞) → ∓∞. q (λ2) is monotonically decreasing within each interval

(−∞, ω2
2) , (ω2

2, ω
2
3) , · · · ,

(
ω2
l−1, ω

2
l

)
, (ω2

l ,+∞), supposing ω2
2 < ω2

3 < · · · < ω2
l . There-

fore we have λ2
1 ∈ (−∞, ω2

2), λ2
2 ∈ (ω2

2, ω
2
3), . . . , λ2

l−1 ∈
(
ω2
l−1, ω

2
l

)
, λ2

l ∈ (ω2
l ,+∞).

Note that if ω < ω2, q (ω2) = −g2
∑l

j=2
|D1,j |2ωωj
ω2
j−ω2 < 0, so λ2

1 ∈ (−∞,min (ω2, ω2
2)).

Because it is meaningless if Heff has imaginary eigenvalues, it is required that

λ2
1 ≥ 0, equivalently q (0) ≥ 0, that is,

g2

l∑
j=2

|D1,j|2

ωj
≤ ω, (2.55)
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so we again encounter the stability condition in Eq. (2.28) derived by the mean-field

theory. Thus, the mean-field theory that determines the classical energy landscape

which has the same order of magnitude as the number of atom N , is consistent with

the quantum theory that determines the quantum fluctuation whose energy scale has

the order of magnitude 1. The critical condition is met when the inequality above

takes the equal sign, which makes λ2
1 vanish. When λ2

1 = 0, the gap closes, andHeff has

a continuous spectrum. As for the trapping potential of the l-dimensional harmonic

oscillator, along one direction specified by the eigenvector of Ω2 corresponding to λ1,

the potential is flattened. Thus, the expectation values 〈X2
i 〉 can be arbitrarily large

for the low-energy states so that the condition
∑l

i=2

〈
b†ibi

〉
� N for the validity of the

asymptotic expansion of the Hamiltonian cannot hold. When λ2
1 is small but positive,

the expectation values 〈X2
i 〉 over the ground-state wave function in Eq. (2.52) has

the order of magnitude λ−1
1 , so the low-energy effective Hamiltonian Heff is valid only

when

λ1N � 1, (2.56)

In other words, the system should be sufficiently away from the critical points to make

Heff valid, though the region of validity can be enlarged by increasing the number of

atoms.

Next, we will calculate the von Neumann entanglement entropy between the atoms

and photons in the ground state Φ (X) in Eq. (2.52) to understand the quantum

fluctuation. To this purpose, first we calculate the reduced density matrix for the
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photons:

ρ (x1, x
′
1) :=

∫
dx2 · · · dxl Φ (x1, x2, · · · , xl) Φ∗ (x′1, x2, · · · , xl)

=

(
det Ω

πl

)1/2 ∫
dx2 · · · dxl

e−
∑l
j,k=2 Ωjkxjxk−

x1+x′1
2

∑l
j=2(Ωj1+Ω1j)xj−

Ω11(x2
1+x′21 )
2

=

(
det Ω

π det Ω′

)1/2

e
1
4(x1+x′1)

2∑l
j,k=2 Ω1jΩ

′−1
j−1,k−1Ωk1−

Ω11(x2
1+x′21 )
2 , (2.57)

where Ω′ is the (l − 1)× (l − 1) lower-right submatrix of Ω. Note that

det Ω =
l∑

j=1

(−1)1+j Ω1jM1j

= Ω11 det Ω′ +
l∑

j,k=2

(−1)1+j Ω1jΩk1 (−1)1+k−1M ′
k−1,j−1

= Ω11 det Ω′ −
l∑

j,k=2

Ω1jΩk1C
′
k−1,j−1

= det Ω′

(
Ω11 −

l∑
j,k=2

Ω1jΩ
′−1
j−1,k−1Ωk1

)
, (2.58)

where Mij is the (i, j)-minor of Ω, the determinant of the submatrix of Ω that is

obtained by removing the ith row and the jth column from Ω, M ′
ij is the (i, j)-minor

of Ω′, and C ′ij ≡ (−1)i+jM ′
ij is the (i, j)-cofactor of Ω′. We have used the fact that

the inverse of Ω′ can be expressed through its cofactor:

Ω′−1
ij = C ′ji/ det Ω′.

Then using Eq. (2.58), the reduced density matrix can be written as

ρ (x1, x
′
1) =

(
det Ω

π det Ω′

)1/2

e
1
4(x1+x′1)

2
(Ω11− det Ω

det Ω′ )−
Ω11(x2

1+x′21 )
2

=

(
det Ω

π det Ω′

)1/2

e−
1
2
A+(x2

1+x′21 )+A−x1x′1 , (2.59)
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where

A± :=
1

2

(
Ω11 ±

det Ω

det Ω′

)
.

The von Neumann entropy S is defined as

S = −Tr (ρ ln ρ)

To calculate the entanglement entropy, we need to know the eigenvalues of ρ. To this

purpose, comparing ρ with the propagator of a one-dimensional harmonic oscillator

〈x1| e−
P2

1 +γ2X2
1

2 |x′1〉 =

√
γ

2π sinh γ
e
γ(− cosh γ(x2

1+x′21 )+2x1x
′
1)

2 sinh γ ,

we can identify

cosh γ ≡ A+

A−
(2.60)

such that the eigenvalues of ρ is given by 2 sinh
(
γ
2

)
exp

(
−γ
(
k + 1

2

))
, k = 0, 1, 2, 3, . . .

Now the atom-photon entanglement entropy can be calculated as follows

S = −
∞∑
k=0

(
−γ
(
k +

1

2

)
+ ln

(
2 sinh

(γ
2

)))
2 sinh

(γ
2

)
e−γ(k+ 1

2)

= −2 sinh
(γ

2

)
γ∂γ

1

2 sinh
(
γ
2

) − ln
(

2 sinh
(γ

2

))
=

γ

eγ − 1
− ln

(
1− e−γ

)
. (2.61)

Therefore the entanglement entropy is determined by a single parameter γ. Quite

remarkably, the parameter γ can be extracted from the photon correlation functions.

To see this, we note that

〈
X2

1

〉
=

∫
x2ρ (x, x) dx

=

(
det Ω

π det Ω′

)1/2 ∫
x2e−

det Ω
det Ω′ x

2

dx

=
det Ω′

2 det Ω
, (2.62)
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and

〈
P 2

1

〉
= −

∫
∂2ρ (x, x′)

∂x2

∣∣∣∣
x′=x

dx

= −
∫ [(

det Ω

det Ω′

)2

x2 − A+

]
ρ (x, x) dx

= A+ − det Ω

2 det Ω′

=
Ω11

2
. (2.63)

We also have

〈
X2

1

〉
=

〈(
b1 + b†1

)2
〉

2ω
,

and 〈
P 2

1

〉
= −ω

2

〈(
b†1 − b1

)2
〉
.

So

γ = cosh−1

(
ζ + 1

ζ − 1

)
,

ζ :=
Ω11 det Ω′

det Ω
= −

〈(
b†1 + b1

)2
〉〈(

b1 − b†1
)2
〉
.

The atom-photon entanglement entropy, away from the critical points, can be ex-

pressed as a function of the expectation values of squared quadrature operators b1 +b†1

and b1 − b†1, which can be measured in experiments.

2.6 Critical entanglement entropy in the generalized Dicke

model with finite number of atoms

In the last section, we have seen that the atom-photon entanglement entropy diverges

at the critical point. However, if the number of atoms is finite, then the entanglement
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entropy will have an upper bound N ln l. We want to study how the critical entan-

glement entropy scales with the number of atoms. Before presenting our results, we

make two remarks:

1. It is not applicable to solve the Hamiltonian containing a few higher-order terms

in the asymptotic series to characterize the finite-size effect at the critical point.

2. We need to artificially define criticality and multicriticality for finite-size sys-

tems.

The first remark is readily seen if we notice the symmetry of the higher-order

terms in the asymptotic series. The full expansion of D is given by

〈. . . , ni + 1, . . . , nj − 1, . . . |
N∑
k=1

D(k) |. . . , ni, . . . , nj, . . . 〉

=


D1,j

√
Nnj

(∑∞
k=0

Γ( 3
2)

Γ(1+k)Γ( 3
2
−k)

(
−1+

∑l
r=2 nr
N

)k)
, when i = 1

Di,1

√
N (ni + 1)

(∑∞
k=0

Γ( 3
2)

Γ(1+k)Γ( 3
2
−k)

(
−
∑l
r=2 nr
N

)k)
, when j = 1

Di,j

√
nj (ni + 1) , when i, j > 1

,

which, together with Eq. (2.43), gives following asymptotic series of the Hamiltonian

H =Nε1 +Heff +
g
(
b1 + b†1

)
Ξ

2

Ξ :=
1√
N

l∑
i,j=2

Dijb
†
ibj

+
l∑

i=2

|D1,i|

(
s

(∑l
j=2 b

†
jbj

N

)
bi + b†is

(∑l
j=2 b

†
jbj

N

))

s (x) :=
∞∑
k=1

Γ
(

3
2

)
Γ (1 + k) Γ

(
3
2
− k
) (−x)k .

We notice that Ξ does not contain b1, so if there exist a state vector |Ψ〉 such that

〈Ψ|
g
(
b1 + b†1

)
Ξ

2
|Ψ〉 = CΨ, (2.64)
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then there exists another state vector |Ψ′〉 = exp
(
iπb†1b1

)
|Ψ〉 such that

〈Ψ′|
g
(
b1 + b†1

)
Ξ

2
|Ψ′〉 = −CΨ′ .

So the Hamiltonian containing the first few terms in the asymptotic expansion does

not have a lower bound unless we restrict the Hilbert space by
∑l

j=2 b
†
jbj ≤ N .

Therefore, the higher-order terms in the asymptotic series can only be understood

perturbatively, provided that |CΨ| is small comparing to the energy spacings in Heff .

However, the energy spacings in Heff is infinitesimal at critical point.

Figure 2.3 : (a) The gap δ between the ground state and the first excited state,
and (b) the ground state atom-photon entanglement entropy S, of the original Dicke
model for different atom number N . δ exponentially decreases when κ moves deep
into the superradiant phase.

The second remark is because the singularities that mark the phase boundaries

only occur in the limit Ng2/ω2 → ∞. When the number of atoms is finite, the

gap does not close abruptly and the local maximums of the entanglement entropy

are not located at the critical points predicted in the thermodynamic limit, which is

illustrated in Fig. 2.3. We numerically diagonalize the original Dicke Hamiltonian
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in Eq. (2.1), and in Fig. 2.3 we plot the lowest excitation energy δ and the ground

state atom-photon entanglement entropy S as a function of κ. The number of atoms

is chosen as N = 25, 50, or 100. We also limit the maximum number of photons to

make the dimension of the Hilbert space finite. First we look at the panel (a). When

κ is large, the system is in the normal phase, there is little difference between the

gaps of different atom numbers, and the order of magnitude of the lowest excitation

energy does not change. When κ is small, the system is in the superradiant phase,

but the gap δ is not zero, unlike the case of the thermodynamic limit. Instead, δ drops

exponentially as κ moves towards the superradiant phase. The transition between the

two behaviors of δ happens in a region where κ is smaller than the mean-field phase

boundary. We cannot identify a distinct boundary between the two phases from the

graph. When N is larger, the gap drops faster and the transition region moves towards

the mean-field phase boundary. Next let us take a look at panel (b). The atom-

photon entanglement entropy has a maximum near the mean-field phase boundary.

The more atoms the system has, the larger the maximum entropy of the system can

reach, and the location of the maximum is closer to the mean-field boundary. The

entropy drops faster when the system moves towards the normal phase than when

the system moves towards the superradiant phase. This is because the ground state

in the superradiant phase has additional trivial entanglement. In the thermodynamic

limit, the ground states in the superradiant phase are doubly degenerate. In the last

section, we calculate the entanglement entropy for the two ground states that break

the Z2 symmetry. The two states are not very much different from
∣∣∣±√Nφε/g〉⊗|±〉,

where
∣∣∣±√Nφε/g〉 are the photonic coherent states, and |±〉 are atom states where

all the atoms occupy the mean-field ground state corresponding to ±φ. However,

when there are finite number of atoms, the ground state is non-degenerate and the
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Z2 symmetry is not broken. Now, the single ground state resembles one of the states∣∣∣√Nφε/g〉⊗ |+〉 ± ∣∣∣√Nφε/g〉⊗ |−〉. In the thermodynamic limit, the atom-photon

entanglement entropy of such states is ln 2 plus the result in Eq. (2.61), where ln 2

arises from the superposition of the two symmetry breaking ground states. When

the trivial factor ln 2 occurs in the numerical calculation, it raises the left side of Fig.

2.3 (b) , shifting the location of the maximum entropy to the left and flattening the

peak. Because we are interested in the critical entropy, it is reasonable to define the

maximums of S in Fig. 2.3 (b) as the critical entropy and define the location of the

maximum as the critical point for the finite-N system.

Figure 2.4 : Critical atom-photon entanglement entropy Scri plotted against the atom
number N for tridiagonal Dicke models with different orders of criticality.

We now numerically compare the critical entropy for different order of critical-

ity. We consider a five-level tridiagonal Dicke model, where κ is set as 1, and the

non-zero matrix elements of the dipole operator d are given by (d12, d23, d34, d45) =(√
2,
√

3,
√

3,
√

2
)

in a basis consisting of eigenvectors of h, and the diagonal elements



55

of h are tuned around the 5th order critical point (h11, h22, h33, h44, h55) = (0, 2, 3, 3, 2)

according to the multicritical conditions in Eq. (2.40). The reason we choose such a

d matrix is that it is easy to realize in experiment as we will see in the next section.

