Publications

Research Papers

ResearchID: http://www.researcherid.com/rid/F-2318-2011

2024

  1. N. Marque Peraca, X. Li, J. M. Moya, K. Hayashida, D. Kim, X. Ma, K. J. Neubauer, D. Fallas Padilla, C.-L. Huang, P. Dai, A. H. Nevidomskyy, H. Pu, E. Morosan, S. Cao, M. Bamba, and J. Kono Quantum simulation of an extended Dicke model with a magnetic solid Commun. Mat. 5, 42 (2024) .

 

2023

  1. S. Basak, and H. PuGeneralized effective spin-chain formalism for strongly interacting spinor gases in optical lattices Phys. Rev. A 108, 063315 (2023) .
  2. M. Jain, M. A. Amin, and H. PuIntegrator for General Spin-s Gross-Pitaevskii Systems Phys. Rev. E 108, 055305 (2023) .
  3. D. Fallas Padilla, and H. PuTricritical Dicke Model With and Without Dissipation Phys. Rev. A 108, 033706 (2023) .
  4. J.-J. Luo, H. Pu, and X.-W. Guan, Spin-Incoherent Liquid and Interaction-Driven Criticality in the One-Dimensional Hubbard Model Phys. Rev. B 107, L201103 (2023) .
  5. C. Gao, Z. Tang, F. Zhu, Y. Zhang, H. Pu, and L. Chen, Nonthermal Dynamics in a Spin-1/2 Lattice Schwinger Model Phys. Rev. B 107, 104302 (2023) .
  6. K. Hayashida, T. Makihara, N. M. Peraca, D. Fallas Padilla, H. Pu, J. Kono, and M. Bamba, Perfect Intrinsic Squeezing at the Superradiant Phase Transition Critical Point Sci. Rep. 13, 2526 (2023) .

 

2022

  1. G.-J. Cheng, D. Fallas Padilla, T. Deng, Y.-Y. Zhang, and H. PuChiral Quantum Phases and Tricriticality in a Dicke Triangle Quantum Frontiers 1, 18 (2022) .
  2. L. Yang, Shah Saad Alam, and H. Pu, Generalized Bose-Fermi Mapping and Strong Coupling Ansatz Wavefunction for One Dimensional Strongly Interacting Spinor Quantum Gases J. Phys. A: math. Theor. 55, 464005 (2022) .
  3. C. Gao, J. Liu, M. Chang, H. Pu, and L. Chen, Synthetic U(1) Gauge Invariance in a Spin-1 Bose Gas Phys. Rev. Research 4, L042018 (2022) .
  4. D. Fallas Padilla, H. Pu, G.-J. Cheng, and Y.-Y. Zhang, Understanding the Quantum Rabi Ring using Analogies to Quantum Magnetism Phys. Rev. Lett. 129, 183602 (2022) .
  5. L. Chen, and H. Pu, Synthetic Gauge Field and Spin-Orbit Coupling in Ultracold Atomic Condensate Models and Methods for Quantum Condensation and Fluids, edited by W. Bao, Y. Cai, I. Danaila, and P. A. Markowich (World Scientific) .
  6. R. Senaratne, D. Cavazos, S. Wang, F. He, Y.-T. Chang, A. Kafle, H. Pu, X.-W. Guan, and R. G. Hulet, Spin-Charge Separation in a One-Dimensional Fermi Gas with Tunable Interactions Science 376, 1305 (2022) .

 

2021

  1. S. Basak, and H. Pu, Strongly Interacting Two-Component Coupled Bose Gas in Optical Lattices Phys. Rev. A 104, 053326 (2021) .
  2. Y. Xu, D. Fallas Padilla, and H. Pu, Multicriticality and Quantum Fluctuation in a Generalized Dicke Model Phys. Rev. A 104, 043708 (2021) .
  3. Y.-Y. Zhang, Z.-X. Hu, L. Fu, H.-G. Luo, H. Pu, and X.-F. Zhang, Quantum Phases in a Quantum Rabi Triangle Phys. Rev. Lett. 127, 063602 (2021) .
  4. Shah Saad Alam, T. Skaras, L. Yang, and H. PuDynamical Fermioniation in One-Dimensional Spinor Quantum Gases Phys. Rev. Lett. 127, 023002 (2021) (Editors’ Suggestion) .
  5. J.-M. Cheng, Z.-W. Zhou, G.-C. Guo, H. Pu, and X.-F. Zhou, Bose-Einstein condensates in an atom-optomechanical system with effective global nonuniform interaction Phys. Rev. A 103, 023328 (2021) .

 

2020

  1. L. Chen, Y. Zhang, and H. Pu, Spin-Nematic Vortex States in Cold Atoms Phys. Rev. Lett. 125, 195303 (2020) .
  2. F. He, Y.-Z. Jiang, H.-Q. Lin, R. G. Hulet, H. Pu, and X.-W. Guan, Emergence and Disruption of Spin-Charge Separation in One-Dimensional Repulsive Fermions Phys. Rev. Lett. 125, 190401 (2020) .
  3. Y. Xu, and H. Pu, Building Flat-Band Lattice Models from Gram Matrices Phys. Rev. A 102, 053305 (2020) .
  4. L. Chen, Y. Zhang, and H. Pu, Spin Squeezing in a Spin-Orbit-Coupled Bose-Einstein Condensate Phys. Rev. A 102, 023317 (2020) .
  5. L. Yang, Z. Leng, G. Yu, A. Patel, W.-J. Hu, and H. Pu, Deep Learning-Enhanced Variational Monte Carlo Method for Quantum Many-Body Physics Phys. Rev. Research 2, 012039(R) (2020) .

 

2019

  1. P. Rackauskas, V. Novicenko, H. Pu, and G. Juzeliunas, Non-Abelian Geometric Potentials and Spin-Orbit Coupling for Periodically Driven Systems Phys. Rev. A 100, 063616 (2019) .
  2. Y.-X. Huang, W. F. Zhuang, X.-F. Zhou, H. Pu, G.-C. Guo, and M. Gong, Bose-Einstein Condensate in Bloch Bands with an Off-Diagonal Periodic Potential Phys. Rev. A 100, 053606 (2019) .
  3. S. Wang, X.-F. Zhou, G.-C. Guo, H. Pu, and Z.-W. Zhou, Synthesizing arbitrary lattice models using a single degenerate cavity Phys. Rev. A 100, 043817 (2019) .
  4. C. Zhu, L. Chen, H. Hu, X.-J. Liu, and H. Pu, Spin-Exchange-Induced Exotic Superfluids in a Bose-Fermi Spinor Mixture Phys. Rev. A 100, 031602(R) (2019) .
  5. Y, Xu, and H. Pu, Emergent Universality in a Quantum Tricritical Dicke Model Phys. Rev. Lett. 122, 193201 (2019) .
  6. D.-F. Zhang, T. Gao, P. Zou, L. Kong, R. Li, X. Shen, X.-L. Chen, S.-G. Peng, M. Zhan, H. Pu, and K. Jiang, Ground-State Phase Diagram of a Spin-Orbital-Angular-Momentum Coupled Bose-Einstein Condensate Phys. Rev. Lett. 122, 110402 (2019) .

 

2018

  1. Z.-F. Zheng, G.-C. Guo, H. Pu, and X.-B. Zou, Field-induced topological pair-density wave states in a multilayer optical lattice Phys. Rev. A 98, 033606 (2018) .
  2. Q. Sun, J. Hu, L. Wen, H. Pu, and A.-C. Ji, Unbound-to-bound transition of two-atom polaritons in an optical cavity Phys. Rev. A 98, 033801 (2018) .
  3. Y.-Y. Cai, Y. Yuan, M. Rosenkranz, H. Pu, and W. Bao, Vortex patterns and the critical rotational frequency in rotating dipolar Bose-Einstein condensates Phys. Rev. A 98, 023610 (2018) .
  4. C. Zhu, L. Dong, and H. Pu, Dynamical Spin-Orbit Coupling in Cold Atoms Induced by Cavity Field Synthetic Spin-Orbit Coupling in Cold Atoms, edited by W. Zhang, W. Yi, and C. A. R. Sa Melo (World Scientific) .
  5. X.-F. Zhou, C. Wu, G.-C. Guo, R. Wang, H. Pu, and Z.-W. Zhou, Synthetic Landau Levels and Spinor Vortex Matter on a Haldane Spherical Surface with a Magnetic Monopole Phys. Rev. Lett. 120, 130402 (2018).
  6. L. Chen, C. Zhu, Y. Zhang, and H. Pu, Spin-Exchange-Induced Spin-Orbit Coupling In a Superfluid Mixture Phys. Rev. A 97, 031601(R) (2018) .