If we tune h55 to a sufficiently large value, then the 5th eigenstate of h effectively de-

couples from the rest of the states. As a result, we arrive at a tetracritical (4th order

critical) 4-level tridiagonal Dicke model. And if we further tune h44 to be sufficiently

large, we can reach an effective 3-level tricritical model. And finally if we tune h33

large, we obtain the original Dicke model.

As mentioned earlier, we need to define the critical and multicritical manifolds

because of the finite atom numbers. Unlike the original Dicke model where a single

parameter κ determines the phase diagram, now the critical manifold is not a single

isolated point so it cannot be determined by the global maximum of the entropy. In

Eq. (2.40), we see that each equation contains variables that independent from other

equations. Especially, the equation for the ordinary criticality involves only κ, d12 and

h22. With κ and d12 fixed, we can define the ordinary critical manifold by maximizing

the entropy with respect to h22.

As for the multicritical manifolds, we define them by the mean-field values of

(h33, h44, h55). For example, the 5th order critical point locates at the point maximizing

the entropy with respect to h22 with fixed (h33, h44, h55) = (3, 3, 2). We plot the critical

entropy Scri against the number of atoms for different order of criticality in Fig. 2.4.

We notice that the relation between Scri and lnN has quite good linearity:

Scri ≈ s0 + s1 lnN. (2.65)

We extract the values of s0 and s1 from the graph and collect them in Table. 2.1

We see that both s0 and s1 increases when the order of criticality increases. Thus
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Table 2.1 : Asymptotic behavior of the critical entropy Scri ∼ s0 + s1 lnN .

Order of Criticality 2 3 4 5

s0 0.593(2) 0.642(7) 0.682(7) 0.704(8)

s1 0.1428(7) 0.207(2) 0.238(3) 0.257(3)

we conclude that higher-order of criticality is associated with larger degrees of atom-

photon entanglement entropy.

2.7 Realizing the tridiagonal Dicke models in experiments

In this section, we introduce the experimental proposal to realize high-order criticality

in tridiagonal Dicke models. The proposal is based on the one reported in [50] and

realized in experiment in [51]. The parameters in the experiment of [51] were not

tuned to realize high-order criticality. Nevertheless, we show that all the parameters in

the tridiagonal Dicke model can be tuned in state-of-the-art experiments in principle.

The proposal utilizes cavity-assisted Raman transitions between hyperfine states

of the atom. The cavity-assisted Raman transitions were first discussed in [52] to re-

alize the original Dicke model. Though originally Dicke considered the electric dipole

coupling induced by photons between an electronically ground and an electronically

excited atomic states, the dipole interaction is not strong enough to reach the thresh-

old of the superradiant phase transition. Furthermore, there were some debates over

the no-go theorem [53–57], which put some doubt on whether the Dicke model over-

simplifies the reality and whether the superradiant phase transition can truly happen.

However, it has been verified that the superradiant phase transition can occur in sys-
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tems that take the Dicke model as an effective description [51, 58]. In the very first

proposal [52], the atom states are coupled through cavity-assisted Raman transition,

a two-photon process in which an atom, by absorbing (emitting) a cavity photon and

emitting (absorbing) a photon to (from) classical laser fields, transfer from one hyper-

fine ground state to another. Unlike the one-photon electric dipole transition in which

the atomic level spacing and the photon frequency are typically orders of magnitude

larger than the coupling strength, in the two-photon Raman process, the coupling

strength can be made to be comparable with the other energy scales such that the

superradiant phase transition can be induced. Later, [50] generalizes the proposal to

systems containing multiple atomic levels. This proposal realizes a tridiagonal Dicke

model where the relative strength between the matrix elements of the dipole operator

d is fixed. We modify the proposal in [50] to make the d matrix tunable.

Consider an atom whose relevant internal levels are denoted |i, j〉’s with energy

εi,j, where i = 0, 1, 2, . . . , q denotes some hyperfine manifolds and j distinguishes the

hyperfine states. Suppose when i = 0, j = −F,−F + 1, . . . , F − 1, F . The hyper-

fine manifold with i = 0 has the lowest energy and is coupled with other hyperfine

manifolds with i > 0 through optical transitions. Suppose the optical frequency is

much larger than all the other energy scales in the system. The system is subject

to two driving laser beams with opposite circular polarization. The driving beams

have frequencies ω+ and ω−, and they mediate the atom transitions through the two

Hamiltonians:

H± =

q∑
i=1

F∑
j=−F

gij±1,je
−iω±t |i, j ± 1〉 〈0, j|+ h.c., (2.66)

where t is the time and gij±1,j is the coupling strength. The atom is placed in a cavity

with a single linearly π-polarized mode and we denote the cavity frequency as ωc.
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The Hamiltonian for the cavity photons and the atoms without interaction is:

H0 = ωca
†a+

q∑
i=1

F∑
j=−F

εi,j |i, j〉 〈i, j| . (2.67)

The basis vectors for the whole Hilbert space are denoted as |n, i, j〉 where n is the

photon number and i, j marks the atom state. The cavity mode can also mediate

optical transitions of the atoms through:

Hc =

q∑
i=1

F∑
j=−F

gija |i, j〉 〈0, j|+ h.c., (2.68)

where gij’s are the coupling strengths. The total Hamiltonian of this system is the sum

of the previous fours. A schematic level diagram for the system is illustrated in Fig.

2.5. We will show that the Hamiltonian may effectively reduce to a time-independent

one through adiabatic elimination.

Figure 2.5 : An experimental scheme for realizing a tridiagonal Dicke model. Using
a pair of Raman beams with opposite circular polarization, as marked by the dashed
and the dotted lines, respectively, and a linearly π-polarized cavity mode, as marked
by the solid line, it is possible to couple adjacent hyperfine states of 85Rb (or other)
atoms through Raman coupling.

The adiabatic elimination puts some constraints on the order of magnitudes of
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the parameters in the system. We list the order of magnitudes of the parameters as

follows (i > 0):

ωc ∼ ω− ∼ ω+ ∼ εi,j − ε0,j,

ωc � ωc − (εi,j − ε0,j) ∼ ω− − (εi,j−1 − ε0,j) ∼ ω+ − (εi,j+1 − ε0,j) ∼ ∆,

∆� |εi,j − εi+1,j| ,

∆� |ε0,j − ε0,j+1| ,

∆� gij ∼ gij−1,j ∼ gij+1,j.

In the second line above, we have used ∆ to denote the single-photon detuning.

Because the coupling strengths are small compared to ∆, we can approximate the

time evolution operator U (t, t′) through time-dependent perturbation theory, treating

H0 as the unperturbed Hamiltonian. We will neglect the transition amplitudes much

smaller than 1.

To perform the perturbation, first we transform the Hamiltonian into the interac-

tion picture:

H ′c =

q∑
i=1

F∑
j=−F

gijae
i(εi,j−ε0,j−ωc)t |i, j〉 〈0, j|+ h.c.,

H ′± =

q∑
i=1

F∑
j=−F

gij±1,je
i(εi,j±1−ε0,j−ω±)t |i, j ± 1〉 〈0, j|+ h.c..

The first-order perturbation gives the transition amplitudes between atomic states

with i = 0 and i > 0, and the amplitudes take the following form

〈
U (1) (t, 0)

〉
∼
g
(
ei∆t − 1

)
∆

.

Because g/∆� 1, we ignore the states with i > 1 in the effective Hamiltonian.

The second-order perturbation gives the transition amplitudes between atomic
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states within the i = 0 manifold. The diagonal elements of U (2) (t, 0) are

〈n, 0, j|U (2) (t, 0) |n, 0, j〉 =
−it
∆

(
q∑
i=1

n
(
gij
)2

+
(
gij+1,j

)2
+
(
gij−1,j

)2

)
,

which cannot be neglected when t is large. And the off-diagonal elements of U (2) (t, 0)

are

〈n+ 1, 0, j ± 1|U (2) (t, 0) |n, 0, j〉 =

√
n+ 1

∑q
i=1 g

i
j±1g

i
j±1,je

−it(ε0,j−ε0,j±1+ω±−ωc) − 1

∆ (ε0,j − ε0,j±1 + ω± − ωc)
,

〈n, 0, j + 2|U (2) (t, 0) |n, 0, j〉 =

∑q
i=1 g

i
j+1,j+2g

i
j+1,je

−it(ε0,j−ε0,j+2+ω+−ω−) − 1

∆ (ε0,j − ε0,j+2 + ω+ − ω−)
,

and their conjugates. These amplitudes cannot be neglected when the coefficients,

for example,
∑q
i=1 g

i
j+1g

i
j+1,j

∆(ε0,j−ε0,j+1+ωj+1,j−ωc) , are of order 1. Therefore, by tuning the atomic

bare energies ε0,j’s, we can decide how many hyperfine states are coupled through

this single beam. We consider two cases:

� Case 1: All hyperfine states are coupled;

� Case 2: Only a pair of hyperfine states are coupled.

First we discuss the Case 1. The transition amplitudes, though obtained via

second-order perturbation on the original Hamiltonian, can be regarded as the first-

order perturbation result from an effective Hamiltonian H ′eff , whose matrix elements

are given by

〈n, 0, j|H ′eff |n, 0, j〉 =

∑q
i=1 n

(
gij
)2

+
(
gij+1,j

)2
+
(
gij−1,j

)2

∆
, (2.69)

〈n+ 1, 0, j ± 1|H ′eff |n, 0, j〉 =

√
n+ 1

∑q
i=1 g

i
j±1g

i
j±1,j

∆
e−it(ε0,j−ε0,j±1+ω±−ωc), (2.70)

〈n, 0, j + 2|H ′eff |n, 0, j〉 =

∑q
i=1 g

i
j+1,j+2g

i
j+1,j

∆
e−it(ε0,j−ε0,j+2+ω+−ω−), (2.71)

and the Hermitian conjugates of the last three lines.



61

Table 2.2 : The relative strengths between the summations of g-squares for Rb87

j −1 0 1∑q
i=1

(
gij
)2 1

3
1
3

1
3∑q

i=1

(
gij+1,j

)2 1
6

1
3

1
2∑q

i=1

(
gij−1,j

)2 1
2

1
3

1
6∑q

i=1 g
i
j+1g

i
j+1,j −1

6
−1

6
0∑q

i=1 g
i
j−1g

i
j−1,j 0 −1

6
−1

6

In order to transform H ′eff into a time-independent Hamiltonian, some conditions

need to be satisfied. First, the matrix elements 〈n, 0, j + 2|H ′eff |n, 0, j〉 need to van-

ish, which also guarantees that H ′eff is tridiagonal in terms of atomic states. This

requirement leads to:
q∑
i=1

gij+1,j+2g
i
j+1,j = 0. (2.72)

In the case that |i = 0, j〉’s are F = 1 ground states of 87Rb atoms or F = 2 ground

states of 85Rb atoms, and the laser beams drive the D1 transitions, the equation

above holds. And the relative strengths between the other summations of g-squares

encountered in the matrix elements of H ′eff are listed in Table. 2.2 and 2.3, evaluated

by Clebsch-Gordan coefficients.

To make H ′eff time-independent, a second requirement is that the phase accumu-

lated in the following series of transition process,

|n, j〉 → |n+ 1, j + 1〉 → |n+ 2, j〉 → |n+ 1, j − 1〉 → |n, j〉 , (2.73)

is zero, where we have omitted the i = 0 index in the notation for simplicity. This
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Table 2.3 : The relative strengths between the summations of g-squares for Rb85

j −2 −1 0 1 2∑q
i=1

(
gij
)2 1

3
1
3

1
3

1
3

1
3∑q

i=1

(
gij+1,j

)2 1
9

2
9

3
9

4
9

5
9∑q

i=1

(
gij−1,j

)2 5
9

4
9

3
9

2
9

1
9∑q

i=1 g
i
j+1g

i
j+1,j −

√
2

9
−
√

3
9
−
√

3
9
−
√

2
9

0∑q
i=1 g

i
j−1g

i
j−1,j 0 −

√
2

9
−
√

3
9
−
√

3
9
−
√

2
9

leads to

0 = (ε0,j − ε0,j+1 + ω+ − ωc) + (ε0,j+1 − ε0,j + ω− − ωc)

− (ε0,j−1 − ε0,j + ω+ − ωc)− (ε0,j − ε0,j−1 + ω− − ωc) ,

which always holds. We denote

2ω0 := ω+ + ω−.

So, with the vanish of 〈n, 0, j + 2|H ′eff |n, 0, j〉, we can hereby transform H ′eff through

H ′0 := (ω0 − ωc) a†a+
F∑

j=−F

j∑
k=−F

(
ε0,k − ε0,k+1 +

ω+ − ω−
2

)
|0, j + 1〉 〈0, j + 1|

to

Heff = exp (iH ′0t)H
′
eff exp (−iH ′0t)−H ′0

= (ωc − ω0) a†a+
F∑

j=−F

εj |0, j〉 〈0, j|

+
F−1∑
j=−F

∑q
i=1 a

†gij+1g
i
j+1,j + agijg

i
j,j+1

∆
|0, j + 1〉 〈0, j|+ h.c.
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with

εj :=

j∑
k=−F

ε0,k+1 − ε0,k −
ω+ − ω−

2

+

∑q
i=1

(
gij+1,j

)2
+
(
gij−1,j

)2

∆
+

∑q
i=1

(
gij
)2

∆
a†a

According to Table. 2.2 and 2.3, by setting
∑q

i=1

(
gij
)2

:= g2
c

3
and

∑q
i=1

(
gi−1,0

)2
=∑q

i=1

(
gi1,0
)2

:=
g2
drv

3
, we obtain

Heff =

(
ωc − ω0 +

g2
c

3

)
a†a

+
F∑

j=−F

j∑
k=−F

(
ε0,k+1 − ε0,k −

ω+ − ω−
2

)
|0, j〉 〈0, j| (2.74)

+ gdrvgc
(
a+ a†

)∑
j

Cj |0, j + 1〉 〈0, j|+ h.c. (2.75)

where Cj’s are read from the Table. 2.2 and 2.3, and we omit an unimportant con-

stant. We notice that the term
∑

j Cj |0, j + 1〉 〈0, j| + h.c is proportional to the

angular momentum operator Fx of the hyperfine manifold. So we end up with a tridi-

agonal Dicke model where the relative strengths between the matrix elements of the

dipole operator d are fixed, and the eigenvalues of single-atom Hamiltonian h can be

altered by changing the bare atomic energies ε0,j’s. Experimentally, adjusting ε0,j’s

can be achieved using external magnetic fields via the Zeeman shift or using external

microwave fields via the AC-Stark shift [59–65].