 

2017

  1. Z. Wang, Y. Xu, H. Pu, and K. R. A. Hazzard, Number-Conserving Interacting Fermion Models with Exact Topological Superconducting Ground States Phys. Rev. B 96, 115110 (2017).
  2. H. Sun, P. Xu, H. Pu, and W. Zhang, Efficient Generation of Many-Body Singlet States of Spin-1 Bosons in Optical Superlattices Phys. Rev. A 95, 063624 (2017).
  3. L. Yang, and H. Pu, One-body density matrix and momentum distribution of strongly interacting one-dimensional spinor quantum gases Phys. Rev. A 95, 051602(R) (2017) (Editors’ Suggestion) .
  4. L. Chen, H. Pu, Z.-Q. Yu, and Y. Zhang, Collective Excitation of a Trapped Bose-Einstein Condensate with Spin-Orbit Coupling Phys. Rev. A 95, 033616 (2017).
  5. X.-F. Zhou, X.-W. Luo, S. Wang, G.-C. Guo, X. Zhou, H. Pu, Z.-W. Zhou, Dynamically Manipulating Topological Physics and Edge Modes in a Single Degenerate Optical Cavity Phys. Rev. Lett. 118, 083603 (2017).
  6. Z. Zheng, H. Pu,X. Zou, and G.-C. Guo, Artificial Topological Models Based on A One-Dimensional Spin-Dependent Optical Lattice Phys. Rev. A 95, 013616 (2017).

 

2016

  1. C. Zhu, L. Dong, and H. Pu, Effects of Spin-Orbit Coupling on Jaynes-Cummings and Tavis-Cummings Models Phys. Rev. A 94, 053621 (2016).
  2. L. Yang, and H. Pu, Bose-Fermi Mapping and a Multibranch Spin-Chain Model for Strongly Interacting Quantum Gases in One Dimension: Dynamics and Collective Excitations Phys. Rev. A 94, 033614 (2016).
  3. C. Zhu, L. Dong, and H. Pu, Harmonically Trapped Atoms with Spin-Orbit Coupling J. Phys. B 49, 145301 (2016).
  4. S.-S. Zhang, W.-M. Liu, and H. Pu, Itinerant Chiral Ferromagnetism in a Trapped Rashba Spin-Orbit-Coupled Fermi Gas Phys. Rev. A 93, 043602 (2016).
  5. B. Wang, Z. Zheng, H. Pu, X. Zou, and G. Guo, Effective P-wave Interaction and Topological Superfluids in S-wave Quantum Gases Phys. Rev. A 93, 031602(R) (2016).
  6. L. Chen, H. Pu, and Y. Zhang, Spin-Orbit Angular Momentum Coupling in a Spin-1 Bose-Einstein Condensate Phys. Rev. A 93, 013629 (2016).

 

2015

  1. Y.-C. Zhang, Z.-W. Zhou, B. A. Malomed, and H. PuStable Solitons in Three Dimensional Free Space without the Ground State: Self-Trapped Bose-Einstein Condensates with Spin-Orbit Coupling Phys. Rev. Lett. 115, 253902 (2015).
  2. L. Dong, C. Zhu, and H. Pu, Photon-Induced Spin-Orbit Coupling in Ultracold Atoms inside Optical Cavity Atoms 3, 182 (2015).
  3. L. Yang, L. Guan, and H. Pu, Strongly Interacting Quantum Gases in One-Dimensional Traps Phys. Rev. A 91, 043634 (2015).
  4. Y.-C. Zhang, X.-F. Zhou, X. Zhou, G.-C. Guo, H. Pu, and Z.-W. Zhou, Two-Component Bose-Hubbard Model in an Array of Cavity Polaritons Phys. Rev. A 91, 043633 (2015).
  5. X.-J. Liu, H. Hu, and H. PuThree-dimensional spin-orbit coupled Fermi gases: Fulde-Ferrell pairing, Majorana fermions, Weyl fermions, and gapless topological superfluidity Chin. Phys. B 24, 050502 (2015).
  6. M. DeMarco, and H. Pu, Angular Spin-Orbit Coupling in Cold Atoms Phys. Rev. A 91, 033630 (2015).
  7. Y. Dong, L. Dong, M. Gong, and H. Pu, Dynamical Phases in Quenched Spin-Orbit-Coupled Degenerate Fermi Gas Nature Commun. 6, 6103 (2015).