In order to tune the dipole operator d, it is necessary to use multiple pairs of

laser beams, each pair of lasers couple only one pair of hyperfine states, as in Case

2 described above Eq. (2.69). Suppose the pair of driving beams coupling |0, j〉 and
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|0, j + 1〉 have frequencies ωj,j+1
± and coupling strength gj,j+1

drv . Now Eq. (2.73) yields

0 =
(
ε0,j − ε0,j+1 + ωj,j+1

+ − ωc
)

+
(
ε0,j+1 − ε0,j + ωj,j+1

− − ωc
)

−
(
ε0,j−1 − ε0,j + ωj−1,j

+ − ωc
)
−
(
ε0,j − ε0,j−1 + ωj−1,j

− − ωc
)

= ωj,j+1
+ + ωj,j+1

− − ωj−1,j
+ − ωj−1,j

− .

Therefore, to make Heff time-independent, the following equation must hold

ωj,j+1
+ + ωj,j+1

− ≡ 2ω0. (2.76)

Now, for 85Rb and 87Rb,

Heff =

(
ωc − ω0 +

g2
c

3

)
a†a

+
F∑

j=−F

j∑
k=−F

(
ε0,k+1 − ε0,k −

ωk,k+1
+ − ωk,k+1

−

2

)
|0, j〉 〈0, j|

+ gc
(
a+ a†

)∑
j

Cjg
j,j+1
drv |0, j + 1〉 〈0, j|+ h.c. (2.77)

In this tridiagonal Dicke Hamiltonian, arbitrary d matrix can be achieved by tuning

the intensities of the driving lasers, to which gj,j+1
drv is proportional.

2.8 Quantum fluctuation of the generalized Dicke model in

the classical oscillator limit

In Section 2.2, we introduce the superradiant phase transition of the original Dicke

model in the classical oscillator limit, ω
ε
∼ g2

ε2
� 1. The phase transition in the

classical oscillator limit share the same mean-field theory with that in the thermo-

dynamic limit. Nevertheless, the quantum fluctuation behaves dramatically different

in the two limits. In this section, we will investigate the quantum fluctuation of the

generalized Dicke model in the classical oscillator limit.
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Here we take N = 1. As long as N is finite, we can always make N = 1 by

redefining d and h. Now, Eq. (2.41) reads

H = ωb†b+
g
(
b+ b†

)
D

2
+ hMF, (2.78)

where we have omitted the subscript of b1. Because ω and g are small compared to

the energy spacings in hMF in the classical oscillator limit, we treat the first two terms

as perturbation to the mean-field Hamiltonian, using Eq. (A.1) with ρ = 1 to project

H onto its lowest-energy manifold and obtain an effective Hamiltonian as follows:

Heff = (H − ε1)P
(λ)
1

=S0

(
ωb†b

)
S0 + S0

g
(
b+ b†

)
D

2
S1

g
(
b+ b†

)
D

2
S0

+

[
S0

(
ωb†b

)
S0

g
(
b+ b†

)
D

2
S1 + h.c.

]

+ S0

g
(
b+ b†

)
D

2
S1

g
(
b+ b†

)
D

2
S1

g
(
b+ b†

)
D

2
S0

+

[
S0

g
(
b+ b†

)
D

2
S1

g
(
b+ b†

)
D

2
S0

g
(
b+ b†

)
D

2
S1 + h.c.

]
+O

(
ω2

ε2

)

= |1〉

ωb†b− α0

[
g
(
b+ b†

)
2

]2

+ α1

[
g
(
b+ b†

)
2

]3
 〈1|

+

|1〉
−ωb†b+ α0

[
g
(
b+ b†

)
2

]2
 g

(
b+ b†

)
2

l∑
k1=2

αk1 〈k1|+ h.c.


+O

(
ω2

ε2

)
, (2.79)

with

αk :=


∑l

k1=2

|D1k1|
2

εk1
−ε1 , k = 0∑l

k1,k2=2

D1k2
Dk2k1

Dk11

(εk2
−ε1)(εk1

−ε1)
, k = 1

D1k

εk−ε1
, k > 1

,

where |k〉’s are the mean-field eigenstates. Because the third-order terms with the

order of magnitude
(
g
ε

)3
are cubic in b and b†, they do not have a lower bound, thus
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can only be understood perturbatively, assuming
〈
b†b
〉
∼ 1. To the lowest (second)

order, we have

Heff = |1〉

ωb†b− α0

[
g
(
b+ b†

)
2

]2
 〈1|+ o

(ω
ε

)
, (2.80)

which takes the same form as the one appears in the original Dicke model in Eq. (2.9).

We denote the eigenvectors of Heff in Eq. (2.80) as |1, k〉, where 1 represents the atomic

state and k the photon state, and the corresponding eigenvalues are(
k +

1

2

)
ωCO :=

(
k +

1

2

)√
ω (ω − α0g2), k = 0, 1, 2, . . .

It is required that ω ≥ α0g
2, which is consistent with the stability condition of the

mean-field solution in Eq. (2.28). The effective Hamiltonian (2.80) does not produce

entanglement between atoms and photons.

When ωCO is not vanishingly small, we can treat the third-order terms in Eq. (2.79)

as perturbation to Eq. (2.80). This will lead to atom-photon entanglement. The

ground state under this situation is given by:

|CO〉 = |1, 0〉 − α1g
3ω3/2

8ω
5/2
CO

(
3 |1, 1〉+

√
6

3
|1, 3〉

)

+
l∑

k1=2

αk1g
√
ωωCO

4 (ε1 − εk1)
|k1, 1〉+ o

((g
ε

)3
)

(2.81)

Using the method in Appendix B, we can calculate the atom-photon entanglement

entropy of |CO〉:

S =−

(
1

2
+

√
1

4
− µ

)
ln

(
1

2
+

√
1

4
− µ

)

−

(
1

2
−
√

1

4
− µ

)
ln

(
1

2
−
√

1

4
− µ

)

≈− µ lnµ, (2.82)
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where µ has the same order of magnitude as ω2

ε2
:

µ =
g2ωωCO

16

l∑
k1=2

|D1k1|
2

(ε1 − εk1)4 + o

(
ω2

g2

)
. (2.83)

We see that the entanglement entropy is vanishingly small, which is qualitatively

different from that in the thermodynamic limit.

2.9 Realizing generalized Dicke model in the classical oscil-

lator limit

An experiment realizing a tricritical point in a spin-one Dicke model in the classical

oscillator limit has been reported in [20]. The experimental scheme can be generalized

to incorporate more atomic levels, as we show in this section.

The experiment is also based on Raman transitions between hyperfine levels of

atoms, however, no cavity but a one-dimensional harmonic trap is used, and the

motion of the atom within this trap is treated as a relevant degree of freedom. Like

what is done in Section 2.7, we denote the internal levels of the atom as |i, j〉, i =

0, 1, 2 . . . , j = −F,−F + 1, . . . , F − 1, F . Without the driving lasers, a single atom

subject to the Hamiltonian

Hatom =
P 2

2
+

1

2
ω2

trapX
2 +

∑
i,j

εi,j |i, j〉 〈i, j| (2.84)

A linearly π-polarized laser replaces the cavity field, and drives the transition between

|0, j〉 and |i, j〉 for i > 0:

Hπ =
∑
i,j

gij exp (i (kRX − ωπt)) |i, j〉 〈0, j|+ h.c. (2.85)

where kR is the recoil momentum. The pair of circularly polarized lasers remain the
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same:

H± =

q∑
i=1

F∑
j=−F

gij±1,j exp (−i (kRX + ω±t)) |i, j ± 1〉 〈0, j|+ h.c. (2.86)

We make the laser with frequency ω− detuned to some degree such that it does not

couple adjacent states. After adiabatic elimination, we arrive at the following effective

Hamiltonian:

Heff =
P 2

2
+

1

2
ω2

trapX
2 +

F∑
j=−F

εj |0, j〉 〈0, j|

+
F∑

j=−F

∑q
i=1 e

2ikRXgij+1g
i
j+1,j

∆
|0, j + 1〉 〈0, j|+ h.c., (2.87)

with

εj :=

j∑
k=−F

(ε0,k+1 − ε0,k + ω+ − ωπ)

+

∑q
i=1

(
gij+1,j

)2
+
(
gij−1,j

)2
+
(
gij
)2

∆

Performing a unitary transformation |0, j〉 → exp (2ijkRX) |0, j〉, we can transform

Heff into the form:

Heff =
(P + 2kRFz)

2

2
+

1

2
ω2

trapX
2 +Hinternal (2.88)

Hinternal :=
F∑

j=−F

εj |0, j〉 〈0, j|

+
F∑

j=−F

∑q
i=1 g

i
j+1g

i
j+1,j

∆
|0, j + 1〉 〈0, j|+ h.c. (2.89)

If we represent X and P in terms of bosonic operators a and a†,

X =
i√

2ωtrap

(
a− a†

)
,

P =

√
ωtrap

2

(
a† + a

)
,



69

then

Heff = ωtrap

(
a†a+

1

2

)
+ 2kR

√
ωtrap

2
Fz
(
a† + a

)
+ 2k2

RF
2
z +Hinternal (2.90)

which takes the form of the generalized Dicke Hamiltonian with d ∝ Fz and h =

2k2
R

m
F 2
z +Hinternal.
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Chapter 3

Building flat-band lattice models from Gram

matrices

In this chapter, we introduce the Gram matrix method for building flat-band Hamilto-

nians. We first introduce the basic properties about tight-binding models, especially

the ones whose translational symmetry has a projective representation in the Hilbert

space, which happens, for example, when a magnetic field is presented. Next, based

on the knowledge about tight-binding models, we introduce our Gram matrix-based

protocol of building any lattice model whose lowest few bands are flat. As explicit

examples, we provide some finite-range models with ordinary translational symmetry

built from the protocol. Finally, we reproduce the Kapit-Mueller model with mag-

netic translational symmetry and topological flat band, whose Hamiltonian can be

understood as the Gram matrix built from certain subset of coherent states, and can

be generalized to infinite many other flat-band models with magnetic translational

symmetry.

3.1 Tight-binding lattice models and flat bands

In this section, we make an introduction on tight-binding lattice models in which flat

bands may appear.

A lattice can be regarded as infinite replica of unit cells, which models the periodic

arrangement of atoms in a real crystal. We can associate each unit cell with a lattice
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vector denoted as R:

R =
d∑
i=1

xiei, xi ∈ Z (3.1)

where d and ei’s are the spatial dimension and the primitive vectors of the lattice,

respectively. In a real crystal, a cell contains infinite number of states that can be

occupied by particles of interest. However, it is often the case that only finite number

of them are relevant. For example, in an optical lattice, the cold atoms may only

occupy the lowest energy state in a cell because of the ultra-low temperature. Ne-

glecting the unimportant high-energy states is called tight-binding approach. Without

interactions, a single-particle tight-binding model possesses a Hilbert space which is

spanned by the basis vectors |R; i〉 with i = 1, 2, . . . , ns, where ns is the total number

of states within a cell. Realistically, these states can be electronic orbitals around an

atom, spin degrees of freedom, atomic states in an optical lattice, etc. In general, the

Hamiltonian for a single-particle tight-binding model can be written as

H =
∑
R,R′

∑
i,i′

hi,i
′

R,R′
|R; i〉 〈R′; i′| , (3.2)

where the hopping amplitudes hi,i
′

R,R′
form a hermitian matrix:

hi,i
′

R,R′
=
(
hi
′,i
R′,R

)∗
. (3.3)

The most important feature of a lattice is its translational symmetry. If we trans-

late the system by one of its lattice vector R, the physics should not change. The

translational symmetry group can be represented by unitary matrices UR’s defined

with a phase factor φ (R,R′, i):

UR |R′; i〉 = eiφ(R,R′,i) |R + R′; i〉 , ∀R,R′. (3.4)

such that the Hamiltonian is invariant under the following unitary transformation:

URHU
†
R = H, ∀R. (3.5)
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Usually, the phase factor φ (R,R′, i) is trivial such that

UR |R′; i〉 = |R′ + R; i〉 , ∀R,R′.

In this case, the translational symmetry group has an linear representation, meaning

URUR′ = UR′+R,

and the hopping amplitude hi,i
′

R,R′
satisfies

hi,i
′

R+R′′,R′+R′′
= hi,i

′

R,R′
.

However, we can encounter the cases in which φ (R,R′, i) is non-trivial and UR’s form

a projective representation of the translational symmetry group.