 

2014

  1. Z. Zheng, H. Pu, X. Zou, G. Guo, Thermodynamics of Rashba Spin-Orbit-Coupled Fermi Gas Phys. Rev. A 90, 063623 (2014).
  2. L. Jiang, E. Tiesinga, X.-J. Liu, H. Hu, and H. Pu, Spin-Orbit-Coupled Topological Fulde-Ferrell States of Fermions in a Harmonic Trap Phys. Rev. A 90, 053606 (2014).
  3. H. Hu, L. Dong, Y. Cao, H. Pu, and X.-J. Liu, Gapless Topological Fulde-Ferrell Superfluidity induced an In-Plane Zeeman Field Phys. Rev. A 90, 033624 (2014).
  4. Y.-C. Zhang, X.-F. Zhou, G.-C. Guo, X. Zhou, H. Pu, and Z.-W. Zhou, Two-Component Polariton Condensate in an Optical Microcavity Phys. Rev. A 89, 053624 (2014).
  5. J. Zhang, H. Hu, X.-J. Liu, and H. Pu, Fermi Gases with Synthetic Spin-Orbit CouplingAnnual Review of Cold Atoms and Molecules, Volume 2, Chapter 2 (2014).
  6. L. Dong, L. Zhou, B. Wu, R. Balasubramanian, and H. Pu, Cavity-Assisted Dynamical Spin-Orbit Coupling in Cold Atoms Phys. Rev. A 89, 011602(R) (2014).

 

2013

  1. L. Dong, L. Jiang, and H. Pu, Fulde-Ferrell Pairing Instability in Spin-Orbit Coupled Fermi Gas New J. Phys. 15, 075014 (2013).
  2. Z. Fu, L. Huang, Z. Meng, P. Wang, X.-J. Liu, H. Pu,H. Hu, and J. Zhang, Radio-Frequency Spectroscopy of a Strongly Interacting Spin-Orbit-Coupled Fermi Gas Phys. Rev. A 87, 053619 (2013).
  3. L. Dong, L. Jiang, H. Hu, and H. Pu, Finite-Momentum Dimer Bound State in a Spin-Orbit-Coupled Fermi Gas Phys. Rev. A 87, 043616 (2013).
  4. Y. Dong, and H. Pu, Spin mixing in spinor Fermi gases Phys. Rev. A 87, 043610 (2013).
  5. M. Yan, B. J. DeSalvo, B. Ramachandhran, H. Pu, and T. C. Killian, Controlling Condensate Collapse and Expansion with an Optical Feshbach Resonance Phys. Rev. Lett. 110, 123201 (2013).
  6. B. Ramachandhran, H. Hu, and H. Pu, Emergence of Topological and Strongly Correlated Ground States in Trapped Rashba Spin-Orbit-Coupled Bose Gases Phys. Rev. A 87, 033627 (2013).
  7. L. Zhou, H. Pu, and W. Zhang, Anderson localization of cold atomic gases with effective spin-orbit interaction in a quasiperiodic optical lattice Phys. Rev. A 87, 023625 (2013).
  8. H. Hu, L. Jiang, H. Pu, Y. Chen, and X.-J. Liu, Universal Impurity-Induced Bound State in Topological Superfluids Phys. Rev. Lett. 110, 020401 (2013).

 

2012

  1. H. Hu, H. Pu, J. Zhang, S.-G. Peng, and X.-J. Liu, Radio-Frequency Spectroscopy of Weakly Bound Molecules in Spin-Orbit-Coupled Atomic Fermi Gas Phys. Rev. A 86, 053627 (2012).
  2. H. Lu, L. O. Baksmaty, C. J. Bolech, and H. Pu,Expansion of 1D Polarized Superfluids: The Fulde-Ferrell-Larkin-Ovchinnikov State Reveals Itself Phys. Rev. Lett. 108, 225302 (2012).
  3. X.-J. Liu, L. Jiang, H. Pu, and H. Hu, Probing Majorana Fermions in Spin-Orbit-Coupled Atomic Fermi Gases Phys. Rev. A 85, 021603(R) (2012).
  4. B. Ramachandhran, B. Opanchuk, X.-J. Liu, H. Pu, P. D. Drummond, and H. Hu, Half-Quantum Vortex in a Spin-Orbit-Coupled Bose-Einstein Condensate Phys. Rev. A 85, 023606 (2012).
  5. X.-F. Zhou, S.-L. Zhang, Z.-W. Zhou, B. A. Malomed and H. PuBose-Einstein Condensates in a Ring-Shaped Trap with a Nonlinear Double-Well Potential Phys. Rev. A 85, 023603 (2012).
  6. H. Hu, B. Ramachandhran, H. Puand X.-J. Liu, Spin-Orbit Coupled Weakly Interacting Bose-Einstein Condensates in Harmonic Traps Phys. Rev. Lett. 108, 010402 (2012).