In Appendix C, we show that, by properly choosing the gauge, first, the function

φ (R,R′, i) is independent from the index i, so abbreviated as φ (R,R′), and second,

φ (R,R′) satisfies the following identities:

φ (0,R) ≡ φ (R,0) ≡ φ (R,R) ≡ φ (R,−R) ≡ 0. (3.6)

As a result, the hopping amplitude hi,i
′

R,R′
satisfies

hi,i
′

R+R′′,R′+R′′
= hi,i

′

R,R′
ei(φ(R′′,R)−φ(R′′,R′)). (3.7)

And UR’s satisfy

UR′UR = eiφ(R′,R)UR′+R, (3.8)

and U−R is the inverse of UR:

URU−R = 1. (3.9)

Now, let us discuss the eigenstates of the H. When UR’s form a linear represen-

tation of the translational group, all UR’s commute with each other as well as the
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Hamiltonian, so the eigenstates of the Hamiltonian can be marked by pseudo mo-

menta which correspond to the eigenvalues of UR’s. This is just the content of the

well-known Bloch theorem of periodic systems. In general, according to Eq. (3.8), UR

and UR′ commute only when

φ (R,R′) = φ (R′,R) . (3.10)

To mark the eigenstates of H, we want to find the largest subset of UR’s whose

elements commute with each other. We mark the corresponding lattice vectors as ρ’s.

We can make use of the Bloch theorem if Uρ’s form a representation of a subgroup

of the translational group, in other words, ρ’s also form a lattice. To this end, we

require that φ (R,R′) is a bilinear function of R and R′

φ (R,R′) =
d∑

i,i′=1

φ (ei, ei′)xix
′
i′ (3.11)

Now, if

φ (ρ, ρ′) = φ (ρ′, ρ) (3.12)

then any linear combination of ρ and ρ′ commute with ρ and ρ′, so ρ’s form a linear

vector space, or a lattice. Especially, we let (2π)−1 φ (ei, ei′) be rational number such

that the lattice is d-dimensional. In the rest of this chapter, we will only discuss

bilinear and rational φ (R,R′). We denote the primitive vectors of this lattice as τi’s,

which coincide with ei when all the UR’s commute with each other. We call the cells

of the lattice ρ as the enlarged cells, each of which corresponds to a lattice vector

ρ, and each enlarged cell contains q cells. The bilinearity of φ (R,R′) together with

φ (R,R) ≡ 0 implies that φ (R,R′) is asymmetric

φ (R,R′) = −φ (R′,R) . (3.13)
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So a non-trivial bilinear φ (R,R′) represents a magnetic field. For example, a mag-

netic field perpendicular to a two-dimensional lattice is represented by

φ (e1, e2) ∝ (e1 × e2) · e3.

Therefore, we call a translational symmetry with a linear representation as an ordinary

translational symmetry, and a translational symmetry with a projective representa-

tion with bilinear φ (R,R′) as a magnetic translational symmetry.

Now we can find the common eigenstates of H and Uρ’s, the Bloch waves |ψk,i〉.

Here we only give the major properties of the Bloch waves, leaving the calculation

details to Appendix D. |ψk,i〉 satisfies

H |ψk,i〉 = εk,i |ψk,i〉 , (3.14)

Uρ |ψk,i〉 = e−iρ·k+iρ2 |ψk,i〉 , (3.15)

with

ρ2 :=
d∑
i=1

d∑
i′=i+1

yiyi′φ (τi, τi′) . (3.16)

for ρ =
∑d

i=1 yiτi. The pseudo momentum

k =
d∑
i=1

kiτ
i, (3.17)

is defined on the Brillouin zone ki ∈ [0, 2π), and τ i’s are the primitive vectors of the

reciprocal lattice of the lattice ρ:

τi · τ j = δi,j. (3.18)

The index i in the energy εk,i marks the bands, i = 1, 2, . . . , qns. |ψk,i〉 resides in the

momentum space spanned by momentum states |k, r; i〉 defined by

|k, r; i〉 :=
∑
ρ

eik·(ρ+r)−iρ2

Uρ |r; i〉 , (3.19)
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where r is any R modulo ρ, the position of cells in a single enlarged cell. Thus, we

can project the Hamiltonian into the momentum space:

H =

∫
ddk

(2π)d
Hk (3.20)

with

Hk :=
∑
r,r′

∑
i,i′

hi,i
′

r,r′ (k) |k, r; i〉 〈k, r′; i′| , (3.21)

hi,i
′

r,r′ (k) :=
∑
ρ′

hi,i
′

r,r′+ρ′e
−ik·(ρ′+r′−r)+iφ(ρ′,r′)−iρ′2 , (3.22)

and the integral is over the Brillouin zone∫
ddk

(2π)d
:=

d∏
i=1

(∫ 2π

0

dki
2π

)
.

We can express |ψk,i〉 in the basis of |k, r; i〉’s

|ψk,i〉 =
∑
r,i′

ui
′,i
k,r |k, r; i′〉 , (3.23)

where ui
′,i
k,r represents the eigenvectors of hi,i

′

r,r′ (k):

hi,i
′

r,r′ (k) =
∑
i′′

ui,i
′′

k,r εk,i′′
(
ui
′,i′′

k,r′

)∗
. (3.24)

In addition, hi,i
′

r,r′ (k) must fulfill the following equation as required by the translational

symmetry:

hi,i
′

r+r′′,r′+r′′ (k) = hi,i
′

r,r′ (k + k (r′′)) eiφ(r′′,r′−r), (3.25)

where

k (r) :=
d∑
i=1

[φ (r, ei)− φ (ei, r)] ei, (3.26)

given that ei is the reciprocal lattice of lattice R

ei · ej = δi,j. (3.27)
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Eq. (3.25) requires that εk,i is periodic in k (r)

εk,i = εk+k(r),i, ∀ r (3.28)

and

ui,i
′

k,r+r′
= ui,i

′

k+k(r′),r e
iφ(r,r′), (3.29)

up to a phase factor depending on k and i′.

Now let us discuss the flat bands. We say that the ith band is flat when εk,i

is a constant independent from the momentum k. If εk,i ≡ εi is a flat band, a

direct consequence is that any linear combination of |ψk,i〉’s with different k’s is

an eigenstate of the Hamiltonian with the same eigenenergy εi. Thus there can be

localized eigenstates of H with energy εi. For example, consider the Wannier states:

|Wρ,i〉 :=

∫
ddk

(2π)d
e−iρ·k |ψk,i〉 , (3.30)

which form a complete basis of the band:∑
ρ

|Wρ,i〉 〈Wρ,i|ψk,i〉 =
∑
ρ

eiρ·k |Wρ,i〉 = |ψk,i〉 .

|Wρ,i〉 is not generally an eigenstate of the Hamiltonian, but it is when the ith band

is flat.

Conversely, for any localized eigenstate |loc〉 of the Hamiltonian, UR |loc〉 must

also be an eigenstate because

HUR |loc〉 = URH |loc〉 = 0,

where we suppose H |loc〉 = 0 without loss of generality. The following state must be

a linear combination of some |ψk,i〉’s satisfying H |ψk,i〉 = 0

|k; R〉 :=
∑
ρ

eik·ρ−iρ
2

UρUR |loc〉 . (3.31)
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which satisfies

|k; r + ρ′〉 =
∑
ρ

eik·ρ−iρ
2

UρUr+ρ′ |loc〉

= e−iφ(ρ′,r)−iρ′2
∑
ρ

eik·ρ−iρ
2

Uρ+ρ′Ur |loc〉

= e−ik·ρ−iφ(ρ′,r)−iρ′2 |k; r〉 .

Now, consider generating a flat-band model in the momentum space. If the sys-

tem has an ordinary translational symmetry, we can generate a flat-band model by

the following procedures: First we write down εk,i’s with some of them independent

from k, then we collect them as a diagonal matrix diag (εk,1, . . . , εk,ns) and apply an

arbitrary unitary transformation associated with the matrix ui
′,i
k,0 to obtain hi,i

′

0,0 (k),

and finally we Fourier transform hi,i
′

0,0 (k) to obtain the Hamiltonian in the position

space. However, this approach is too general to be practical, because we want the

Hamiltonian to have some special properties. For example, a realistic model may re-

quire finite-range or short-range hoppings, that is, hi,i
′

R,R′
vanishes or decays fast when

|R−R′| is large. Also, we may want the model process some additional symmetries,

for example, being invariant under certain point group. These properties are not easy

to be implemented in the momentum space. Furthermore, when the system has a

magnetic translational symmetry, it is difficult to generate a hi,i
′

r,r′ (k) fulfilling the re-

quirement in Eq. (3.25). Therefore, we turn our attention from the momentum space

to the real position space, and propose the Gram matrix method to build flat-band

models.
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3.2 Building flat-band models from the Gram matrix - the

protocol

To introduce the Gram matrix method for building flat-band models, let us first

introduce some basic properties of Gram matrices. The definition of a Gram matrix

is as follows: Given a set of vectors |v′1〉 , |v′2〉 , |v′3〉 . . . , the Gram matrix G built upon

these vectors is defined by its matrix elements:

Gi,j :=
〈
v′i|v′j

〉
. (3.32)

The simple definition of the Gram matrix readily shows that G is hermitian:

Gi,j = G∗j,i.

∑
i,j z

∗
iGi,jzj ≥ 0 for any complex numbers zi’s, because the left side of the inequality

is the norm of the vector
∑

i zi |v′i〉, which must be non-negative. So G is positive

semi-definite, which means all of the eigenvalues of G are non-negative.

Conversely, given any positive semi-definite Hermitian matrix G, we can readily

find a set of vectors upon which G as a Gram matrix is built: A positive semi-definite

Hermitian matrix G can be written as G = T †T and we can identify |v′i〉 as the ith

column vector of the T matrix.

Furthermore, we can understand G as an operator in a Hilbert space V , and T a

linear transformation from V to another Hilbert space V ′:

Gi,j := 〈vi|G |vj〉 ,

T |vi〉 := |v′i〉 .

Therefore, G can be regarded as the pullback of the inner product of V ′ to V by

T . The rank of G is the same as the rank of T . The number of zero eigenvalues
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of G equals the dimension of the null space of T , and the latter is no less than

dimV − dimV ′. This property serves as the basic principle underlying our method

for building flat-band models.

Given a Hamiltonian of an arbitrary physical system, we can shift the energy by

an unimportant constant and make all eigenvalues of the Hamiltonian non-negative.

Without loss of generality, we set the ground state energy zero. Thus, any Hamilto-

nian can be interpreted as a Gram matrix. Now, the Hamiltonian can be represented

by a T matrix:

H = T †T, (3.33)

and the T matrix has a non-trivial null space spanned by the ground state manifold

of H. The dimension of the null space equals to the ground state degeneracy. We

consider T as a linear transformation from the physical Hilbert space V to an auxiliary

space V ′. If we construct H from a T matrix, we can control the degeneracy of the

ground states by properly choosing the auxiliary space, making dimV ′ < dimV such

that the degeneracy is at least dimV −dimV ′. As a result, it is possible to make the

ground state degeneracy equal the degeneracy of a flat band. However, the degeneracy

itself does not guarantee that the ground state manifold forms a band. The key is to

implement the translational symmetry in the auxiliary space. It is apparent that if

the T matrix is invariant under translations then

URTU
†
R = T , ∀R, (3.34)

H will also be translationally invariant. However, this equation is meaningful only

after we define UR in the auxiliary space.

Suppose the basis vectors of the auxiliary space are |R; i〉aux with i = 1, 2, ..., naux
s .

They are not necessarily orthonormal. Define UR’s in the auxiliary space by the same
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formula as that in the physical Hilbert space in Eq. (3.4):

UR′ |R; i〉aux = eiφ(R′,R) |R + R′; i〉aux . (3.35)

and define the Gram matrix in the auxiliary space:

Gi,i′

R,R′
= aux 〈R; i|R′; i′〉aux . (3.36)

The translational symmetry puts restriction on the Gram matrix:

Gi,i′

R+R′′,R′+R′′
= Gi,i′

R,R′
eiφ(R′′,R−R′) (3.37)

GR,R′ can be interpreted as a Hamiltonian with qnaux
s bands, with qnaux

s − p of them

having zero-energy, where p could be 0, 1, 2, . . . , qnaux
s .

We denote the matrix elements of T as

T =:
∑
R,R′

∑
i,i′

T i,i
′

R,R′
|R; i〉 〈R′; i′| . (3.38)

where we have omitted the subscript ’aux’ for the auxiliary space when there is no

ambiguity. Eq. 3.34 yields

T i,i
′

R+R′′,R′+R′′
= T i,i

′

R,R′
eiφ(R′′,R−R′) (3.39)

In particular, we can construct a T matrix by assigning arbitrary values to T i,i
′

R,0’s and

generate the rest of matrix elements by

T i,i
′

R+R′,R′
= T i,i

′

R,0e
iφ(R′,R). (3.40)

We now prove that a T matrix generated this way produce a lattice model with at

least nsq − p zero-energy flat bands as long as naux
s ≤ ns:

First, the matrix elements of the Hamiltonian is given by

hi,i
′

R,R′
=
∑

R′′,R′′′

∑
i′′

(
T i
′′,i

R′′,R

)∗
Gi′′,i′′′

R′′,R′′′T
i′′′,i′

R′′′,R′ ,
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so

hi,i
′

r,r′ (k) =
∑
ρ′

∑
R′′,R′′′

∑
i′′

(
T i
′′,i

R′′,R

)∗
Gi′′,i′′′

R′′,R′′′T
i′′′,i′

R′′′,R′e
−ik·(ρ′+r′−r)+iφ(ρ′,r′)−iρ′2 .

Define

Gi,i′

r,r′ (k) :=
∑
ρ′

Gi,i′

r,r′+ρ′e
−ik·(ρ′+r′−r)+iφ(ρ′,r′)−iρ′2 ,

T i,i
′

r,r′ (k) :=
∑
ρ′

T i,i
′

r,r′+ρ′e
−ik·(ρ′+r′−r)+iφ(ρ′,r′)−iρ′2 ,

then we have

hi,i
′

r,r′ (k) =
∑
r′′,r′′′

∗∑
i′′

(
T i
′′,i

r′′,r (k)
)∗
Gi′′,i′′′

r′′,r′′′ (k)T i
′′′,i′

r′′′,r′ (k) . (3.41)

By counting the rank of hi,i
′

r,r′ (k), we conclude that there are at least nsq − p zero

eigenvalues of hi,i
′

r,r′ (k), which completes the proof.

Conversely, we can prove that, given any Gram matrix Gi,i′

r,r′ (k), any lattice model

with nsq − p zero-energy lowest bands can be generated through certain T matrix:

First, diagonalize Gi,i′

r,r′ (k) as:

Gi,i′

r,r′ (k) =

p∑
i′′=1

gi,i
′′

k,r ε
G
k,i′′

(
gi
′,i′′

k,r′

)∗
,

where εGk,i′′ > 0 and gi,i
′′

k,r are the eigenvalue and the normalized eigenvector of Gi,i′

r,r′ ,

respectively, satisfying

εGk,i = εGk+k(r),i,

gi,i
′

k,r+r′
= gi,i

′

k+k(r′),re
iφ(r,r′).

We know that hi,i
′

r,r′ (k) can be decomposed into ui,i
′′

k,r in Eq. (3.24), so the following T

matrix:

T i,i
′

r,r′ (k) =

p∑
i′′=1

√
εk,i′′

εGk,i′′
gi,i
′′

k,r

(
ui
′,i′′

k,r′

)∗
,
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makes Eq. (3.41) hold. Also, the symmetry requirement in Eq. (3.34) holds because

T i,i
′

r+r′′,r′+r′′ (k) = T i,i
′

r,r′ (k + k (r′′)) eiφ(r′′,r′−r)

which completes the proof.

For summary, we have proved that, given a Hilbert space spanned by |R; i〉, i =

1, 2, . . . , ns, and the translational symmetry represented by UR’s, associating with

a bilinear and rational phase φ (R,R′) such that the Hamiltonian invariant under

translations has nsq bands, we can use the following protocol to generate any lattice

model with nsq − p zero-energy lowest bands:

1. Construct an auxiliary space spanned by |R; i = 1, 2, . . . , naux
s 〉aux, where naux

s ≤

ns, such that the Gram matrix Gi,i′

R,R′
:= aux 〈R; i|R′; i′〉aux is also invariant

under UR’s and the number of zero-energy flat bands of Gi,i′

R,R′
is naux

s q − p.

2. Construct a T mapping T =
∑

R,R′
∑

i,i′ T
i,i′

R,R′
|R; i〉 〈R′; i′| from the physical

Hilbert space to the auxiliary space by assign arbitrary values to T i,i
′

R,0 and

generating the rest of the matrix elements by T i,i
′

R+R′,R′
= T i,i

′

R,0e
iφ(R′,R).

3. The Hamiltonian can the constructed as H = T †T . The lowest nsq − p bands

of H are guaranteed to be flat with energy 0.

To make the Hamiltonian possess some special properties, we need to put con-

straints on the T matrix. For example, the finite-rangeness of the Hamiltonian can

be simply achieved by making Gi,i′

R,R′
and T i,i

′

R,0 finite-range.

The protocol can be simplified when the system has an ordinary translational

symmetry. In this case, the protocol becomes:

1. Construct an auxiliary space spanned by orthonormal states |R; i〉aux, i =

1, 2, . . . , naux
s , where naux

s < ns.
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2. Construct an arbitrary T mapping T =
∑

R,R′
∑

i,i′ T
i,i′

R−R′ |R; i〉 〈R′; i′| from the

physical Hilbert space to the auxiliary space.

3. The Hamiltonian can the constructed as H = T †T . The lowest ns−naux
s bands

of H are guaranteed to be flat with energy 0.

In the rest of the chapter, we will show some examples of flat-band models built

from these protocols.

3.3 Examples of flat-band models with ordinary translational

symmetry and finite-range hoppings

In this section, we will show some examples of using the Gram matrix method to

generate flat-band models with ordinary translational symmetry and finite-range hop-

pings.

First, we consider the simplest case, two-band models. The Hilbert space is

spanned by |R; 1〉 and |R; 2〉 and the auxiliary space is spanned by |R〉aux. Note

that if H is a two-band model with a flat lower band, then −H has a flat higher

band, so all the two-band models without band crossing can be obtained by the

Gram matrix method. The simplest choice of the T matrix is the ‘identity mapping’

given by

T |R; 1〉 = A(1) |R〉aux ,

T |R; 2〉 = A(2) |R〉aux ,

where A(1) and A(2) are complex hopping amplitudes from the physical Hilbert space
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to the auxiliary space. However, the Hamiltonian constructed is trivial:

H =
∑
R

∣∣A(1)
∣∣2 |R; 1〉 〈R; 1|+

∣∣A(2)
∣∣2 |R; 2〉 〈R; 2|

+
(
A(2)∗A(1) |R; 2〉 〈R; 1|+ h.c.

)
,

in which a particle can only hop between states within a single cell. To make the

model non-trivial, the T matrix has to map |R; 1〉 or |R; 2〉 to multiple cells in the

auxiliary space. For example, if we choose the following T matrix:

T |R; 1〉 = A
(1)
0 |R〉aux + A

(1)
1 |R− e1〉aux ,

T |R; 2〉 = A(2) |R〉aux ,

the Hamiltonian generated will be:

H =
∑
R

(∣∣∣A(1)
0

∣∣∣2 +
∣∣∣A(1)

1

∣∣∣2) |R; 1〉 〈R; 1|+
∣∣A(2)

∣∣2 |R; 2〉 〈R; 2|

+
(
A(2)∗A

(1)
0 |R; 2〉 〈R; 1|+ h.c.

)
+
(
A(2)∗A

(1)
1 |R− e1; 2〉 〈R; 1|+ h.c.

)
+
(
A

(1)∗
0 A

(1)
1 |R− e1; 1〉 〈R; 1|+ h.c.

)
,

which describes a one-dimensional Tasaki’s lattice. In general, a d-dimensional model

could be obtained if we make the T matrix map |R; 1〉 to |R〉aux and |R〉aux’s nearest

neighbors |R− ei〉aux, i = 1, 2, . . . , d:

T |R; 1〉 =
d∑
i=0

A
(1)
i |R− ei〉aux , (3.42)

T |R; 2〉 = A(2) |R〉aux , (3.43)

where we define e0 = 0 to simplify the notation. And the generated Hamiltonian is

H =
∑
R

d∑
i,j=0

A
(1)∗
j A

(1)
i |R + ej − ei; 1〉 〈R; 1|

+
d∑
i=0

(
A(2)∗A

(1)
i |R− ei; 2〉 〈R; 1|+ h.c.

)
+
∣∣A(2)

∣∣2 |R; 2〉 〈R; 2| .
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The Hamiltonian in the momentum space is given by

Hk =
∣∣∣A(1)

k

∣∣∣2 |k; 1〉 〈k; 1|+
(
A(2)∗A

(1)
k |k; 2〉 〈k; 1|+ h.c.

)
+
∣∣A(2)

∣∣2 |k; 2〉 〈k; 2| ,

where

A
(1)
k :=

d∑
i=0

A
(1)
i eik·ei

Apparently, detHk = 0, which indicates the existence of the zero-energy flat band.

Given the zero-energy lower band, the higher band is given by the trace of Hk

tr (Hk) =
∣∣∣A(1)

k

∣∣∣2 + |B|2 ,

which indicates that the gap will never close, because if B = 0 the model is no-longer

a two-band model.

In general, a T given by

T |R; 1〉 =
∑
R′

A
(1)
R′ |R−R′〉aux , (3.44)

T |R; 2〉 =
∑
R′

A
(2)
R′ |R−R′〉aux , (3.45)

generates the Hamiltonian

H =
∑
R,R′

2∑
i,j=1

hi,jR′ |R + R′; i〉 〈R; j| , (3.46)

where hi,jR is given by the correlation functions of A’s:

hi,jR :=
∑
R′

A
(i)∗
R+R′

A
(j)
R′ . (3.47)

Eq. (3.46) can express all two-band lattice Hamiltonians whose lowest band is flat.

For example, the model studied in [66] can be obtained by setting all coefficients zero

except A
(1)
0 , A

(1)
e1 , A

(1)
e2 , A

(1)
e1+e2

, and A
(2)
0 .
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From Eq. (3.47) we notice that a d-dimensional two-band flat-band model must

contain hopping terms that connect non-adjacent cells. By adjacent cells, we mean a

cell marked by R and one of the cells marked by R± ei, i = 1, 2, . . . , d. If we want a

flat-band model whose hopping terms only connect adjacent cells, we have to increase

the number of bands, ns. For example, the following T matrix:

T |R; 1〉 =
d∑
j=1

(
aj |R; j〉aux + bj |R− ej; j〉aux

)
, (3.48)

T |R; i+ 1〉 = ci |R; i〉aux , i = 1, . . . , d, (3.49)

generates

H =
∑
R

[
d∑
i=1

(
|ai|2+

∣∣b2
i

∣∣) |R; 1〉〈R; 1|+
d+1∑
i=2

|ci−1|2 |R; i〉〈R; i|

]

+
∑
R

d∑
i=1

[
c∗i ai |R; i+ 1〉 〈R; 1|+ c∗ibi |R− ei; i+ 1〉 〈R; 1|

+ a∗i bi |R + ei; 1〉 〈R; 1|+h.c.
]
. (3.50)

The underlying lattice is the d-dimensional Tasaki’s lattice (examples in 1D and 2D

are presented in Fig. 3.1(a) and (b), respectively), and the hopping amplitudes in

the original Tasaki’s Hamiltonian [67] represents a special case of Eq. (3.50) with

ai = bi = 1/λ. This Hamiltonian has ns = d + 1 bands. Since each unit cell in the

auxiliary space has naux
s = d states, H possesses ns − naux

s = 1 zero-energy band.

The Hamiltonian in the momentum space is given by

Hk =
∑
k

d∑
i=1

∣∣αik∣∣2 |k; 1〉〈k; 1|+ |ci|2 |k; i+ 1〉〈k; i+ 1|

+
(
c∗iα

i
k |k; i+ 1〉 〈k; 1|+ h.c.

)
.

where

αik := ai + bie
ik·ei
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Figure 3.1 : Tasaki lattice in 1D (a) and 2D (b) governed by Hamiltonian (3.50).
Bipartite lattice in 1D (c) and 2D (d) governed by Hamiltonian (3.58). Rectangular
boxes represent cells, each containing several states labelled by circled numbers. Solid
lines represent non-zero hoppings starting from a single cell. Duplicated hopping
terms are marked by dashed lines.

Hk contains a zero-energy band, and the corresponding eigenvector is given by

∣∣ψ0
k

〉
= |k; 1〉 −

d∑
i=1

αik
ci
|k; i+ 1〉 . (3.51)

Because of degeneracy, the following localized state, which is a linear combination of

|ψ0
k〉’s, is also an eigenvector of the Hamiltonian:

∣∣ψ0
R

〉
= |R; 1〉 −

d∑
i=1

(
ai
ci
|R; i+1〉+

bi
ci
|R− ei; i+1〉

)
. (3.52)

Nevertheless, we notice that there could be more flat bands other than the zero-

energy one. If we group the states |R; 1〉 as sublattice A and the remaining states
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|R; i = 2, 3, ..., d+ 1〉 as sublattice B, we find that a particle in B can only hop to A.

If some of the |ci|2 are the same, for example, |ci0|
2 = |ci0+1|2, then there exist a flat

band with energy |ci0|
2. This is because H − |ci0|

2 maps the two-dimensional space

spanned by |k; i0〉 and |k; i0 + 1〉 to the one-dimensional space spanned by |k; 1〉 such

that the kernel of the operator H − |ci0|
2 is non-zero. The corresponding eigenvector

is given by ∣∣ψi0k 〉= ci0+1

(
αi0+1
k

)∗ |k; i0〉 − ci0
(
αi0k
)∗ |k; i0 + 1〉 . (3.53)

And the localized eigenstate is

∣∣ψ0
R

〉
=ci0+1a

∗
i0+1|R; i0〉+ ci0+1b

∗
i0+1 |R + ei0+1; i0〉

− ci0a∗i0 |R; i+1〉 − ci0b∗i0 |R + ei0 ; i+1〉 . (3.54)

The rest of the bands of Hk are dispersive.