 

2011

  1. L. Jiang, X. -J. Liu, H. Hu and H. Pu, Rashba Spin-Orbit-Coupled Atomic Fermi Gases Phys. Rev. A 84, 063618 (2011).
  2. h. Hu, L. Jiang, X. -J. Liu and H. Pu, Probing Anisotropic Superfluidity in Atomic Fermi Gases with Rashba Spin-Orbit Coupling Phys. Rev. Lett. 107, 195305 (2011).
  3. L. Zhou, H. Pu, K. Zhang, X.-D. Zhao, and W. Zhang, Cavity-Induced Switching between Localized and Extended States in a Noninteracting Bose-Einstein Condensate Phys. Rev. A 84, 043606 (2011).
  4. L. Jiang, L. O. Baksmaty, H. Hu, Y. Chen and H. Pu, Single Impurity in Ultracold Fermi Superfluids Phys. Rev. A 83, 061604(R) (2011).
  5. K. Zhang, L. Zhou, H. Y. Ling, H. Pu, and W. Zhang,Measurement Backaction on the Quantum Spin-Mixing Dynamics of a Spin-1 Bose-Einstein Condensate Phys. Rev. A 83, 063624 (2011).
  6. L. O. Baksmaty, H. Lu, C. J. Bolech and H. Pu, A Bogoliubov-de Gennes Study of Trapped Spin-Imbalanced Unitary Fermi Gases New J. Phys. 13, 055014 (2011).
  7. Z.-W. Zhou, S.-L. Zhang, X.-F. Zhang, G.-C. Guo, X. Zhou and H. PuQuantum Phase Transition of Bose-Einstein Condensates on a Nonlinear Ring Lattice Phys. Rev. A 83, 043626 (2011).
  8. Y. Dong, J. Ye and H. Pu, Multistability in an Optomechanical System with a Two-Component Bose-Einstein Condensate Phys. Rev. A 83, 031608(R) (2011).
  9. B. Ramachandhran, S. G. Bhongale and H. Pu, Finite-Temperature Study of Bose-Fermi Superfluid Mixtures Phys. Rev. A 83, 033607 (2011).
  10. L. O. Baksmaty, H. Lu, C. J. Bolech, and H. Pu, Concomitant Modulated Superfluidity in Polarized Fermi Gases Phys. Rev. A 83, 023604 (2011).

 

2010

  1. G. Bhongale, P. Kakashvili, C. J. Bolech, and H. Pu, Dissipative Transport of Trapped Bose-Einstein Condensates through Disorder Phys. Rev. A 82, 053632 (2010).
  2. H.-Y. Lu, H. Lu, J.-N. Zhang, R.-Z. Qiu, H. Pu, and S. Yi, Spatial Density Oscillations in Trapped Dipolar Condensates Phys. Rev. A 82, 023622 (2010).
  3. C. Zhao, L. Jiang, X. Liu, W.-M. Liu, X. Zou and H. Pu, Hartree-Fock-Bogoliubov Theory of Dipolar Fermi Gases Phys. Rev. A 81, 063642 (2010).
  4. L. Zhou, H. Pu, H. Y. Ling, K. Zhang and W. Zhang, Spin Dynamics and Domain Formation of a Spinor Bose-Einstein Condensate in an Optical Cavity Phys. Rev. A 81, 063641 (2010).
  5. L. Jiang, H. Pu, A. Robertson and H. Y. Ling, Matter-Wave Bistability in Coupled Atom-Molecule Quantum Gases Phys. Rev. A 81, 013619 (2010).

 

2009

  1. K. Adhikari, H. Lu, H. Pu, Self-Trapping of a Fermi Superfluid in a Double-Well Potential in the Bose-Einstein-Condensate–Unitarity Crossover Phys. Rev. A 80, 063607 (2009).
  2. L. Zhou, H. Pu, H. Y. Ling and W. Zhang, Cavity-Mediated Strong Matter Wave Bistability in a Spin-1 Condensate Phys. Rev. Lett. 103, 160403 (2009).
  3. P. Kakashvili, S. G. Bhongale, H. Pu, and C. J. Bolech, Realizing Luttinger Liquids in Trapped Ultracold Atomic Fermi Gases using 2D Optical Lattices Physica B: Phys. Cond. Mat 404, 3320 (2009).
  4. L. O. Baksmaty, Y. Liu, U. Landman, N. P. Bigelow and H. Pu, Numerical Exploration of Vortex Matter in Bose-Einstein Condensates  Math. Comp. in Simu. 80, 131 (2009).
  5. L. Jiang, H. Pu, W. Zhang and H. Y. Ling, Detection of Fermi Pairing via Electromagnetically Induced Transparency Phys. Rev. A 80, 033606 (2009).
  6. J.-N. Zhang, L. He H. Pu, C.-P. Sun and S. Yi, Creating vortices in dipolar spinor condensates via rapid adiabatic passage Phys. Rev. A 79, 033615 (2009).
  7. T. Sogo, L. He, T. Miyakawa, S. Yi, H. Lu andH. Pu,Dynamical Properties of Dipolar Fermi Gases New J. Phys. 11, 055017 (2009).
  8. S. Yi and H. Pu, Dipolar Spinor Bose-Einstein Condensatesin “Electromagnetic, Magnetostatic, and Exchange-Interaction Vortices in Confined Magnetic Structures” (Ed. E. O. Kamenetskii, Research Signpost, 2009) .
  9. B. Xiong, J. Gong, H. Pu, W. Bao and B. Li, Symmetry Breaking and Self-Trapping of a Dipolar Bose-Einstein Condensate in a Double-Well Potential Phys. Rev. A 79, 013626 (2009).
  10. X. Liu, H. Pu, B. Xiong, W.-M. Liu and J. Gong, Formation and Transformation of Vector Solitons in Two-Species Bose-Einstein Condensates with a Tunable Interaction Phys. Rev. A 79, 013423 (2009).