In the case that all the |ci|’s are the same, |ci| ≡ c, there exists a single dispersive

top band with energy c2 +
∑d

i=1 |αik|
2
. The corresponding eigenstate is

∣∣ψdk〉 =
d∑
i=1

∣∣αik∣∣2 |k; 1〉+
d∑
i=1

c∗iα
i
k |k; i+ 1〉 . (3.55)

The Tasaki’s model contains at least one dispersive band. We can also use the

Gram matrix method to construct models in which all of the bands are flat. The basic

idea is rooted in the reflection symmetry of the upper and lower bands in a bipartite

model. A bipartite lattice is a lattice consisting of two sublattices, and the hopping

amplitudes between states within the same sublattice are zero. From [68] we know

that the middle bands in a bipartite model are necessarily flat. As a result, if there

is only one lower band (i.e., the ground band) whose flatness is guaranteed by the

Gram matrix, then the only upper band must also be flat because of the reflection

symmetry. So in order to build a model in which all bands are flat, we are going
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to design a bipartite structure which guarantees ns − 2 middle flat bands and, by

choosing naux
s = ns− 1, there is a zero-energy flat ground band. Such a T matrix can

be chosen as follows:

T |R; 1〉 = cd+1 |R; d+ 1〉aux +
d∑
j=1

cj |R− ej; j〉aux , (3.56)

T |R; i+ 1〉 =
d+1∑
j=1

ui,j |R; j〉aux , i = 1, 2, . . . , d+ 1, (3.57)

where cj ∈ C and ui,j is an arbitrary unitary matrix. The unitary matrix guarantees

the bipartite structure: Different rows of ui,j are orthogonal to each other, so the

hopping amplitudes between states |R; i = 2, 3, . . . , d+ 2〉 are zero, and the on-site

energy of these states is uniform because each row of the unitary matrix has the same

norm. The generated Hamiltonian is given by:

H =
∑
R

(
d+1∑
i=1

|ci|2
)
|R; 1〉 〈R; 1|+

∑
R

d+2∑
i=2

|R; i〉 〈R; i|

+
∑
R

d+1∑
i=1

[
u∗i,d+1cd+1 |R; i+ 1〉 〈R; 1|

+
d∑
j=1

u∗i,jcj |R− ej; i+ 1〉 〈R; 1|+ h.c.

]
, (3.58)

The lattice connectivity in 1D and 2D are illustrated in Fig. 3.1(c) and (d), respec-

tively. The bipartite nature can be easily seen if we group |R; 1〉 as sublattice A

with on-site energy EA =
∑d+1

i |ci|2 , and |R; i = 2, .., d+ 2〉 as sublattice B with

on-site energy EB = 1. This (d+ 2)-band model consists of a flat ground band with

energy zero, d flat bands with energy EB = 1, and a flat top band with energy

EA+EB = 1+
∑d+1

i |ci|2, reflecting the reflection symmetry of bipartite lattices. The
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Hamiltonian in the momentum space is given by

Hk =
d+1∑
i=1

|ci|2 |k; 1〉 〈k; 1|+
d+2∑
i=2

|k; i〉 〈k; i|

+
d+1∑
i=1

(
u∗i,d+1cd+1 +

d∑
j=1

u∗i,jcje
ik·ej

)
|k; i+ 1〉 〈k; 1|

The eigenvectors take the same form as those in Eqs. (3.51)(3.53)(3.55), in which ci

is replaced by 1 and αik is replaced by u∗i,d+1cd+1 +
∑d

j=1 u
∗
i,jcje

ik·ej .

Last but not least, we remark that it is not difficult to make the flat-band models

to possess certain symmetries by putting constraints on the coefficients appearing in

the constructed Hamiltonian.

3.4 Topological flat band in the Kapit-Mueller model

In this section, we use the Gram matrix method to reproduce the Kapit-Mueller

model which contains a topologically nontrivial flat ground band, and investigate the

properties of the model.

In Ref. [39], Kapit and Mueller, working in the real space, found such a topo-

logical flat band in a 2D square lattice, and attributed the massive degeneracies in

the flat band to some unrevealed symmetries. It was realized that the degenerate

ground states can be regarded as discrete lowest Landau levels (LLLs), and that the

degeneracy of the LLLs give birth to the flatness [40]. Here we find an alternative

way to understand the origin of this topological flat band by reproducing the model

with Gram matrices. More specifically, we reproduce the Kapit-Mueller model by

a Gram matrix built upon a subset of coherent states. From this construction, the

massive degeneracy of the ground band can be straightforwardly understood as a

result of the linear dependency of the coherent states. In addition, using the protocol
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introduced in 3.2, we can find the generalizations of the model, which are beyond the

LLL descriptions, can also share the ground band degeneracy.

In terms of topological flat bands, there is an important theorem [69] which states

that the following three conditions concerning a band cannot be simultaneously sat-

isfied: (1) Being flat; (2) Having a non-zero Chern number; (3) The Hamiltonian

contains only finite-range hopping. In other words, models contain topological flat

bands must have infinite-range hoppings. Therefore, in order to construct a lattice

model with topological flat bands, it may be convenient to choose a basis of the aux-

iliary space such that each pair of basis vectors has a non-zero inner product. Also, a

magnetic translational symmetry may be preferred because realistically the quantum

Hall effect is induced by a magnetic field. The basis may be overcomplete such that

the zero-energy states occur.

We find that certain subsets of the coherent states automatically satisfy the afore-

mentioned requirements.

A coherent state |z〉 is an eigenstate of a bosonic annihilation operator with com-

plex eigenvalue z. It is well known that the full set of coherent states form an over-

complete basis. Perelomov [70] studied the completeness of a countable subset of

coherent states. Define

zx1,x2 := x1ζ1 + x2ζ2, x1, x2 ∈ Z, ζ1, ζ2 ∈ C.

zx1,x2 ’s form a two-dimensional lattice on the complex plane whose unit cell area is

S := Im ζ∗1ζ2. We collect the set of coherent states {|zx1,x2〉}. Perelomov found that:

If S ≤ π, the set represents an overcomplete basis; If S > π, the set is incomplete;

If S = π, we can take away any one of the |zx1,x2〉’s from the set, and the remaining

states form a complete basis.
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Following the basic procedures described in Section 3.2, and making the lattice of

coherent states the basis vectors of the auxiliary space

|x1e1 + x2e2; 1〉aux = |zx1,x2〉 , (3.59)

we find the Kapit-Mueller model is generated by the linear transformation T that

maps |x1, x2〉 := |x1e1 + x2e2; 1〉, a state on a two-dimensional lattice, to |zx1,x2〉’s:

T |x1, x2〉 = |zx1,x2〉 . (3.60)

The Hamiltonian Hζ1,ζ2 := T †T is therefore the Gram matrix of coherent states:

Hζ1,ζ2
x1,x2;x′1,x

′
2

:= 〈x1, x2|Hζ1,ζ2 |x′1, x′2〉

=
〈
zx1,x2|zx′1,x′2

〉
= exp

(
−
∣∣zx1,x2 − zx′1,x′2

∣∣2
2

+ iIm z∗x1,x2
zx′1,x′2

)

= exp

(
−
∣∣zx1,x2 − zx′1,x′2

∣∣2
2

+ iS (x1x
′
2 − x2x

′
1)

)
. (3.61)

Physically, this Hamiltonian describes a fully connected two-dimensional lattice under

a magnetic field, and the flux per unit cell is 2S. It reduces to the Kapit-Mueller

model [39] when zx1,x2 ’s form a square lattice, and to the Hofstadter model [71] by

further taking the limit S →∞.

The Hamiltonian has a magnetic translational symmetry because

Hζ1,ζ2
x1+x′′1 ,x2+x′′2 ;x′1+x′′1 ,x

′
2+x′′2

= Hζ1,ζ2
x1,x2;x′1,x

′
2

exp (iS (x′′1 (x′2 − x2)− x′′2 (x1
′ − x1))) , (3.62)

and we have

φ (e1, e2) = −S (3.63)

From our construction, it immediately becomes clear that the emergence of the

zero-energy ground states is guaranteed by the properties of the Gram matrix and the
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(over-)completeness of the coherent states. When S > π, the set of coherent states

on lattice are linearly independent, and the smallest eigenvalue of the resulting Hζ1,ζ2

must be positive. When S = π, the set becomes complete if we take away any one of

the states, so Hζ1,ζ2 has a single zero eigenvalue. When S < π, we have 1/S states

per unit area on the complex plane, while only 1/π states per unit area are needed

to construct a complete basis, so a fraction of 1− S/π eigenvalues of Hζ1,ζ2 must be

zero. As a result, the massive degeneracy of the ground states of Hζ1,ζ2 follows a

universal scaling behavior, in the sense that it only depends on S and is completely

independent of the lattice geometry of the coherent states. As we will see, it is more

convenient to interpret S, instead of as the unit cell area, as the averaged area on the

complex plane occupied by each coherent state, because the relation between S and

the completeness extends beyond the cases that Perelomov studied. The universal

degeneracy is one of the most elegant features of this model.

We carry out numerical calculation to verify the universal scaling rule between

the degeneracy and S. We choose N coherent states distributed in a square region

on the complex plane, where N is large but finite (typically, N ∼ 3 × 103), and

numerically diagonalize the corresponding Gram matrix Hζ1,ζ2 to find the density of

states as a function of S and the energy E. In Fig. 3.2(a)-(c), we display the spectrum

for several distinct lattice geometry (The lattice geometry refers to the geometry of

the coherent states on the complex plane.): square lattice, triangular lattice, and

honeycomb lattice. The positive-energy part of the spectrum forms a Hofstadter

butterfly, whose specific pattern depends on the lattice geometry. The universal

feature for these different lattices is, however, the massively degenerate ground states

at zero energy when S < π. Remarkably, this massive degeneracy exists even when

the coherent states has a random distribution over the whole region (we specify a
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Figure 3.2 : (a)-(d) Spectrum of HS for a Square lattice (a), Triangular lattice (b),
Honeycomb lattice (c), and Random lattice (d). The color map represents (D + 1)
where D(E) =

∑
n δ(E−En) is the density of states, with En being the nth eigenvalue

of HS. In the calculation, the Dirac δ-function is replaced by a smooth narrow
distribution function. S is the averaged area per state. (e) We count N0, the number
of eigenenergy that is less than 10−5, and compare the ratio N0/N with the theoretical
value ρ marked by the line, where ρ = max(1− S/π, 0).
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lower bound on the distances between sites to ensure that no two sites are too close

together in order to exclude trivial zero eigenvalues of the Gram matrix) as we show

in Fig. 3.2(d). Although in this random lattice case, the positive-energy butterfly

pattern no longer exists.

As mentioned earlier, the degeneracy of the ground band is given by N0 = (1 −

S/π)N , which should be a universal feature independent of the lattice geometry.

In Fig. 3.2(e), we plot the numerically obtained fraction of zero-energy states as a

function for S. Results from all four lattice geometries show excellent agreement

with the theoretical prediction. The small discrepancies can be attributed to the

finite-size effect. In Fig. 3.2(a)-(d), we see a gap between the zero-energy and the

positive-energy states, which increases as S decreases and diverges when S → 0. This

can be easily understood as follows: Since Tr
[
Hζ1,ζ2

]
= N which is the sum of the

positive eigenenergies, the averaged energy of the excited states should be π/S when

S < π according to the degeneracy of the ground states.

Up to now, we have not yet proved that the fraction of 1− S/π zero eigenvalues

of Hζ1,ζ2 form a flat band. To do this, we use the following identity proved by

Perelomov [70]:

∑
x1,x2

(−1)x1+x2+x1x2 exp

(
−π |zx1,x2|

2

2S
+ zx1,x2z

)
≡ 0 (3.64)
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where z is an arbitrary complex number. As a result,

∑
x′1,x

′
2

(−1)x
′
1−x′′1 +x′2−x′′2 +x′1x

′
2−x′′1x′′2 Hζ1,ζ2

x1,x2;x′1,x
′
2
H

√
π/S−1ζ1,

√
π/S−1ζ2

x′′1 ,x
′′
2 ;x′1,x

′
2

=
∑
x′1,x

′
2

(−1)x
′
1−x′′1 +x′2−x′′2 +x′1x

′
2−x′′1x′′2 exp

(
−
∣∣zx1,x2 − zx′1,x′2

∣∣2
2

+ iIm z∗x1,x2
zx′1,x′2

)

× exp

(
−

(π/S − 1)
∣∣zx′1,x′2 − zx′′1 ,x′′2 ∣∣2

2
+ i (π/S − 1) Im z∗x′′1 ,x′′2 zx

′
1,x
′
2

)

∝
∑
x′1,x

′
2

(−1)x
′
1+x′2+x′1x

′
2 exp

(
−
π
∣∣zx′1,x′2∣∣2

2S
+ zx′1,x′2

(
z∗x1,x2

+ (π/S − 1) z∗x′′1 ,x′′2

))

=0.

Therefore, each row of the matrix (−1)x
′
1−x′′1 +x′2−x′′2 +x′1x

′
2−x′′1x′′2 H

√
π/S−1ζ1,

√
π/S−1ζ2

x′′1 ,x
′′
2 ;x′1,x

′
2

rep-

resents a localized eigenstate of Hζ1,ζ2
x1,x2;x′1,x

′
2

with zero energy:

Hζ1,ζ2
∣∣locζ1,ζ2x1,x2

〉
= 0, (3.65)

∣∣locζ1,ζ2x1,x2

〉
:=
∑
x′1,x

′
2

(−1)x
′
1−x1+x′2−x2+x′1x

′
2−x1x2 H

√
π/S−1ζ1,

√
π/S−1ζ2

x1,x2;x′1,x
′
2

|x′1, x′2〉 . (3.66)

The dimension of the space spanned by
∣∣locζ1,ζ2x1,x2

〉
’s is the same as the rank of the

matrix H
√
π/S−1ζ1,

√
π/S−1ζ2 , which has a fraction of S/π zero-energy states. Hence

there is a fraction of 1−S/π states
∣∣locζ1,ζ2x1,x2

〉
’s that are linearly independent. Because

a fraction of 1 − S/π eigenvalues of Hζ1,ζ2 are zero,
∣∣locζ1,ζ2x1,x2

〉
’s span the null space

of Hζ1,ζ2 . Thus, we can construct zero-energy band from the localized states using

Eq. (3.31), which completes the proof.