 

2008

  1. G. Bhongale and H. Pu, Phase Separation in a Mixture of a Bose-Einstein Condensate and a Two-Component Fermi Gas as a Probe of Fermi Superfluidity Phys. Rev. A 78, 061606(R) (2008).
  2. L. Zhou, J. Qian, H. Pu, W. Zhang and H. Y. Ling, Phase Separation in Two-Species Atomic Bose-Einstein Condensate with Interspecies Feshbach Resonance Phys. Rev. A 78, 053612 (2008).
  3. P. Kakashvili, S. G. Bhongale, H. Pu, and C. J. Bolech, Signatures of Strong Correlations in One-Dimensional Ultracold Atomic Fermi Gases Phys. Rev. A 78, 041602(R) (2008).
  4. C. Zhao, X.-B. Zou, H. Pu, and G.-C. Guo, Atom Molecule Dark State: the Exact Quantum Solution Phys. Rev. Lett. 101, 010401 (2008).
  5. R. M. Wilson, S. Ronen, J. L. Bohn and H. Pu, Manifestation of the Roton Mode in Dipolar Bose-Einstein Condensates Phys. Rev. Lett. 100, 245302 (2008).
  6. T. Miyakawa, T. Sogo and H. Pu, Phase Space Deformation of a Trapped Dipolar Fermi Gas Phys. Rev. A. 77, 061603(R) (2008).
  7. L. C. Qian, M. L. Wall, S. Zhang, Z. Zhou and H. Pu, Bose-Einstein Condensates On a Ring with Periodic Scattering Length: Spontaneous Symmetry Breaking and Entanglement Phys. Rev. A. 77, 013611 (2008).

 

2007

  1. A. Robertson, L. Jiang, H. Pu, W. Zhang and H. Y. Ling, Macroscopic Atom-Molecule Dark State and Its Collective Excitations in Fermionic Systems Phys. Rev. Lett. 99, 250404 (2007).
  2. L. Zhou, W. Zhang, H. Y. Ling, L. Jiang and H. Pu, Properties of a Coupled Two-Species Atom–Heteronuclear-Molecule Condensate Phys. Rev. A 75, 043603 (2007).
  3. H. Y. Ling, P. Maenner, W. Zhang and H. Pu, Adiabatic Theorem for a Condensate System in an Atom-Molecule Dark State Phys. Rev. A 75, 033615 (2007).
  4. H. Pu, P. Maenner, W. Zhang and H. Y. Ling, Adiabatic Condition for Nonlinear Systems Phys. Rev. Lett. 98, 050406 (2007).

 

2006

  1. S. Yi and H. Pu, Spontaneous Spin Textures in Dipolar Spinor Condensates Phys. Rev. Lett. 97, 020401 (2006).
  2. S. Yi and H. Pu, Vortex Structures in Dipolar Condensates Phys. Rev. A 73, 061602(R) (2006).
  3. H. Y. Ling, S. Yi, H. Pu, D. E. Grochowski and W. Zhang, Molecular Vortex Generated from an Atom-Molecule Dark State Phys. Rev. A 73, 053612 (2006).
  4. S. Yi and H. Pu, Magnetization, Squeezing, and Entanglement in Dipolar Spin-1 Condensates Phys. Rev. A 73, 023602 (2006).