Suppose S = πp/q where p, q are coprime integers, there must be q−p zero-energy

bands out of q band. According to Eq. (3.22), the Hamiltonian in the momentum
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space is given by

Hζ1,ζ2
x2,x′2

(k) =
∑
m,n

exp

(
−1

2

∣∣zm,qn+x′2−x2

∣∣2 + iπpmn

)
× exp (−i (k1 + pπ (x2 + x′2) /q)m− ik2 (qn+ x′2 − x2)) . (3.67)

The trace of Hζ1,ζ2
x2,x′2

(k) has a compact form

Tr
(
Hζ1,ζ2
x2,x′2

(k)
)

= q
∑
m,n

exp

(
−1

2
|zqm,qn|2 − iq (k1m+ k2n− πpmn)

)
, (3.68)

and the average energy of the positive-energy bands is Tr
(
Hζ1,ζ2
x2,x′2

(k)
)
/p.

To confirm the zero-energy band is indeed a topological band, we calculate the

Chern number of it. Readers can find the definition of the Chern number and how it

is related with the Hall conductivity in Appendix E. Because of the robustness of the

topological invariant, the Chern number will not change when we change the model

continuously without closing the gap. Therefore, we can calculate the Chern number

in the simplest case ζ1 = i
√

π
q
, ζ2 =

√
π
q

and the result applies to arbitrary ζ1 and

ζ2 as long as S < π. Now the single eigenstate with positive energy is given by the

columns of Hζ1,ζ2
x2,x′2

(k)

uζ1,ζ2k,x2
=A

∑
m,n

exp

(
− π

2q

(
m2 + (qn− x2)2)+ iπmn

)
(3.69)

× exp (−i (k1 + πx2/q)m− ik2 (n− x2/q)) , (3.70)

where A is an unimportant normalization constant. So the absolute value of the

Chern number of this positive energy band, which equals the absolute value of the

Chern number of the flat bands, is 1:

|C| =

∣∣∣∣∣2 Im

∫ 2π

0

dk1dk2

2π

q−1∑
x2=0

(
∂k1u

ζ1,ζ2
k,x2

)∗
∂k2u

ζ1,ζ2
k,x2

∣∣∣∣∣ = 1, (3.71)
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where the number is obtained using the method of discretization presented in [72].

Last but not least, we want to remark that the Kapit-Mueller model can also be

constructed using a projection method [40] which is analogous to the inverse method

by treating the LLLs as CLSs. However, using the Gram matrix method, infinite

variations of the model, which cannot be regarded as the parent Hamiltonians of the

LLLs, can be constructed by modifying the T matrix in Eq. (3.60) according to the

protocol introduced in Section 3.2. For example, if we make

T |m,n〉 = |zm,n〉+ eiSn |zm+1,n〉+ e−iSm |zm,n+1〉 , (3.72)

then we will obtain a model with the same zero-energy degeneracy for S < π as that

of the Kapit-Mueller model, as shown in Fig. 3.3.

Figure 3.3 : The spectrum of a generalization of the Kapit-Mueller model given by
the T matrix Eq. (3.72). The color map has the same meaning as that in Fig. 3.2 (a).
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Chapter 4

Summary

The tunability and controllability of AMO systems provided great motivation for

engineering Hamiltonians that give rise to novel physics. In this dissertation, we

have focused on designing two types of novel Hamiltonians, which lead to generalized

multicritical Dicke models and flat-band lattice models, respectively.

Quantum phase transition is an important topic in quantum many-body physics,

and has been widely studied. However, most studies focus on second-order phase tran-

sition and the associated criticality. Higher-order phase transitions possess unique

properties and are of interest of their own. Nevertheless, materials exhibiting multi-

criticality, not to mention tunable multicriticality, are very rare. Here we propose a

simple generalization of the Dicke model where the generalized model supports crit-

ical points whose order can be tuned within some extent. Specifically, we replace

the two-level atoms in the conventional Dicke model with l-level atoms and study

the superradiance phase transition in the modified model. The increased number of

tuning parameters for l > 2 leads to the emergence of multicriticality whose order

can be controlled. The phase diagram and the multicritical conditions can be ob-

tained from the mean-field theory. For a subclass of the multicritical Dicke models,

which can be readily realized experimentally, we show that the multicritical conditions

of arbitrary order can be expressed analytically in compact forms, which facilitates

the realization of phase transition of desired orders. We show that the superradiant

phase transition can occur in either the thermodynamic limit or the classical oscillator
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limit. The two limits share the same mean-field description but differ significantly in

quantum fluctuation. We calculate the atom-photon entanglement entropy to char-

acterize the quantum fluctuation in the generalized Dicke models. In both limits,

the non-critical entanglement entropy can be calculated analytically, through some

low-energy effective Hamiltonian. In the classical oscillator limit, the entanglement

between atoms and photons is vanishingly small away from the critical points. By

contrast, in the thermodynamic limit, the non-critical entanglement entropy is finite

and can be measured in experiments from cavity field quadrature fluctuations. In the

classical oscillator limit, the critical entropy is bounded. In the thermodynamic limit,

the entropy diverges logarithmically when approaching the critical point. We numer-

ically calculate the scaling between the critical entropy and the number of atoms and

find a logarithmic scaling, and find that higher-order criticality is associated with

larger entanglement. The multicritical Dicke model provides deep insights into the

physics of quantum phase transition and multicritical points, whose realization is

typically very challenging in any other contexts.

Flat-band models often underlie interesting strongly correlated phenomena — due

to quenched kinetic energy, weak interaction between particles can lead to dramatic

effects. It is desirable to come up with a general protocol to build flat-band models

systematically. Here we have proposed a powerful and elegant protocol based on the

mathematical properties of Gram matrices. Any lattice model with flat lowest band

can be constructed through the method. Our method does not require any elaborate

calculations such as solving the inverse eigenvalue problems, works for arbitrary spa-

tial dimensions, and guarantees to produce a flat ground band. We have presented a

variety of examples, including both finite- and infinite-range hopping, both ordinary

and magnetic translational symmetry, topologically trivial and nontrivial flat bands.
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Specifically, we have constructed the d-dimensional Tasaki lattice, a d-dimensional

bipartite lattice whose bands are all flat, and the generalized Kapit-Mueller lattice

whose flat ground band features universal (i.e., geometry-independent) degeneracy.

We study the generalized Kapit-Mueller in detail and, especially, conclude that the

(over-)completeness of the coherent states is the origin of the universal degeneracy.
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Appendix A

Time-independent perturbation theory

Here we introduce the time-independent perturbation theory derived by Green’s func-

tions following the approach in [73].

Consider a time-independent Hamiltonian H(λ) parameterized by a real number

λ:

H(λ) ≡ H(0) + λV.

The spectrum of H(λ) is expressed by

H(λ) =
∑
n

E (λ)
n P(λ)

n ,

where E (λ)
n ’s are the discrete eigenvalues of H(λ) and P(λ)

n is the projecting operator

corresponding to the eigenspace of H(λ) with energy E (λ)
n . It is assumed that E (λ)

n

and P(λ)
n are continuous function of λ, which is true for Hilbert spaces with finite

dimensions. We suppose E (λ)
n and P(λ)

n are unknown except for λ = 0.

The Green’s function G(λ) (z) of H(λ) is defined by

G(λ) (z) =
1

z −H(λ)
≡
∑
n

P(λ)
n

z − E (λ)
n

,

where z is a complex variable. Using the Green’s function G(λ) (z) and Cauchy’s

integral formula, we can express the projecting operator P(λ)
n as

P(λ)
n =

∫
E(λ)
n +

dz

2πi
G(λ) (z) ,
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where
∫
E(λ)
n +

dz
2πi

is integrated along a contour circling counterclockwise around the point

z = E (λ)
n on the complex z-plane, without enclosing any other eigenvalue of H(λ).

The following equation holds, relating the inverse of the Green’s function G(0) with

that of G(λ): (
G(λ)

)−1
=
(
G(0)

)−1 − λV.

Then, G(λ) can be expressed formally as a series in λ:

G(λ) = G(0) + λG(0)V G

= G(0)

∞∑
k=0

(
λV G(0)

)k
Now P(λ)

n can be evaluated by the known Green’s function G(0). Expand G(0) around

z = E (0)
n as

G(0) (z) =
P(0)
n

z − E (0)
n

−
∑
m 6=n

P(0)
m

E (0)
m − E (0)

n

∞∑
l=0

(
z − E (0)

n

E (0)
m − E (0)

n

)l

.

Then, by exchanging the order of the integration and summation, and collecting all

the terms proportional to
(
z − E (0)

n

)−1

, the Cauchy’s integral is evaluated as

P(λ)
n =

∞∑
k=0

∫
E(λ)
n +

dz

2πi
G(0)

(
λV G(0)

)k
=
∞∑
k=0

λk
∑

∑k+1
i=1 ki=k

Sk1V Sk2V · · ·V Skk+1
,

where the integral contour is supposed to enclosing z = E (0)
n but any other pole of

G(0) (z) which can be done when λ is sufficiently small, and Sk is defined as

Sk =


P(0)
n , when k = 0,

−
∑

m6=n
P(0)
m(

E(0)
m −E

(0)
n

)k , when k > 0.
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By defining another projecting operator,

Q(λ)
n ≡ 1− P(λ)

n ,

Sk can be expressed as

Sk =

 P(0)
n , when k = 0,

−Q(0)
n

(
−G(0)

(
E (0)
n

))kQ(0)

n
, when k > 0.

Now we obtain the series expansion of P(λ)
n in terms of λ.

In general, we are able to express any analytical function of H(λ) in terms of a

power series in λ:

(
H(λ) − E (0)

n

)ρP(λ)
n =

∫
E(λ)
n +

dz

2πi

(
z − E (0)

n

)ρ G(λ) (z)

=
∞∑
k=0

∫
E(λ)
n +

dz

2πi

(
z − E (0)

n

)ρ G(0)
(
λV G(0)

)k
=
∞∑
k=ρ

λk
∑

∑k+1
i=1 ki=k−ρ

Sk1V Sk2V · · ·V Skk+1
(A.1)
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Appendix B

Bipartite entanglement entropy of a 2-by-2 density

matrix

Given a normalized state ρ0 |0〉 ⊗ |0′〉+ ρ1 |1〉 ⊗ |1′〉 in which 〈0|1〉 = 0. We are going

to calculate the bipartite entanglement entropy of this state, given the Hilbert space

is separated into the space spanned by |0〉 , |1〉 and the space spanned by |0′〉 , |1′〉.

We have the reduced density matrix ρ = |ρ0|2 |0′〉 〈0′| + |ρ1|2 |1′〉 〈1′|. Set ρ2 :=

〈0′|1′〉. If |1′〉 = ρ2 |0′〉+
√

1− |ρ2|2 |0′ − 1′〉, then ρ can be represented in the matrix

form

ρ =

 |ρ0|2 + |ρ1|2 |ρ2|2 |ρ1|2 ρ2

√
1− |ρ2|2

|ρ1|2 ρ∗2
√

1− |ρ2|2 |ρ1|2
(
1− |ρ2|2

)


The eigenvalues of ρ are 1
2
±
√

1
4
− µ, µ := |ρ0|2 |ρ1|2

(
1− |ρ2|2

)
. Then

SE = −Tr (ρ ln ρ)

= −

(
1

2
+

√
1

4
− µ

)
ln

(
1

2
+

√
1

4
− µ

)

−

(
1

2
−
√

1

4
− µ

)
ln

(
1

2
−
√

1

4
− µ

)

≈ −µ lnµ, if µ→ +0 (B.1)
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Appendix C

Properties of the phase factor in the projective

representation of the translational group in a

lattice model

According to Eq. (3.4), the matrices UR’s obey the following composition rule:

URUR′ |R′′; i〉 = ei(φ(R′,R′′,i))UR |R′ + R′′; i〉

= ei(φ(R′,R′′,i)+φ(R,R′+R′′,i)) |R + R′ + R′′; i〉

= eiΦ(R,R′,R′′,i)UR+R′ |R′′; i〉

in which

Φ (R,R′,R′′, i) := φ (R′,R′′, i) + φ (R,R′ + R′′, i)− φ (R + R′,R′′, i) . (C.1)

(UR+R′)
−1 URUR′ must map any state to itself up to a phase factor [74], and we have

(UR+R′)
−1 URUR′ (|R′′; i〉+ |R′′′; i′〉)

= eiΦ(R,R′,R′′,i) |R′′; i〉+ eiΦ(R,R′,R′′′,i′) |R′′′; i′〉 ,

so Φ (R,R′,R′′, i) must be independent from R′′ and i, and then we use the notation

Φ (R,R′).

Let R = R′ = 0 in Eq. (C.1) and we get

Φ (0,0) = φ (0,R′′, i) ≡ const. (C.2)

Without loss of generality, we choose φ (0,R, i) ≡ 0. Note that the phases are defined

modulo 2π. Also, we can make a local gauge transformation such that

UR |0; i〉 = |R; i〉 .
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Equivalently speaking

φ (R,0, i) = 0, (C.3)

under which Eq. (C.1) becomes

Φ (R,R′) = φ (R,R′, i) , (C.4)

such that φ (R,R′, i) must also be independent from i. So we can use the notation

φ (R,R′).

Also, we note that phase transformation on the UR matrices, UR → URe
iφ(R), will

not change the physics and the new φnew (R,R′) is given by

φnew (R,R′) = φold (R,R′)− φ (R)− φ (R′) + φ (R + R′) .

So we can always properly choose φ (R) to make

φold (R,R)− 2φ (R) + φ (2R) ≡ 0,

φold (R,−R)− φ (R)− φ (−R) + φ (0) ≡ 0.