 

2005

  1. M. W. Jack and H. Pu, Dissociation Dynamics of a Bose-Einstein Condensate of Molecules Phys. Rev. A 72, 063625 (2005).
  2. D. J. Phalen, C. C. Young, S. Yi and H. Pu, Multi-dimensional Laser Cooling of Broad- and Narrow-Line 0 ↔ 1 Dipole Transitions Phys. Rev. A 72, 033406 (2005).
  3. H. Y. Ling , P. Maenner and H. Pu, Coherent Population Trapping and Dynamical Instability in Coupled Atom-Molecule Condensates Phys. Rev. A 72, 013608 (2005).
  4. H. Pu, L. O. Baksmaty, S. Yi and N. P. Bigelow, Structural Phase Transitions of Vortex Matter in an Optical Lattice, Phys. Rev. Lett. 94, 190401 (2005).

 

2004

  1. H. Y. Ling, H. Pu and B. Seaman, Creating a Stable Molecular Condensate Using a Generalized Raman Adiabatic Passage Scheme Phys. Rev. Lett. 93, 250403 (2004).
  2. S. Yi, L. You and H. Pu, Quantum Phases of Dipolar Spinor Condensates Phys. Rev. Lett. 93, 040403 (2004).

 

2003

  1. H. Pu, W. Zhang and P. Meystre, Wave Mixing of Optical Pulse and Bose-Einstein Condensates, Phys. Rev. Lett. 91, 150407 (2003).
  2. W. Zhang, E. M. Wright, H. Pu and P. Meystre, Fundamental Limit for Integrated Atom Optics with Bose-Einstein Condensates Phys. Rev. A 68, 023605 (2003).
  3. H. Pu, L. O. Baksmaty, W. Zhang, N. P. Bigelow and P. Meystre, Effective-Mass Analysis of Bose-Einstein Condensates in Optical Lattices: Stabilization and Levitation, Phys. Rev. A 67, 043605 (2003).
  4. W. Zhang, C. P. Search, H. Pu, P. Meystre and E. M. Wright, Feshbach-Resonance-Induced Atomic Filamentation and Quantum Pair Correlation in Atom-Laser-Beam Propagation Phys. Rev. Lett. 90, 140401 (2003).
  5. W. Zhang, H. Pu, C. P. Search, P. Meystre and E. M. Wright,Two-Fermion Bound State in a Bose-Einstein Condensate Phys. Rev. A 67, 021601(R) (2003).

 

2002

  1. K. Gross, C. P. Search, H. Pu, W. Zhang and P. Meystre, Magnetism in a Lattice of Spinor Bose-Einstein Condensates Phys. Rev. A 66, 033603 (2002).
  2. H. Pu, W. Zhang and P. Meystre, Macroscopic Spin Tunneling and Quantum Critical Behavior of a Condensate in a Double-Well Potential, Phys. Rev. Lett. 89, 090401 (2002).
  3. H. Pu, C. P. Search, W. Zhang and P. Meystre, Atom Optics — From de Broglie Waves to Heisenberg Ferromagnets,Fortschritte der Physik 50, 664 (2002).
  4. C. P. Search, H. Pu, W. Zhang and P. Meystre, Quasiparticle Spectrum and Dynamical Stability of an Atomic Bose-Einstein Condensate Coupled to a Degenerate Fermi Gas Phys. Rev. A 65, 063615 (2002).
  5. C. P. Search, H. Pu, W. Zhang, B. P. Anderson and P. Meystre, Manipulating the Critical Temperature for the Superfluid Phase Transition in Trapped Atomic Fermi Gases Phys. Rev. A 65, 063616 (2002).
  6. C. P. Search, H. Pu, W. Zhang and P. Meystre, Diffraction of a Superfluid Fermi Gas by an Atomic Grating Phys. Rev. Lett. 88, 110401 (2002).
  7. H. Pu, W. Zhang, M. Wilkens and P. Meystre, Phonon Spectrum and Dynamical Stability of a Dilute Quantum Degenerate Bose-Fermi Mixture, Phys. Rev. Lett. 88, 070408 (2002).
  8. W. Zhang, H. Pu, C. P. Search and P. Meystre, Spin Waves in a Bose-Einstein  Condensed Atomic Spin Chain,   Phys. Rev. Lett. 88, 060401 (2002).

2001

  1. H. Pu, W. Zhang and  P. Meystre, Ferromagnetism in a Lattice of Bose-Einstein Condensates, Phys. Rev. Lett. 87, 140405 (2001).
  2. S. Poetting, M. Cramer, C. H. Schwalb, H. Pu and  P. Meystre, Coherent Acceleration of Bose-Einstein Condensates,   Phys. Rev. A 64, 023604 (2001).
  3. H. Pu,  S. Raghavan and  N. P. Bigelow, Creation of Topological States in Spinor Condensates, Phys. Rev. A 63, 063603 (2001).
  4. H. Y. Ling, H. Pu,  L.O. Baksmaty and  N. P. Bigelow, Theory of a Collective Atomic Recoil Laser,   Phys. Rev. A 63, 053810 (2001).
  5. J. Heurich, H. Pu,  M. G. Moore and  P. Meystre, Instability and Self-Oscillations in Atomic Four-Wave Mixing,   Phys. Rev. A 63, 033605 (2001).
  6. S. Raghavan, H. Pu,  P. Meystre and N. P. Bigelow, Generation of Arbitrary Dicke States in Spinor Bose-Einstein Condensates,   Opt. Commun. 188, 149 (2001).