As a result,

φ (R,R) ≡ φ (R,−R) ≡ 0, (C.5)

which makes

URU−R = eiφ(R,−R) = 1. (C.6)
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Appendix D

The eigenstates of a lattice model with magnetic

translational symmetry

Given the lattice ρ as described under Eq. (3.12), for arbitrary ρ and ρ′ in the lattice,

both Eqs. (3.12) and (3.13) hold, so

φ (ρ, ρ′) = 0 or π. (D.1)

If we denote ρ =
∑d

i=1 yiτi, then the matrices

U lin
ρ :=

d∏
i=1

(Uτi)
yi (D.2)

form a linear representation of the subgroup of the translational group associated

with ρ’s as

U lin
ρ U lin

ρ′ = U lin
ρ+ρ′ .

It can be show by mathematical induction that U lin
ρ is proportional to Uρ:

U lin
ρ = exp

(
−iρ2

)
Uρ (D.3)

where

ρ2 :=
d∑
i=1

d∑
i′=i+1

yiyi′φ (τi, τi′) , (D.4)

which satisfies

(ρ+ ρ′)
2

= ρ2 + ρ′2 + φ (ρ, ρ′) . (D.5)
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Hence, according to the Bloch theorem, the common eigenstate |ψk,i〉 of H and Uρ’s

satisfies

H |ψk,i〉 = εk,i |ψk,i〉 (D.6)

U lin
ρ |ψk,i〉 = e−iρ·k |ψk,i〉 (D.7)

Uρ |ψk,i〉 = e−iρ·k+iρ2 |ψk,i〉 (D.8)

where

k =
d∑
i=1

kiτ
i (D.9)

is the pseudo momentum defined on the Brillouin zone ki ∈ [0, 2π), and τ i’s are the

primitive vectors of the reciprocal lattice of the lattice ρ:

τi · τ j = δi,j, (D.10)

The index i in εk,i marks the bands, i = 1, 2, . . . , qns. |ψk,i〉 is normalized such that

〈ψk,i|ψk′,i′〉 = (2π)d δ (k− k′) δi,i′ (D.11)

Because the Hilbert space is divided into invariant subspaces of H with differ-

ent k’s, we want to find the projectors onto these subspaces. Define local gauge

transformation:

Uk :=
∑
R,j

eiR·k |R; j〉 〈R; j| , (D.12)

which satisfies (
Uk
)†

=
(
Uk
)−1

= U−k (D.13)

and

U †RU
kUR =

∑
R′,j

eiR
′·k |R′−R; j〉 〈R′−R; j| = eiR·kUk, (D.14)

UkURU
−k =

∑
R′,j

eiR·keiφ(R,R′−R) |R′; j〉 〈R′ −R; j| = eiR·kUR. (D.15)
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Then we will show that

∑
r;i

|k, r; i〉 〈k, r; i| =
∑
ρ

UkU lin
ρ U−k. (D.16)

is the desired projectors, where the momentum state |k, r; i〉 is given by

|k, r; i〉 =
∑
ρ

eik·(ρ+r)U lin
ρ |r; i〉 (D.17)

where r is any R modulo ρ, the position of cells in a single enlarged cell.

First, the momentum state |k, r; i〉 is indeed having momentum k:

U lin
ρ′ |k, r; i〉 =

∑
ρ

eik·(ρ+r)U lin
ρ+ρ′ |r; i〉

=
∑
ρ

eik·(ρ−ρ
′+r)U lin

ρ |r; i〉

= e−ik·ρ
′ |k, r; i〉

Second, |k, r; i〉’s form a complete orthonormal basis of the Hilbert space:

〈k, r; i|k′, r′; i′〉 = (2π)d δ (k− k′) δr,r′δi,i′ , (D.18)

|r + ρ; i〉 =

∫
ddk

(2π)d
e−ik·(ρ+r)−iφ(ρ,r)+iρ2 |k, r; i〉 , (D.19)

And finally, Eq. (D.16) holds because

〈r + ρ; i|k, r; i〉 〈k, r; i|r + ρ′; i〉

=eik·(ρ−ρ
′)+iφ(ρ−ρ′,r)+iρ2+iρ′2

=eik·(ρ−ρ
′)
〈
r + ρ; i|U lin

ρ−ρ′|r + ρ′; i
〉



111

Now we can map the Hamiltonian into the momentum space. Given that

H =
∑

ρ,r,ρ′,r′

∑
i,i′

∫
ddk

(2π)d
ddk′

(2π)d

hi,i
′

r+ρ,r′+ρ′e
−ik·(ρ+r)+ik′·(ρ′+r′)−iφ(ρ,r)+iφ(ρ′,r′)+iρ2−iρ′2 |k, r; i〉

〈
k′, r

′
; i′
∣∣

=
∑

ρ,r,ρ′,r′

∑
i,i′

∫
ddk

(2π)d
ddk′

(2π)d
hi,i

′

r,r′+ρ′e
−ik·(ρ+r)+ik′·(ρ+ρ′+r′)+iφ(ρ′,r′)−iρ′2 |k, r; i〉

〈
k′, r

′
; i′
∣∣

=
∑
r,ρ′,r′

∑
i,i′

∫
ddk

(2π)d
hi,i

′

r,r′+ρ′e
ik·(ρ′+r′−r)+iφ(ρ′,r′)−iρ′2 |k, r; i〉 〈k, r′; i′|

we have

Hk =
∑
r,r′

∑
i,i′

hi,i
′

r,r′ (k) |k, r; i〉 〈k, r′; i′| (D.20)

hi,i
′

r,r′ (k) :=
∑
ρ′

hi,i
′

r,r′+ρ′e
−ik·(ρ′+r′−r)+iφ(ρ′,r′)−iρ′2 (D.21)

with the inverse transformation

hi,i
′

r,r′+ρ′ =

∫
ddk

(2π)d
eik·(ρ

′+r′−r)−iφ(ρ′,r′)+iρ′2hi,i
′

r,r′ (k) (D.22)

and, according to Eq. (3.7), the symmetry condition

hi,i
′

r+r′′,r′+r′′ (k)

=
∑
ρ′

hi,i
′

r,r′+ρ′e
−ik·(ρ′+r′−r)+iφ(ρ′,r′+r′′)−iρ′2+iφ(r′′,r−r′−ρ′)

=
∑
ρ′

hi,i
′

r,r′+ρ′e
−i(k+k(r′′))·(ρ′+r′−r)+iφ(ρ′,r′)−iρ′2+iφ(r′′,r′−r)

=hi,i
′

r,r′ (k + k (r′′)) eiφ(r′′,r′−r) (D.23)

where

k (r) :=
d∑
i=1

[φ (r, ei)− φ (ei, r)] ei, (D.24)

given that ei is the reciprocal lattice of lattice R

ei · ej = δi,j. (D.25)



112

If we express |ψk,i〉 in the basis of |k, r; i〉’s,

|ψk,i〉 =
∑
r,i′

ui
′,i
k,r |k, r; i′〉 , (D.26)

with the normalization condition

∑
r,i′

∣∣∣ui′,ik,r

∣∣∣2 = 1. (D.27)

Then ui
′,i
k,r diagonalize hi,i

′

r,r′ (k):

hi,i
′

r,r′ (k) =
∑
i′′

ui,i
′′

k,r εk,i′′
(
ui
′,i′′

k,r′

)∗
(D.28)

Equation (3.25) requires that εk,i is periodic in k (r)

εk,i = εk+k(r),i, ∀ r (D.29)

and

ui,i
′

k,r+r′
= ui,i

′

k+k(r′),r e
iφ(r,r′), (D.30)

up to a phase factor depending on k and i′.
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Appendix E

The Hall conductivity of Chern topological band

A Chern topological band has a non-zero Chern number, which is proportional to the

Hall conductivity of the band, and is the origin of the quantum Hall effect. Here we

compute the Hall conductivity and derive the Chern number.

To compute the Hall conductivity, we define the state |uk,i〉 in a single enlarged

lattice by

|uk,i〉 =
∑
r,i′

ui
′,i
k,r |r; i′〉 . (E.1)

|uk,i〉 with different i’s are orthonormal

〈uk,i|uk,i′〉 = δi,i′ (E.2)

and they are the eigenvectors of the parameterized Hamiltonian restricted to a single

enlarged cell:

H0
k :=

∑
r,r′

∑
i,i′

hi,i
′

r,r′ (k) |r; i〉 〈r′; i′| , (E.3)

H0
k |uk,i〉 = εk,i |uk,i〉 . (E.4)

Because

|ψk,i〉 =
∑
r,i′

ui
′,i
k,r

∑
ρ

eik·(ρ+r)U lin
ρ |r; i′〉 =

∑
ρ

UkU lin
ρ |uk,i〉
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we have 〈
ψk,i|U δ|ψk′,i′

〉
=
∑
ρ,ρ′

〈
uk,i|

(
UkU lin

ρ

)†
U δUk′U lin

ρ′ |uk′,i′
〉

=
∑
ρ,ρ′

〈
uk,i|Uk†U δUk′U lin†

ρ U lin
ρ′ |uk′,i′

〉
=
∑
ρ

e−iρ·(k−k
′−δ) 〈uk′,i′|Uk′U δUk† |uk,i〉

= (2π)d δ (k− k′ − δ) 〈uk,i′|uk−δ,i〉 . (E.5)

Thus there can be localized eigenstates of H with energy εi.

Consider the motion of a wave packet, say, the Wannier state |W0,i〉 defined in

Eq. (3.30), under a constant weak electric field E. The center position of the wave

packet xWP is given by

xWP =
∑
R,j

〈W0,i|R; j〉R 〈R; j|W0,i〉 .

We want to evaluate the expression using the Bloch waves |ψk,i〉’s. However, the

position operator
∑

R,j |R; j〉R 〈R; j| is ill-defined for the Bloch waves because∑
R,j

〈ψk,i|R; j〉R 〈R; j|ψk,i〉

=
∑
R,j

〈ψk,i|U lin
ρ |R; j〉R 〈R; j|U lin†

ρ |ψk,i〉

=
∑
R,j

〈ψk,i|R + ρ; j〉R 〈R + ρ; j|ψk,i〉

=
∑
R,j

〈ψk,i|R; j〉R 〈R; j|ψk,i〉−ρ.

So in calculating the center position of a wave packet using the Bloch waves, the

position operator should be replaced by∑
R,j

|R; j〉R 〈R; j| = lim
δ→0

U δ − U−δ

2iδ
(E.6)
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where the limit should be taken after calculating the expectation value of the operator.

Then we have

xWP = lim
δ→0
〈W0,i|

U δ − U−δ

2iδ
|W0,i〉

= lim
δ→0

∫
ddk

(2π)d
ddk′

(2π)d
〈ψk,i|

U δ − U−δ

2iδ
|ψk′,i〉

= lim
δ→0

∫
ddk

(2π)d
〈uk,i|uk−δ,i〉 − 〈uk,i|uk+δ,i〉

2iδ

=

∫
ddk

(2π)d
Ai,i (k) (E.7)

where

Ai,j (k) ≡ 〈uk,i| i∇k |uk,j〉 , (E.8)

is the Berry potential.

With the presence of an electric field E, the Hamiltonian becomes time-dependent:

H → UEt†HUEt

The velocity vWP of the wave packet can be calculated using time-dependent pertur-
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bation theory up to o (E):

vWP = lim
t→∞

xc (t)− xc
t

= lim
t→∞

t−1 lim
δ→0

2 Re

〈W0,i|
U δ − U−δ

−2iδ

(
−i
∫ t

0

dt′
(
eiH(t′−t)UEt′†HUEt′e−iH(t′−t) −H

))
|W0,i〉

= lim
t→∞

t−1 lim
δ→0

2 Re∑
j

∫
ddk

(2π)d
ddk′

(2π)d
〈ψk,i|

U δ − U−δ

2iδ
|ψk′,j〉

× 〈ψk′,j|
(
−i
∫ t

0

dt′
(
eiH(t′−t)UEt′†HUEt′e−iH(t′−t) −H

))
|W0,i〉

= lim
t→∞

2t−1 Im
∑
j

∫
ddk

(2π)d
Ai,j (k)

∫ t

0

dt′eiεk,j(t
′−t)
∑
j′

〈uk,j|uk+Et′,j′〉 εk+Et′,j′ 〈uk+Et′,j′ |uk,i〉 e−iεk,i(t
′−t) − εk,iδi,j

= lim
t→∞

2t−1 Im
∑
j

∫
ddk

(2π)d
Ai,j (k)

∫ t

0

dt′ei(εk,j−εk,i)(t′−t) 〈uk,j|Et′ · ∇kH
0
k |uk,i〉

=2 Im

∫
ddk

(2π)d

∑
j 6=i

Ai,j (k) 〈uk,j| ∇kH
0
k |uk,i〉

i (εk,j − εk,i)
· E

=2 Im

∫
ddk

(2π)d

∑
j 6=i

Ai,j (k) Aj,i (k) · E

=− 2 Im

∫
ddk

(2π)d
〈∇kuk,i|∇kuk,i〉 · E

There is one Wannier function per enlarged unit cell, so the conductivity is given by

σi =

∫
ddk

(2π)d Vc
F iab (k) τaτb

where Vc is the volume of the enlarged unit cell, and

F iab (k) := i [〈∂kauk,i|∂kbuk,i〉 − 〈∂kbuk,i|∂kauk,i〉] (E.9)

is the Berry curvature. When the lattice is two-dimensional, Vc = |τ1 × τ2|, and the



117

Hall conductivity is given by

σiHall =
Ci

2π
(E.10)

where the first Chern number, an integer topological invariant of the band, is given

by

Ci :=

∫
d2k

2π
F iab (k) (E.11)
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