2000

  1. E. V. Goldstein, M. G. Moore, H. Pu and P. Meystre, Eliminating the Mean-Field Shift in Two-Component Bose-Einstein Condensates Phys. Rev. Lett. 85, 5030 (2000).
  2. H. Pu and P. Meystre, Creating Macroscopic Atomic Einstein-Podolsky-Rosen States from Bose-Einstein Condensates Phys. Rev. Lett. 85, 3987 (2000).
  3. Raghavan,H. Pu, C. K. Law and N. P. Bigelow, Properties of Spinor Bose Condensates, J. Low Temp. Phys. 119, 437 (2000).
  4. H. Pu, S. Raghavan and N. P. Bigelow, Manipulation of Spinor Condensates with Magnetic Fields: Stochastization, Metastability, and Dynamical Spin Localization, Phys. Rev. A 61, 023602 (2000).
  5. H. Pu, C. K. Law and N. P. Bigelow, Complex Quantum Gases: Spinor Bose-Einstein Condensates of Trapped Atomic Vapors, Physica B 280, 27 (2000).

 

Before 2000

  1. H. Pu, C. K. Law, S. Raghavan, J. H. Eberly and N. P. Bigelow, Spin-mixing Dynamics of a Spinor Bose-Einstein Condensate, Phys. Rev. A 60, 1463 (1999).
  2. H. Pu, T. Cai and N. P. Bigelow, Semi-classical Theory of Laser Cooling in Two Dimension, Euro. Phys. J. D 7, 269 (1999).
  3. H. Pu, C. K. Law, J. H. Eberly and N. P. Bigelow, Coherent Disintegration andStability of Vortices  in  Trapped  Bose  Condensates Phys. Rev. A 59, 1533 (1999).
  4. C. K. Law, H. Puand N. P. Bigelow, Quantum Spins Mixing in Spinor Bose-Einstein Condensates,  Phys. Rev. Lett. 81, 5257 (1998).
  5. H. Pu and N. P. Bigelow, Collective Excitations, Metastability and Nonlinear  Response of a Trapped Two-Species Bose-Einstein Condensate Phys. Rev. Lett. 80, 1134 (1998).
  6. H. Pu and N. P. Bigelow, Properties of Two-Species Bose Condensates Phys. Rev.  Lett. 80, 1130 (1998).
  7. N. P. Bigelow, W. Chalupczak, R. Ejnisman, H. Pu, P. Rudy and J. Shaffer, Quantum Control of Motional States of Neutral Atoms: Exploiting the External Degrees of Freedom, Acta Phys. Pol. 93, 11 (1998).
  8. C. K. Law, H. Pu, N. P. Bigelow and J. H. Eberly, Quantum Phase Diffusion of A Two-Component Dilute Bose-Einstein Condensate Phys. Rev. A 58, 531 (1998).
  9. R. Ejnisman, H. Pu, Y. Young, N. P. Bigelow and C. K. Law, Studies on a Two-Species Bose-Einstein Condensate Optics Express 2, 330 (1998).
  10. C. K. Law, H. Pu, N. P. Bigelow and J. H. Eberly, Stability Signature in Two-Species Dilute Bose Condensates Phys. Rev. Lett. 79, 3105 (1997).
  11. R. Ejnisman, P. Rudy, H. Pu and N. P. Bigelow, Revivals, Damping and Coherence Times of Atomic Wavepackets in Optical Lattices Phys. Rev. A 56, 4331 (1997).
  12. H. Pu, T. Cai, N. P. Bigelow, T. T. Grove and P. L. Gould, Cooling and Trapping  of Three-Level Atoms in a Bichromatic Standing Wave, Opt. Comm. 118, 261 (1995).
  13. H. Pu, T. Cai and N. P. Bigelow, Identification of Doppleron Resonances in the  Force on Three Level Atoms, Laser Physics 4, 969 (1994).
  14. N. P. Bigelow, T. Cai, H. Pu, J. Korn, J. Shaffer, P. R. Hemmer and M. S. Shahriar, Laser Cooling: Beyond One Field and One Dimension, Acta Phys. Pol. 86, 29 (1994).